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ABSTRACT 

 

Eight naturally deposited beef cow manure patties were sampled during summer (July 

19 to August 9, 2010), fall (October 26 to November 19, 2010), winter (January 14 to 

February 18, 2011), and spring (May 5-27, 2011) to determine whether hypothesized 

seasonal differences existed in the initial concentrations and decay rates of Escherichia 

coli (E. coli) and bovine Bacteroidetes (BoBac). E. coli concentrations were estimated 

as culturable colony forming units (CFU) and with a quantitative polymerase chain 

reaction (qPCR) assay targeting the 23S ribosomal gene. BoBac was quantified with a 

qPCR assay targeting a 16S ribosomal gene sequence associated with cattle manure.  

 

Initial concentrations for culturable E. coli varied several orders of magnitude during 

each season, but were significantly lower when the animals grazed fresh forage (3.6 

and 4.3 log10CFU/g-dry-manure in fall and spring, respectively) versus receiving hay 

and grain because of dormant pastures (6.4 log10CFU/g-dry-manure in winter). Average 

initial E. coli 23S gene abundance was also highly variable but lower in the spring and 

fall (7.1 and 8.5 log10copies/g-dry-manure) than in the winter (9.4 log10copies/g-dry-

manure). Average initial BoBac 16S gene abundance was much less variable but again 

lower during grazing (9.9 log10copies/g-dry-manure in both spring and fall) versus during 

supplemental feeding (11.0 and 11.2 log10copies/g-dry-manure in summer and winter, 

respectively). 
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Linear regressions of aggregated log transformed concentration data were used to 

calculate seasonal decay rate coefficients. The decay rate for culturable E. coli was 

highest in the winter (-0.094 log10CFU/g-dry-manure/day) and significantly lower in the 

fall and spring (-0.028 and +0.018 log10CFU/g-dry-manure/day, respectively). The same 

was true for E. coli 23S gene abundance (-0.086, -0.026, and +0.023 log10copies/g-dry-

manure/day in winter, fall, and spring, respectively). The decay rates were far higher for 

BoBac 16S gene abundance which had an opposite seasonal trend, being much higher 

in the summer (-0.33 log10copies/g-dry-manure/day) than in the winter (-0.10 

log10copies/g-dry-manure/day). 

 

The fact that initial bacterial concentrations and decay rates vary seasonally should be 

considered when modeling the fate and transport of the regulatory fecal pollution 

indicator E. coli and the fecal pollution source tracking BoBac gene sequence. 
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CHAPTER I  

INTRODUCTION  

 

1.1 Current Problems 

 

The threat of water borne disease is a concern addressed by the U. S. Environmental 

Protection Agency (EPA). EPA uses Escherichia coli (E. coli) as a general 

“pathogen/fecal pollution indicator” to evaluate surface water quality because this 

bacteria correlates with the outbreak of gastrointestinal illness (U.S.EPA, 1986). Other 

non-regulatory bacteria are used as specific fecal pollution “source trackers.” For 

example, bovine Bacteroidetes (BoBac) can be used to identify fecal waste pollution 

from cattle and are generally not associated with human or other animal fecal waste 

(Layton et al., 2006). 

 

Manure from beef cattle is a potentially important source of E. coli and pathogenic 

bacteria that can deteriorate surface water quality for recreational use (Berry et al., 

2010; Doran & Linn, 1979; Larney et al., 2003; Moore, 1982). In Tennessee, 

“pathogens” are a leading cause of wadeable stream recreation use impairment, 

accounting for 24% of all impaired stream miles (TDEC, 2010). Further, the leading 

source of surface water impairment in Tennessee is reported as agriculture and 

particularly “cattle grazing in the riparian zone” (TDEC, 2010).  
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When dairy and beef cattle are raised in confinement, fecal waste is usually collected, 

stored, and land applied during favorable weather conditions, when crop nutrient 

demands are high and under strict environmental regulations (Grewal et al., 2006; Islam 

et al., 2004; Shepherd et al., 2007; Sinton et al., 2007). This is not the case for pastured 

beef cattle, which far outnumber confined cattle in states like Tennessee. Manure from 

pastured beef cattle is deposited directly onto fields continuously in all weather 

conditions, and storm runoff from these pastures generally receives no treatment or 

storage to reduce potential pathogen concentrations. The potential health risk posed by 

movement of these contaminants (though  subsurface rather than surface water 

movement) was recently demonstrated by a survey of 144 private water supplies in the 

Netherlands. This study revealed that 11% of water supplies on campsites in 

agricultural areas with large grazer densities were positive for fecal pollution indicators 

and 2.7% contained the pathogen E. coli O157:H7 (Schets et al., 2005).  

 

Watershed models can be used to assess such environmental risks, to help understand 

the fate and transport of fecal bacteria from pastures, and to identify effective Best 

Management Practices (BMPs) to control such nonpoint sources of pollution. One such 

model, the Soil and Water Assessment Tool (SWAT), is designed for use in rural, 

largely agricultural watersheds (Benham et al., 2006; Jamieson et al., 2004; Jamieson 

et al., 2003). This model includes subroutines to model the fate and transport of two 

types of bacteria using set initial manure concentrations and decay or die-off rate 

coefficients. Such models can aid understanding of the survival of E. coli and beef cattle 
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indicator bacteria and ensuring surface water contamination. These are critical 

considerations for regulators who must reduce the health risk posed by livestock fecal 

waste pollution of surface waters. 

 

In reality, beef cattle fecal bacteria likely have different decay patterns. For example, E. 

coli is commonly found in the lower intestine of warm-blooded organisms in low relative 

concentrations, but as a facultative anaerobe has the ability to survive in manure and 

soils under certain circumstances (Avery et al., 2004; Berry & Miller, 2005; Berry et al., 

2007; Mubiru et al., 2000; Topp et al., 2003; Vinten et al., 2002; Wang et al., 1996a). 

Bacteria belonging to the phylum Bacteroidetes make up a far more significant part of 

fecal bacteria populations than E. coli (Fiksdal et al., 1985), representing approximately 

30-40% of all fecal bacteria (Harmsen et al., 2000; Hayashi et al., 2002; Suau et al., 

1999; Wang et al., 1996b). It’s been reported that Bacteroidetes spp. found in the 

digestive tract of mammals have little potential for growth in the environment because 

they are strictly anaerobic (Bell et al., 2009; Fiksdal et al., 1985; Kreader, 1998).  

 

One of the most important factors affecting the initial bacteria concentration in cattle 

manure is diet. This is an important consideration for water quality considerations 

because E. coli tends to be higher in fecal waste from cattle fed grain as opposed to 

pasture forages (Callaway et al., 2009; Lowe et al., 2010). Also, for pastured animals 

the diet varies in a predictable seasonal manner in states like Tennessee. In the 

summer, cattle feed on degraded pasture and are often given supplemental hay; in the 

http://en.wikipedia.org/wiki/Gastrointestinal_tract�
http://en.wikipedia.org/wiki/Warm-blooded�
http://en.wikipedia.org/wiki/Facultative_anaerobic_organism�
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fall, cattle typically feed on pastures flush with cool season grasses; in the winter, 

pastures are dormant so beef cattle must be fed hay and/or grain silage; in the spring, 

cattle again feed on pastures flush with cool season grasses. Thus, it is important to 

measure initial bacteria concentrations and determine decay rates in different seasons 

that are associated with different feeding regimens, but this important work has not 

been conducted. 

  

The vast majority of the studies on the fate of fecal bacteria from beef cattle involve 

inoculated organisms and/or studies confined to controlled labs. Few in-field 

survivability studies for E. coli in beef cattle manure directly deposited in pastures have 

been carried out and none have been conducted for BoBac. The decay rate coefficients 

derived from laboratory studies with constant environmental parameters (temperatures, 

humidity, light intensity, etc.) are generally different from field-based seasonal die-off 

rate coefficients (Himathongkham et al., 1999; Muirhead & Littlejohn, 2009; Oliver et al., 

2006; Soupir et al., 2008; Van Kessel et al., 2007b; Wang et al., 2004).  

 

1.2 Objectives and Hypotheses 

 

The overall purpose of this work was to measure and compare the initial populations 

and in-field decay rates of E. coli and BoBac in beef cattle manure naturally deposited in 

a pasture during four seasons with different feeding regimens. 
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The specific objectives of this research were to: 

1. Evaluate E. coli concentrations in beef cattle manure naturally deposited in a pasture 

using a most probable number (MPN) assay for culturable organisms and a 

quantitative polymerase chain reaction (qPCR) assay measuring the abundance of  

E. coli 23S gene sequences. 

2. Evaluate BoBac concentrations in beef cattle manure naturally deposited in a 

pasture using a quantitative polymerase chain reaction (qPCR) assay measuring the 

abundance of  Bacteroidetes 16S gene sequences. 

3. Compare and contrast the initial E. coli and BoBac concentrations in naturally 

deposited beef cattle manure and the seasonal and feeding effects thereon. 

4. Compare and contrast the decay rate coefficients for E. coli and BoBac and the 

seasonal and feed effects thereon. 

 

The null hypotheses of this study were that the seasonal initial concentrations and in-

field decay rates did not vary for culturable E. coli and E. coli 23S gene abundance or 

BoBac 16S gene abundance. The alternate hypotheses were that the seasonal initial 

concentrations and in-field decay rates would vary seasonally.
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CHAPTER II  

LITERATURE REVIEW 

 

Modeling livestock fecal bacteria transport and water resource contamination naturally 

begins with wash off from the source manure during rainfall runoff (Benham et al., 2006). 

In fact, significant correlations between the E. coli concentrations in source cow manure 

and associated runoff have been documented (Muirhead et al., 2005). Thus, the initial 

fecal bacteria concentration must be accurately estimated for the prediction of runoff 

concentrations. After manure is deposited on the land surface, die-off or decay rates 

continue to impact future rainfall runoff concentrations and pollution of water resources, 

but decay rates can be affected by many factors and are poorly documented, 

particularly using in-field manure sampling that accounts for integrated seasonal 

temperature and feeding regimen effects. 

 

Figure 1 is as a conceptual model listing important variables affecting the initial 

concentrations and decay rates of E. coli, a regulatory water pollution indicator, and 

bovine Bacteroidetes (BoBac), a clade of bacteria that can be used to track the source 

of fecal waste pollution of surface waters. Some of the factors, such as initial 

concentrations, fecal moisture content and integrated atmospheric conditions and diet 

(referred to as seasonal changes in this study) have been examined in the literature. 
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1 Varies by  season. 

2 Varies by bacteria. 

Figure 1. Conceptual model of the factors influencing the initial concentrations and 

decay rates of E. coli and BoBac in beef cattle manure.
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2.1 Diet Influences on Cattle Manure E. coli Concentrations  

 

Cattle, as ruminant animals, have evolved to digest cellulosic material (Huntington, 

1997). However, grains are often supplied in order to increase animal production or due 

to the lack of fresh forage according to regular seasonal patterns. Although grain starch 

can be degraded by ruminal microbes, it generally is enclosed and protected by a 

protein coat and enters the small intestine; some directly reaches the cecum and colon 

due to the low pancreatic amylase activity of ruminants. E. coli strains have been shown 

to thrive in cattle fed large amounts of grain because of their ability to ferment sugar 

released from starch in the colon (Huntington, 1997).  

 

Manure E. coli levels from cattle fed corn and soybean meal were more than 100-fold 

higher than cattle fed good quality hay (Diez-Gonzalez et al., 1998). When cattle were 

abruptly switched from a high grain diet to a forage diet, generic and acid-shock 

resistant E. coli populations declined 1,000-fold and 100,000-fold, respectively, within 5 

days (Diez-Gonzalez et al., 1998). Other studies confirm that a switch from grain to hay 

caused a decrease in E. coli populations, although the affect was less pronounced. 

However, it is clear that switching cattle from grain to forage could potentially reduce E. 

coli populations, and thus their availability for rainfall runoff transport and subsequent 

water resource contamination (Callaway et al., 2003; Scott, 2000). 
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In a study of 200 cattle originally feeding on grain, 52% maintained on the grain ration 

were positive for E. coli O 157:H7, while only 18% of the cattle transitioned to hay were 

positive (Kudva et al., 1997). E. coli O157:H7 was significantly higher in manure from 

grain versus hay fed cattle, and survival was longest in manure from grain-fed cattle  

(Lowe et al., 2010). Lower average levels of verocytotoxin-producing E. coli shedding in 

beef finishing cattle were associated with animals being maintained on pasture. (Gunn 

et al., 2007). These outcomes suggest that diet affects E. coli initial concentrations in 

beef cattle manure. 

 

However, there are also studies that do not report higher E. coli concentrations n 

manure from cattle fed grain as opposed to forage. One such study showed that the E. 

coli concentrations in cattle manure decreased with a sudden reduction of hay intake 

(Brownlie & Grau, 1967). Experimentally infected sheep feeding on poor quality grass 

shed much more E. coli than when switched to a corn/alfalfa diet (Kudva et al., 1997). 

In a separate study, grain versus hay feeding did not affect survival or acid resistance 

of E. coli O157:H7 in the rumen (Grauke et al., 2003). However, the different 

quantification and culture methodologies used in these studies make it difficult to 

generalize the findings (Jarvis & Russell, 2001). Conflicting results for the effect of diet 

on initial E. coli concentrations in cattle manure, and lack of such data for BoBac, 

indicate more study is necessary.  
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2.2 Factors Influencing E. coli and BoBac Survival in Cattle Manure 

 

The integrated mechanisms and environmental factors that affect bacterial survival 

times (down to undetectable levels) in naturally deposited livestock waste are unclear. 

Lab-based experiments indicate a wide range of potential factors influence bacterial 

survivability, including soil properties, temperature, sunlight, humidity, rainfall, animal 

feed type, competition among organisms, bacterial density, waste application process, 

and management practices (Crane & Moore, 1986; Lowe et al., 2010). 

 

Pathogenic E. coli strains are well studied in terms of survivability (measured as 

detectable culturable bacteria) in the laboratory, having been inoculated into livestock 

manure and subsequently shown to persist up to several months with very low decay 

coefficients under certain conditions (Bolton et al., 1999; Himathongkham et al., 

1999; Kudva et al., 1998; Wang et al., 1996a). E. coli O157:H7 inoculated into bovine 

feces survived 42 to 49 days at 37°C and 49 to 56 days at 22°C at low manure moisture 

content (10%), and 63 to 70 days at 5°C at a high manure moisture content (74%) 

(Wang et al., 1996a). In another study, E. coli O157:H7 survival was longest (14 days) 

in feces from grain-fed cattle at 25°C (Lowe et al., 2010). Total E. coli, previously 

indicated to have slower decay rate than the pathogenic strain O157:H7, declined below 

the detection limit after 26 days in soil contaminated with swine manure at 25°C (Cools 

et al., 2001).  
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Few survivability studies have been conducted for E. coli in naturally deposited beef 

cattle manure. E. coli was detectable in a fecal waste contaminated soil up to 162 days 

after direct deposition by cattle (Avery et al., 2004). E. coli O157:H7 survived at a level 

of 1,000 CFU/g soil for up to 171 days after beef cattle runoff was discharged onto a 

bromegrass treatment area (Berry et al., 2007). Thus, the long-term survival of E. coli in 

bovine feces and contaminated pasture soils may be an important factor in 

contamination of surface water resources. 

 

Some survivability study results have compared field and lab results, revealing 

contradictory findings. For example, E. coli O157:H7 in bovine feces decreased by 4.5-

5.5 log10CFU/g-wet-manure within 99 days in closed plastic containers and by 4.0-5.5 

log10CFU/g-wet-manure within 50 days in samples decanted onto grassland soil (Bolton 

et al., 1999). E.coli die-off rates were 0.205 and 0.230 natural log CFU/day in open and 

shaded field environments versus 0.08, 0.125, and 0.166 at 21, 27 and 32°C in a 

laboratory setting (Bolton et al., 1999; Van Kessel et al., 2007a). Even when exposed, 

survivability varies with the exposure conditions. For example, E. coli O157:H7 was 

detected for more than 1 year in non-aerated sheep manure, but only survived 4 months 

in similar aerated manure (Kudva et al., 1998). 

 

Few survivability studies have been conducted for fecal source tracking organisms, and 

those that have been conducted for cattle manure indicate survivability may differ from 

E. coli. For example, ovine Bacteroidetes in unfiltered stream water microcosms 
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declined more slowly at lower versus higher temperatures. This trend for increasing 

decay rates with increasing temperature was opposite of the trend for fecal coliforms, 

which tended to decay faster at 4°C (Okabe & Shimazu, 2007). A feces-waste-derived 

human-specific Bacteroidetes 16S rRNA genetic marker has also been reported to 

persist longer (more than 24 days) at lower temperatures of 4 and 12 degree°C 

(Seurinck et al., 2005) and decay characteristics for fecal Bacteroidetes 16S ribosomal 

genes does appear to be similar between cattle, human and pig waste (Okabe & 

Shimazu, 2007). Other researchers report this same trend of increasing decay rates 

with increasing temperatures for an equine Bacteroidetes genetic marker spiked into 

surface water samples (Bell et al., 2009). However, Bacteroidetes appeared to survive 

in the anaerobic portion of an aerobic microcosm (aerobically incubated sewage sludge), 

which indicates the prolonged possibility of transport from a partially anaerobic 

environment like in-field cattle manure (Walters & Field, 2006).  

 

In summary, there are a host of studies estimating E. coli degradation rates and survival 

periods in cattle manure, particularly for the pathogenic strain O157:H7. However, no 

studies have been undertaken to similarly examine BoBac decay rates. Such a study 

would best consider seasonal environmental effects like temperature as well as regular 

feeding pattern changes.  Because the results of past E. coli studies have been 

divergent, such a study would best quantify both BoBac and culturalble E. coli and E. 

coli genetic markers for proper context and to aid interpretation of the results. 
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2.3 Bacterial Growth in Cattle Manure 

 

E. coli can grow in manure, particularly during the first week after feces is deposited, as 

has been reported under both field and lab conditions (Conner & Kotrola, 1995; Soupir 

et al., 2008; Van Kessel et al., 2007a; Wang et al., 1996a; Wang et al., 2004). Van 

Kessel et al. (2007) found E. coli numbers in manually composited manure samples 

from three cow herds increased up to 1.5 orders of magnitude both in the field (at a site 

open to the sun and in shaded area under a tree) and in the lab at 21, 26 and 32 

degree°C over a one week period. E. coli concentrations were observed to peak at day 

4, 7, and 7 days in fall, spring, and summer, and two growth peaks occurred during 

winter at days 12 and 34 (Soupir et al., 2008). E. coli populations in dairy cow manure 

increased as much as 2.5 log10CFU/g-wet-manure in the three days following excretion 

and remained higher than the initial population until day 10 at 27°C (Wang et al., 2004). 

Wang et al. (1996) detected a 2 log10CFU/g-wet-manure increase of E. coli O157:H7 

inoculated in manure after 2 days at 37°C. 

 

However, there are also studies that do not report E. coli growth in manure or soil 

contaminated with manure. For example, E. coli levels of 7.7, 7.6 and 7.5 log10CFU/g-

wet-manure were observed for soils contaminated with fresh cattle, sheep and pig 

manure 7 days after the animals had been kept in the field. By day 14 when all the 

animals were removed from the field, E. coli levels in the soil had decreased two to 

three orders of magnitude (Avery et al., 2004). 
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Studies were not found that examined whether Bacteroidetes growth occurred in cattle 

manure after deposit. 

 

2.4 E. coli and BoBac Decay Rates in Cattle Manure 

 

Log-linear regression is commonly used to derive bacterial decay coefficients (Crane & 

Moore, 1986; Oliver et al., 2006; Wang et al., 2004). Chick’s Law (Crane & Moore, 1986) 

is often used to describe the first-order bacterial decay as N(t)=N0 e-kt where N(t) is the 

bacterial quantity at time t, N0 is the initial number of bacteria, k is first-order decay 

constant, and t is elapsed time.  

 

Laboratory decay rates for E. coli in freshly excreted dairy cow manure increased as the 

temperature and moisture concentration increased, with rates of  0.11 and 0.32 

log10CFU/g-dry-manure/day at 34°C/10% and 41°C/83%, respectively (Wang et al., 

2004). The decay rates of E. coli O157:H7 in the top layer of fresh dairy manure were 

0.11 log10CFU/g-dry-manure/day at 4°C/75% relative humidity (RH), 0.046 log10CFU/g-

dry-manure/day at 20°C /50% RH, and 0.112 at 37°C/30% RH.  In contrast, in the 

bottom presumably anaerobic manure layer, the decay rates were 0.054 log10CFU/g-

dry-manure/day at 4°C/75% RH, 0.074 log10CFU/g-dry-manure/day at 20°C/50% RH, 

and 0.279 log10CFU/g-dry-manure/day at 37°C/30% RH (Himathongkham et al., 1999). 

For soils incorporated with fresh cattle manure and incubated in the laboratory, E. coli 
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decay rates were not affected by varying the soil moisture content (≈ 0.05 log10CFU/g-

dry-manure/day at 25% and 50% soil moisture) (Oliver et al., 2006). The differences 

among these decay rates may be attributable to the different experimental conditions. 

For example, (Oliver et al., 2006) indicates that E. coli survived better in manure piles 

than within a slurry, died off more quickly within manure and slurries than in amended 

soil, and decayed faster within soil microcosms when introduced with sterile water 

rather than with cattle manure. 

 

In-field studies revealed that the E. coli decay rate in naturally deposited cattle manure 

was 0.014 log10CFU/g-wet-manure/day in late April and higher at 0.020 log10 CFU/g-

wet-manure/day in July (Mostaghimi, 1999). However, these results were not 

statistically different. Significant differences may have occurred in this study if the 

seasonal analysis was spread further apart, such as in mid-summer and mid-winter. For 

homogenized cow patties artificially applied to a mowed hay field, larger differences for 

die-off rates were detected in late winter (0.229 log10CFU/ g-dry-manure/day) versus 

spring (0.134 log10CFU/ g-dry-manure/day) (Soupir et al., 2008). 

 

Very few studies have examined the decay rate for Bacteroidetes indicator species in 

naturally deposited manure. The decay rate for equine Bacteroidetes in unfiltered 

stream water increased from 0.17 to 0.81 log10copies/g-wet-manure/day as the 

temperature was increased from 5 to 25°C (Bell et al., 2009). Okabe and Shimazu 

(2007) also reported increased decay rates with increasing temperatures for bovine 
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Bacteroidetes in non-filtered river water (0.14 and 1.7 log10copies/L/day at 4 and 30°C, 

respectively). 

 

2.5 Summary 

 

The reviewed literature shows that it is difficult to apply controlled laboratory data to in-

field conditions where beef cattle manure is deposited. Even so, very few studies have 

been conducted using naturally deposited manure, investigating for example integrated 

seasonal variability and feeding regime impacts on manure bacteria decay rates. A 

series of die-off rates based on direct fecal deposition (not within soil or artificially land 

applied) are needed to parameterize watershed models for bacterial transport and fate. 

No studies were found which simultaneously examined the in-field survivability of the 

regulatory fecal pollution indicator E. coli and source tracking bacteria for cattle manure. 
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CHAPTER III 

MATERIALS AND METHODS 

 

3.1 Sampling 

 

Naturally deposited in-field beef cow manure samples were collected from the 

University of Tennessee East Tennessee Research and Education Center (Blount Beef 

Cow Unit, 4341 UT Farm Road in Louisville, Tennessee) in summer, fall, winter, and 

spring between 2010 and 2011. Samples were collected from 0-4 days following 

deposition, every two days for the following one to two weeks, and then weekly 

thereafter until the manure patty could no longer be clearly discerned or the detection 

limit for culturable E. coli (100 CFU/g-wet-manure), E. coli 23 S gene abundance (6.6 

log10copies/g-wet-manure), or bovine Bacteroidetes 16S gene abundance (6.6 

log10copies/g-wet-manure) was reached. More frequent samples were collected in the 

first several days following deposition to accurately establish the decay coefficients and 

observe whether growth of E. coli or BoBac occurred. 

 

To initiate each seasonal study approximately 20 Angus beef cow-calf pairs were 

moved to a fresh pasture where they grazed freely for several hours. During this time 

eight newly deposited manure patties were randomly flagged and numbered. Samples 

on day 0 were obtained immediately after deposition. During the summer and fall 

sampling events the cattle were in small pastures and were moved to a larger adjacent 
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pasture to protect the patties from trampling. For the winter and spring sampling events 

the cattle were fed and grazed, respectively, in a large pasture where the designated 

patties were deposited and occasionally disturbed. Each sample (approximately 30 ml 

volume) included a vertical transect of manure from the top crust, if present, to the moist 

interior of the cow patty. Manure samples were collected in re-sealable plastic bags at 

the same time of day (9:00 am ± 1 hr), immediately placed on ice, and transported to 

the laboratory within one hour for analysis. 

 

Weather data for the sampling periods were obtained from the adjacent McGhee Tyson 

Airport (Appendix A). Summaries of the data are provided in Table 1 below. 

 

Table 1.  A summary of weather data during seasonal sampling of in-field manure. 

Season 
Sampling 

dates 

Temperature 

(°F) 

Relative 

Humidity 

(%) 

Rainfall 

(inch) 

average max min average total 

Summer 
7/19 to  

8/9/2010 
83 96 68 73.4 2.9 

Fall 
10/26 to 

11/19/2010 
53 85 27 67.8 5.4 

Winter 
1/24 to 

2/18/2011 
43 73 20 62.6 3.3 

Spring 
5/2 to 

5/27/2011 
67 93 37 70 4.2 
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3.2 Manure Solids Concentration 

 

E. coli and BoBac concentrations were normalized to dry manure solids measured using 

Standard Method 2540D (APHA, 1998). Briefly, 2-9 grams of feces were placed on a 

pre-weighed pan and dried at 105°C for 24 hours. The sample was cooled and weighed 

again to calculate the percent solids using the weight loss. 

 

3.3 E. coli Concentrations 

 

Most Probable Number Assay. Culturable E. coli was analyzed in manure samples 

within six hours using Standard Method 9223B (APHA, 1998) providing a most probable 

number (MPN) quantification with the Colilert®/Quanti-tray® system by IDEXX 

Laboratories of Westbrook, Maine (Muirhead et al., 2004). During this assay, E.coli 

metabolizes 4-methyl-umbelliferyl glucoronide using the species specific enzyme b-

glucuronidase to produce 4-methyl-umbelliferone, which fluoresces under long wave 

(365nm) ultra violet light. 

 

To conduct this assay between 2 and 3 grams of feces were weighed and added to 

phosphate buffered saline (PBS: 1.16g sodium phosphate monobasic monohydrate, 5g 

sodium phosphate dibasic, 17g NaCl, 2L distilled H2O, pH 7.4) to produce an initial 

concentration of 100 g/L. Serial dilutions were then made in PBS to obtain two dilutions 

used in the Colilert® assay (100 mg-wet-manure/L and 1,000 mg-wet-manure/L). The 
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diluted samples were poured into the Quanti-Tray® pouches, sealed using a Quanti-

Tray® Sealer, and immediately placed in an incubator at 35°C for 24 hours. A total of 19 

trays (8 trays for each cow patty sample dilution, two trays for a duplicate cow patty 

dilution series, and one negative control) were analyzed for each day the manure was 

sampled. Blue fluorescent wells were counted under 366 nm UV light the following day 

to obtain the MPN from the assay manual statistical table. The remaining 100 g/L 

solution and leftover manure were carefully labeled and frozen at -80°C for future 

analyses. 

 

E. coli 23S gene quantitative PCR assay. A quantitative real time polymerase chain 

reaction (qPCR) assay was employed to verify the MPN results and help establish E. 

coli growth potential in the manure as well as accurate decay coefficients (Knappett et 

al., 2011). This type of assay amplifies highly specific sequences of DNA and in the 

process creates a fluorescent signal. The initial gene sequence concentration is then 

quantified using a baseline fluorescence method with external standards (Orlando et al., 

1998). In this study, E. coli 23S gene abundance was quantified directly in 100 mg-wet-

manure/L dilutions without DNA extraction.  

 

The E. coli qPCR reaction contained 12.5 μL PCR mix (Brilliant Agilent Technologies 

Absolute Blue Thermo), 0.75 μL each of the forward primer EC23Sf and reverse primer 

EC23Sr (20µM) (Table 2), 0.5 μL of EC23srv1bhq (10µM) linear fluorescent probe 

(Table 2) (Knappett, 2010; Knappett et al., 2011), 11 μL of sterile water and 2.5 μL 

http://en.wikipedia.org/wiki/DNA_replication�
http://en.wikipedia.org/wiki/DNA�
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sample (100 mg/L manure sample dilutions) or quantification standard. External 

standards were a 10-fold dilution series of the EC3.3 plasmid isolated from E. coli 

(Layton et al., 2006). The PCR amplification and fluorescent probe detection was run on 

the Chromo4 Continuous Fluorescence Detector (Bio-Rad, Hercules, CA) with the 

following amplification protocol: 50°C for 2 minutes, 95°C for 15 minutes, and 45 cycles 

of 95°C for 30 s and 55°C for 45s. The threshold cycle (CT) value for fluorescence 

detection was manually set at 0.03. The standard curve and each sample were 

analyzed in duplicate. Each assay run included a negative control (sterile water). 

 

Table 2.  Probe and primer sequences for the qPCR assays used to detect E. coli and 

BoBac ribosomal genes in manure sample dilutions. 

Assay Primer/probe name: sequence (5’–3’) 

E. coli 

EC23Sf; 5’ GAGCCTGAATCAGTGTGTGTG 3’ 

EC23Sr: 5’ ATTTTTGTGTACGGGGCTGT 3’ 

EC23Srv1bhq: 5’ (FAM)CGCCTTTCCAGACGCTTCCAC(BHQ-1) 3’ 

BoBac 

BoBac367f: 5’ GAAG(G/A)CTGAACCAGCCAAGTA3’ 

BoBac467r: 5’ GCTTATTCATACGGTACATACAAG3’ 

BoBac402Bhqf: 

5’(FAM)TGAAGGATGAAGGTTCTATGGATTGTAAACTT(BHQ-1) 3’ 
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3.4 Bovine Bacteroidetes Concentrations 

 

Bovine Bacteroidetes 16S ribosomal gene abundance was quantified using qPCR 

directly in 100 mg-wet-manure/L dilutions (Layton et al., 2006). The reaction contained 

12.5 μL PCR mix (Brilliant Agilent Technologies Absolute Blue Thermo), 0.75 μL each 

of the forward primer BoBac 367f (20µM) and reverse primer Bobac 467r (10µM) (Table 

2), 0.5 μL of a linear fluorescent probe (Table 2) (Layton et al., 2006), 11 μL of sterile 

water and 2.5 μL sample or standard. A BoBac plasmid dilution series was used as an 

external standard (Layton et al., 2006). The qPCR assay was run on a Chromo4 

Continuous Fluorescence Detector (Bio-Rad, Hercules, CA) with the following 

amplification protocol: 50°C for 2 min, 95°C for 10 min, and 50 cycles of 95°C for 30 s 

and 57°C for 45s. The threshold cycle (CT) value for fluorescence detection was 

manually set to 0.04. All assays were run in duplicate and each assay run included a 

negative control.  

 

3.5 Data Analysis  

 

Two methods were applied to analyze E. coli numbers. For the MPN method, the results 

for two sample dilutions were averaged if both concentrations were above the assay 

detection limit. Otherwise, the result for the larger dilution was used. The detection limits 

for the culturable cell assay was 100 CFU/g-wet manure. The theoretical detection limit 

for the E. coli 23S gene and the BoBac 16S gene was 6.6 log10copies/g-wet-manure .  
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For the qPCR assays, the E. coli and BoBac ribosomal gene concentrations were the 

average of duplicate reactions. When the concentrations of any of the three assays 

were below detection limit for several days only the first day was assigned a 

concentration value equal to the detection limit (BDL); the remaining below detection 

limit results were removed from the decay rate analysis. All concentration data were 

normalized to the manure solids content. 

 

The initial bacteria concentration data were analyzed with an analysis of variance 

(ANOVA) to determine whether a difference existed in the populations between seasons 

(α = 0.05). A subsequent Tukey Honestly Significant Difference (HSD) test was used to 

distinguished pairwise differences (α = 0.05). These analysis were performed using 

SAS (version 9.3) statistical software. 

 

Seasonal bacterial decay rates were established using the slope of a linear regression 

through the aggregated log transformed concentration data over time. This analysis was 

performed using SigmaPlot (version 11.0) software. 

.  
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CHAPTER IV  

RESULTS AND DISCUSSION 

 

E. coli is the regulatory fecal pollution indicator for evaluating surface water quality, and 

members of the Bacteroidetes family serve as promising source indicators for several 

types of fecal waste. But these different fecal bacteria may have different decay rate. 

The overall purpose of this work was to measure and compare the initial populations 

and in-field decay rates of E. coli and BoBac in beef cattle manure naturally deposited in 

a pasture during four seasons with different feeding regimens. The methodology was to 

collect one sample from each of eight randomly selected manure patties for several 

weeks following deposition. Manure solids content, culturable E. coli concentrations, 

and the abundance of E. coli 23S and BoBac 16S ribosomal genes are provided in 

Appendix B. 

 

4.1 Initial Solids Content and E. coli and BoBac Concentrations  

Initial manure solids content, culturable E. coli concentrations, E. coli 23S gene 

abundance, and BoBac 16S gene abundance from the first day of each seasonal 

sampling event are summarized in Table 3. The solids content and log transformed 

bacterial concentration data were analyzed with an ANOVA which lead to the rejection 

of the null hypothesis that these variables did not vary by season (α = 0.05). A 

subsequent Tukey HSD analysis identified significantly different pairs of data (α = 0.05) 

(Table 3).
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Table 3. Seasonal means and standard deviations of the solids content and log 

transformed culturable E. coli and E. coli 23S and BoBac 16S gene abundance in eight 

freshly deposited beef cow patties. 

Season 

Date 

% Solids 

Content1 

E. coli1 BoBac1 

culturable cells 

(log10CFU per 

gram-dry-manure)

23S genes 

(log10copies per 

gram-dry-manure) 

16S genes 

(log10copies per 

gram-dry-manure)

Summer 

7/19/10 
12.6 ± 1.4 a 5.0 ± 1.2 b 8.6 ± 0.3 b 11.0 ± 0.1 a 

Fall 

10/26/10 
9.6 ± 0.8 c 3.6 ± 0.8 c 8.5 ± 0.5 b 9.9 ± 0.3 b 

Winter 

1/24/11 
11.8 ± 1.0 ab 6.4 ± 0.8 a 9.4 ± 0.7 a 11.2 ± 0.2 a 

Spring 

5/2/11 
10.3 ± 2.5 bc 4.3 ± 0.6 bc 7.1 ± 0.1 c 9.9 ± 0.5 b 

1 The results of a Tukey HSD analysis on the log transformed results are summarized with underlined 

lower case letters; seasonal values followed by the same letter are not significantly different.
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The initial culturable E. coli concentrations were highly variable but were significantly 

different by season/feeding pattern (Table 3). Results for the winter (6.4 ± 0.8 

log10CFU/g-dry-manure) when supplemental feed including hay and silage were 

provided were higher than for all other seasons. The average culturable E. coli 

concentration in summer when supplemental hay was provided (5.0 ± 1.2 log10CFU/g-

dry-manure) was approximately one order of magnitude higher than in fall (3.6 ± 0.8 

log10CFU/g-dry-manure) and spring (4.3 ± 0.6 log10CFU/g-dry-manure) when the cattle 

consumed pasture forage. These results were corroborated with the E. coli 23S gene 

abundance, which was highest in the winter (9.4 ± 0.7 log10
 copies/g-dry-manure) and 

lowest in the spring (7.1 ± 0.1 log10CFU/g-dry-manure). Thus, the null hypothesis that 

the E. coli concentrations did not vary by season was rejected. 

 

Culturable E. coli concentrations were much lower than the E. coli 23S gene abundance 

measured by qPCR. This was not unexpected because the qPCR assay measures 

intact gene sequences from both live and dead or un-culturable cells. E. coli has 7 

copies of the 23S genes per genome (Stevenson & Schmidt, 2004), so at least 7 times 

higher 23S gene abundance was expected versus the culturable cell count. The ratios 

of the E. coli gene copy abundance to the culturable cell counts were 1,140;1, 57,829:1, 

176:1 and 942:1 in summer, fall, winter, and spring, respectively. Thus, many gene copy 

numbers were being measured by the qPCR from non-culturable cells and/or dead cells. 
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Average initial BoBac 16S gene abundance was far less variable than E. coli, but varied 

in a similar manner to E. coli by season. BoBac was more abundant in summer (11.0 ± 

0.1 log10copies/g-dry-manure) and winter (11.2 ± 0.1 log10copies/g-dry-manure) during 

supplemental feeding than in spring and fall (9.9 ± 0.1 log10copies/g-dry-manure) when 

the cattle grazed fresh pasture forages (Table 3). Thus, the null hypothesis that the 

BoBac 16S gene concentrations did not vary by season was rejected. Finally, the 

BoBac 16S gene concentrations were consistently 5 to 6 orders of magnitude higher 

than the culturable E. coli concentrations. 

 

Seasonal manure solids content trends reflected variations observed in the bacteria 

concentrations. The manure solids content was highest during supplemental feeding in 

the summer and winter (12.6 and 11.8 ± 0.4%, respectively) when the E. coli and BoBac 

concentrations were highest; the manure solids content during grazing was lower (9.6 ± 

0.4% 10.3 ± 0.6% in the fall and spring, respectively) when the E. coli and BoBac 

concentrations were lowest (Table 3).  

 

The highest average initial culturable E. coli concentrations measured in this study (6.9 

and 6.4 log10CFU/g-dry-manure in the winter and summer, respectively) were similar to 

the E. coli cell counts (6 to 7 log10CFU/g-dry-manure) in composite manure samples 

from three herds: 20-month-old beef heifers, mature beef cows and dry dairy cows 

collected on June 20, 2004 (Van Kessel et al., 2007a). However, the results herein are 

an order of magnitude lower than the 7.7 log10CFU/g-dry-manure from soil heavily 
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contaminated with beef cow manure (Avery et al., 2004). Another study of fresh dairy 

cow manure collected from the concrete base of a dairy shed holding pen reported a 

range of E. coli concentrations (5 to 7 log10CFU/g-dry-manure) similar to those observed 

in this study (Muirhead et al., 2005). The results herein were also similar to culturable E. 

coli concentrations (7.7 log10CFU/g-dry-manure) in fresh dairy cow waste collected 

before 9 am on July 27 and September 4, 2001 from cattle fed supplement grain 

because of degraded patures (Wang et al., 2004).   

 

The initial E. coli concentrations were much lower (one to three orders of magnitude) in 

the fall and spring in this study compared with the previously cited literature (Chapter 2), 

most of which involved experiments in the summer season when supplemental feed 

was provided. The Literature Review revealed that one of the most important factors 

affecting bacterial concentrations in cattle manure is diet, which naturally and regularly 

varies between seasons for unconfined beef cattle in the southeastern United States. 

More E. coli are likely to be present in the cattle manure when the animals are fed grain 

versus grass forages (Callaway et al., 2006; Garauke et al., 2003; Lowe et al., 2010).  

No documented diet influence on BoBac concentrations were found in the Literature 

Review. This study clearly reveals lower concentrations of BoBac in cattle feeding on 

pasture forages versus those receiving supplemental hay and silage.  

 

Water shed models like SWAT can be used to understand the fate and transport of fecal 

bacteria from livestock manure, but initial bacterial concentrations are required. This 
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study clearly confirms that the number of bacteria that would potentially be deposited 

into a watershed from beef cattle is not only related to the type of bacteria, but also to 

the season and feeding pattern. Models using fixed manure bacteria concentrations 

under all conditions are not accurate, and different concentrations should be 

accommodated for different seasons and/or feeding patterns (Parajuli et al., 

2009a; Parajuli et al., 2009b; Zhu et al., 2011). 

 

4.2 Bacteria Decay Rates 

 

The literature did not reveal any simultaneous degradation rate studies of E. coli and 

bovine fecal source tracking bacteria. To better assess fecal pollution sources and 

recommend practices to improve surface water quality, which is commonly impaired 

with high E. coli concentrations potentially from grazing cattle, decay rate data are 

needed that reflect regular integrated seasonal factors. 

 

During in-field sampling, the cow patties were not disturbed in summer and fall but were 

lightly tramped in winter and spring by the cattle. In the spring the patties were also 

disturbed by mowing. A total of nine samples were always collected from eight different 

fresh manure deposits (including one duplicate sample). For the summer, fall and winter, 

8 samples were collected the same manure patties during each subsequent sampling 

day. In the Spring, as explained below, the initial patties were abandoned, but five other 

same age patties were subsequently sampled.  
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4.2.1 Summer  

 

The summer season sampling began on July 19, 2010, lasted until August 9, 2010, and 

included 8 sampling events. The cattle were on pastured degraded cool season grass 

and being fed supplemental hay. Daily weather data for this time period are provided in 

Appendix A, Table A-1. In summary, the maximum and minimum average daily 

temperatures and relative humidity were 88 and 77°F and 84% and 64%, respectively. It 

rained 7 days during this 21-day period. Figure 3 provides all of the summer season 

results and includes log-linear regression lines with 95% confidence intervals for the 

slopes, which were used to establish decay rates.  

 

For culturable E. coli, fresh cattle manure collected on day 0 and day 21 displayed 

average E. coli concentrations of 6.4 log10CFU/g-dry-manure and 4.7 log10CFU/g-dry-

manure, respectively. E. coli was still present in five of the eight patties after 21 days. 

High concentration variability (4 to 7 orders of magnitude) was present each sampling 

day. The decay rate was estimated with the slope of a log-linear regression of culturable 

E. coli concentration and time data (Figure 3). The rate of decline was 0.080 

log10CFU/g-dry manure/day, with a standard error (S.E.) of 0.025, a p-value of 0.002. 

Thus, the slope of the best fit line, or decay rate, was significantly less than 0. However, 

a poor fit was confirmed by the low coefficient of determination (R2) value of 0.15.
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Figure 2. Summer season (A) culturable E. coli concentrations, (B) E. coli 23S gene 

abundance, and (C) BoBac 16S gene abundance. 

 

Regression lines are fit to the log transformed data and 95% confidence intervals for the 

line slopes are displayed. A statistical summary of the best fit lines include the standard 

slope ± 95% confidence interval, slope p-value (in comparison with 0), and the 

coefficient of multiple determination (R2). 
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Relatively lower daily concentration variability existed within the E. coli 23S gene 

abundance versus culturable E. coli (as expected, the E. coli 23S gene abundance 

consistently several orders of magnitude higher than the culturable E. coli 

concentrations). However, the decay rate of 0.009 log10copies/g-dry-manure/day also 

was not significantly different from zero (S.E. = 0.015, p-value = 0.55) (Figure 3-B). 

 

BoBac 16S gene concentrations continuously declined from approximately 1011 

copies/g-dry-manure on the first day to below the detection limit in 7 out of 8 cow patties 

on day 11. The BoBac concentration data exhibited high variability only at low 

concentrations. The decay rate was high and significantly different from 0 (0.333 

log10copies/g-dry-manure/day; SE = 0.022, p-value < 0.001) with a very good regression 

fit (R2=0.81) (Figure 3-C). The decay rate was clearly much higher than for culturable E. 

coli and E. coli 23S gene abundance.  

 

4.2.2 Fall  

 

The fall season sampling began October 26, 2010 and lasted until November 19, 2010 

and included 9 sampling events. The cattle were on very good quality pasture and were 

not receiving supplemental hay or grain. Daily weather data for this time period are 

provided in Appendix A, Table A-2. In summary, the maximum and minimum average 

daily temperatures and relative humidity were 72 and 39°F and 56 to 92%, respectively. 

It rained on 8 different days. The fall season data are presented in Figure 4.



 34

Figure 3. Fall season (A) culturable E. coli concentrations, (B) E. coli 23S gene 

abundance, and (C) BoBac 16S gene abundance. 

 

Regression lines are fit to the log transformed data and 95% confidence intervals for the 

line slopes are displayed. A statistical summary of the best fit lines include the standard 

slope ± 95% confidence interval, slope p-value (in comparison with 0), and the 

coefficient of multiple determination (R2). 
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For cultivable E. coli, the average concentration decreased continually until day 24, but 

cells were still detectable in 6 of the 8 patties on day 24. High concentration variability, 2 

to 4 orders of magnitude, existed within the data for each sampling day. The rate of 

decline was significantly different from 0, at 0.028 log10CFU/g-dry-manure/day (S.E. = 

0.014, p-value = 0.048). The E. coli 23S decay rate was similar at 0.026 copies/g-dry-

manure/day and was also statistically greater than 0 (SE = 0.006, p-value < 0.001). 

Both the cultural E. coli and E. coli 23S gene abundance displayed poor regression fits. 

 

BoBac 16S gene abundance decayed rapidly with a 1 order of magnitude average 

decrease by day 2. BoBac 16S gene sequences were detectable in only 4 of the 8 

patties by day 24 and showed high variability only at relatively low concentrations. The 

decay rate was significantly different from zero at 0.10 log10copies/g-dry-manure/day 

(SE = 0.018, p-value < 0.001). 

 

4.2.3 Winter 

 

The winter season sampling began on January 4, 2011, lasted until February 18, 2011 

and included 9 sampling events. The cattle were on dormant pasture and being fed 

supplemental hay and corn silage. Daily weather data for this time period are provided 

in Appendix A, Table A-3. In summary, the maximum and minimum average daily 

temperatures and relative humidity were 60 and 30°F and 34 to 86%, respectively. It 

rained and or snowed on 8 out of 25 days. Figure 4 provides the winter season results. 
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Figure 4. Winter season (A) culturable E. coli concentrations, (B) E. coli 23S gene 

abundance, and (C) BoBac 16S gene abundance. 

 

Regression lines are fit to the log transformed data and 95% confidence intervals for the 

line slopes are displayed. A statistical summary of the best fit lines include the standard 

slope ± 95% confidence interval, slope p-value (in comparison with 0), and the 

coefficient of multiple determination (R2). 
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The average culturable E. coli concentrations deceased throughout the 25-day winter 

sampling period but was measureable in 6 out of 8 patties the final sampling day. High 

variability, 2 to 4 orders of magnitude, existed within the data on each sampling day.  

The decay rate was 0.094 log10CFU/g-dry-manure/day (S.E. = 0.013, p-value < 0.001) 

and significantly different than zero and much higher than observed in fall and spring 

sampling seasons. This was corroborated with a significant decline in the E. coli 23S 

gene abundance at 0.086 log10copies/g-dry-manure/day (S.E. = 0.012, p-value < 0.001). 

BoBac 16S gene abundance declined at 0.102 log10copies/g-dry-manure/day (S.E. = 

0.011, p-value < 0.001), a much lower rate than was observed in the summer. 

 

4.2.4 Spring 

 

The spring season sampling began on May 2, 2011, lasted until May 27, 2011, and 

included 9 sampling events. The cattle were on fresh grass pasture with no 

supplemental feed. Daily weather data for this time period are provided in Appendix A, 

Table A-4. In summary, the maximum and minimum average daily temperatures and 

relative humidity were 77 and 56°F and 48 and 92%, respectively. It rained and or 

snowed on 13 out of 26 days. Figure 5 provides presents the spring season results. 

 

In spring, the samples were collected on the first day the cattle were moved to a pasture 

with fresh forage. Because the cows were adjusting to this change in diet, extremely 

small and liquid cow paddies were produced that spread out and degraded quickly.  
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Figure 5. Spring season (A) culturable E. coli concentrations, (B) E. coli 23S gene 

abundance, and (C) BoBac 16S gene abundance. 

 

Regression lines are fit to the log transformed data and 95% confidence intervals for the 

line slopes are displayed. A statistical summary of the best fit lines include the standard 

slope ± 95% confidence interval, slope p-value (in comparison with 0), and the 

coefficient of multiple determination (R2). 
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In response to this anomalous result, a different set of 5 manure patties deposited on 

the afternoon of the same day the initial sampling occurred, May 2, 2011, were sampled 

from May 3, 2011 to May 27, 2011. The data from all the patties were combined to 

establish the decay rates in Figure 5.  

 

The culturable E. coli abundance was very low on the first day of sampling, but high on 

the second sample day. After an intervening decline in the culturable E. coli abundance, 

a significant concentration increase was observed in most of patties on days 15 and 17, 

with an apparent decrease in the concentrations on day 25. This change in the decay 

behavior (decreasing until day 12 then increasing and decreasing again) may have 

been due to the patties being mashed by farm equipment on days 10 and 15. This 

flatten the manure patties, resulting in very thin layer of material, perhaps exposing E. 

coli to more oxygen and thus better survival/growth conditions (Figure 1). The E. coli 

23S gene abundance also showed an increased on sampling days 12 and 15, and a 

decline thereafter. The cultivable E. coli and E. coli 23S gene abundance decay rates 

were not significantly different than 0. 

 

BoBac decayed steadily during the spring sample season. The disturbance between 

days 10 and 15 had no apparent affect on BoBac, but could have been expected to 

increase the decay rate by making the patties more aerobic (Figure 1). The decay rate 

of 0.15 log10copies/ (g-dry-manure/day) (S.E. = 0.018, p-value < 0.001) was significantly 

different than 0 and the linear regression displayed a good fit (R2
 = 0.61).
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4.2.5 Seasonal Comparison of Decay Rates 

 

Figure 6 on the following page displays the estimated seasonal decay rates and 

corresponding 95% confidence intervals (slopes and slope confidence intervals from 

Figures 2-5). Based on these data the null hypothesis that the decay rates of bovine 

fecal bacteria do not vary by season were easily rejected. The E. coli die-off rates were 

higher (represented as a more negative decay rate) in winter than in all other seasons. 

Conversely, BoBac 16S gene concentrations decayed much faster during the summer. 

In fact, BoBac 16S gene concentrations decayed more quickly than culturable E. coli or 

E. coli 23S gene concentrations in all seasons except for winter when all of the decay 

rates were not statistically different (indicated by overlapping 95% slope confidence 

intervals). Persistence of the Bacteroidetes in this study fell within the wide variation of 

survival periods from previous research, including as little as 8 days (Kreader, 1998) 

and as much as 24 days (Seurinck et al., 2005) (x-intercepts for plot C in Figures 2-5). 

Referring back to the conceptual model in Figure 1, it can be surmised that the 

integrated seasonal atmospheric conditions and feeding patterns affect the decay rates. 
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Figure 6. Seasonal decay rates for culturable E. coli (log10CFU/g-dry-manure/day), E. coli 23S gene abundance 

(log10copies/g-dry-manure/day), and BoBac 16S gene abundance ((log10copies/g-dry-manure/day).  
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CHAPTER V  

CONCLUSIONS 

 

Initial concentrations for culturable E. coli varied several orders of magnitude during 

each season, but were clearly lower when the animals were grazing on fresh forage (3.6 

± 0.8 and 4.3 ± 0.6 log10
 CFU/g-dry-manure in fall and spring, respectively) versus 

receiving supplemental feed because of degraded (5.0 ± 1.2 log10CFU/g-dry-manure, 

summer) or dormant (6.4 ± 0.8 log10CFU/g-dry-manure, winter) forage. Average initial E. 

coli 23S gene abundance was also highly variable and lower in the spring (7.1 ± 0.1 

log10 copies/g-dry-manure) versus the winter (9.4 ± 0.7 log10copies/g-dry-manure). 

Average initial BoBac 16S gene abundance was less variable, but again significantly 

lower during grazing (9.9 ± 0.3 and 9.9 ± 0.5 log10
 copies/g-dry-manure in the fall and 

spring, respectively) versus during supplemental feeding (11.0 ± 0.1 and 11.2 ± 0.1 

log10
 copies/g-dry-manure in summer and winter, respectively). A null hypothesis that 

the initial bacterial concentrations were not affected by season was easily rejected. 

 

Linear regressions of log transformed concentration data were used to calculate 

seasonal decay rates. The decay rate for culturable E. coli was significantly higher in 

the winter (-0.094 ± 0.26 CFU/g-dry-manure/day) than in the fall (-0.028 ± 0.028 CFU/g-

dry-manure/day). The same was true for E. coli 23S gene abundance (-0.086 ± 0.024 

and -0.026 ± 0.012 copies/g-dry-manure/day in winter and fall, respectively). The decay 

rates were far higher for BoBac versus E. coli, but had an opposite trend, being much 
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higher in the summer (-0.333 ± 0.045 copies/g-dry-manure/day) than in the winter 

(0.102 ± 0.022 copies/g-dry-manure/day). A null hypothesis that the bacterial decay 

rates did not vary by season was easily rejected. 

 

These seasonal initial concentration and decay rate data will provide a more accurate 

input for watershed models such as SWAT that are used to predict and guide 

remediation of pathogen contamination of surface water resources.  
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Table A1. Weather data during the summer in-field manure sampling period. 

Date Temperature (°F) Relative Humidity (%) Precipitation Events 
High Mean Low High Mean Low Rain (in.) Description 

7/19/2010 90 80 70 100 78 56 0.7 Rain-Thunderstorm
7/20/2010 92 81 69 97 77 56 T Thunderstorm 
7/21/2010 91 83 74 94 73 52 0.08 Rain-Thunderstorm
7/22/2010 89 81 73 100 78 56 0.08 Rain-Thunderstorm
7/23/2010 94 84 73 100 73 46 0  
7/24/2010 96 86 75 94 68 42 0  
7/25/2010 96 88 80 85 64 43 0  
7/26/2010 96 86 76 94 72 49 T Rain-Thunderstorm
7/27/2010 92 83 73. 93 72 50 0  
7/28/2010 91 83 75 94 77 59 0.39 Rain-Thunderstorm
7/29/2010 90 82 74 100 82 63 0.51 Rain-Thunderstorm
7/30/2010 91 82 73 100 72 44 0 Rain-Thunderstorm
7/31/2010 84 77 70 100 84 67 0.66 Rain-Thunderstorm
8/1/2010 92 83 75 100 76 52 T Rain 
8/2/2010 91 73 74 94 75 56 0  
8/3/2010 93 85 76 88 70 52 0  
8/4/2010 95 86 76 88 67 46 0  
8/5/2010 94 85 75 91 76 60 0.49 Rain-Thunderstorm
8/6/2010 88 81 73 94 78 61 0 Thunderstorm 
8/7/2010 91 80 69 100 69 38 0  
8/8/2010 93 81 68 93 67 41 0  
8/9/2010 96 84 71 93 67 41 0  
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Table A2. Weather data during the fall in-field manure sampling period. 

Date Temperature (°F) Relative Humidity (%) Precipitation Events 
High Mean Low High Mean Low Rain (in.) Description 

10/26/2010 85 72 59 93 72 51 1.77 Rain-Thunderstorm
10/27/2010 70 64 57 100 87 73 0.69 Fog-Rain 
10/28/2010 73. 63 52 100 61 22 0 Fog 
10/29/2010 60 50 39 79 56 33 0  
10/30/2010 70 52 33 92 59 26 0  
10/31/2010 70 59 47 80 56 31 0  
11/1/2010 70 56 42 89 63 37 0  
11/2/2010 69 59 48 83 61 39 0  
11/3/2010 61 56 50 100 76 51 0.43 Rain 
11/4/2010 58 51 44 100 71 41 0.61 Rain 
11/5/2010 49 43 37 92 79 66 0.18 Rain 
11/6/2010 47 39 31 92 65 37 T Rain 
11/7/2010 53 40 27 92 62 32 0 Fog 
11/8/2010 65 48 30 92 58 24 0  
11/9/2010 71 53 34 82 57 28 0  
11/10/2010 72 55 37 92 62 31 0  
11/11/2010 74 56 38 92 61 29 0  
11/12/2010 71 55 38 92 66 40 0  
11/13/2010 69 54 39 92 64 35 0  
11/14/2010 55 49 43 93 82 71 0.02 Rain 
11/15/2010 54 52 49 100 92 83 0.76 Rain 
11/16/2010 68 58 48 100 78 55 0.9 Rain 
11/17/2010 57 49 41 89 70 51 0  
11/18/2010 60 50 39 92 67 42 0  
11/19/2010 63 51 39 96 70 43 0  
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Table A3. Weather data during the winter in-field manure sampling period. 

Date Temperature (°F) Relative Humidity (%) Precipitation Events 
High Mean Low High Mean Low Rain (in.) Description 

1/24/2011 55 43 30 78 54 29 0  
1/25/2011 45 41 36 93 76 59 0.09 Rain 
1/26/2011 42 37 31 96 86 75 0.48 Fog-Rain-Snow 
1/27/2011 44 37 29 85 69 53 T Snow 
1/28/2011 51 42 32 70 51 32 0  
1/29/2011 63 45 27 85 61 36 0  
1/30/2011 68 51 33 96 69 42 0  
1/31/2011 61 54 47 80 70 60 T  
2/1/2011 62 55 47 93 78 62 0.42 Rain 
2/2/2011 56 42 27 86 67 47 0  
2/3/2011 36 30 23 65 56 47 0  
2/4/2011 37 36 34 92 72 52 0.17 Rain-Snow 
2/5/2011 49 40 31 100 79 57 0.03 Rain 
2/6/2011 48 40 32 82 66 49 0  
2/7/2011 51 40 29 92 69 46 0.03 Rain 
2/8/2011 39 31 23 82 65 47 0  
2/9/2011 40 31 21 92 66 40 0.03 Snow 

2/10/2011 39 31 23 92 63 34 T Snow 
2/11/2011 44 32 20 81 52 23 0  
2/12/2011 51 37 23 55 44 33 0  
2/13/2011 61 45 29 72 49 25 0  
2/14/2011 67 56 45 53 34 15 0  
2/15/2011 58 45 31 85 55 24 0  
2/16/2011 67 51 34 75 54 32 0  
2/17/2011 73 55 36 85 60 35 0  
2/18/2011 67 60 53 89 63 36 0.05 Rain 
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Table A4. Weather data during the spring in-field manure sampling period. 

Date Temperature (°F) Relative Humidity (%) Precipitation Events 
High Mean Low High Mean Low Rain (in.) Description 

5/2/2011 81 69 57 93 68 42 0  
5/3/2011 77 63 48 93 73 53 0.88 Rain 
5/4/2011 58 50 41 100 72 43 0 Fog 
5/5/2011 66 52 37 92 65 37 0  
5/6/2011 69 58 46 86 63 40 0  
5/7/2011 72 59 45 93 69 44 T Rain 
5/8/2011 82 71 59 90 68 45 0  
5/9/2011 85 72 59 100 72 43 0  

5/10/2011 86 74 62 93 72 51 0  
5/11/2011 86 74 62 84 66 48 0  
5/12/2011 87 76 65 87 65 42 0  
5/13/2011 84 74 63 87 71 55 0.02 Rain-Thunderstorm
5/14/2011 77 69 60 100 77 43 0.05 Rain 
5/15/2011 63 59 55 80 72 64 T Rain 
5/16/2011 62 57 51 93 80 67 T Rain 
5/17/2011 54 51 47 100 83 66 001 Rain 
5/18/2011 59 53 47 93 83 72 T Rain 
5/19/2011 72 63 53 93 70 47 0  
5/20/2011 76 67 58 90 70 50 0.01 Rain 
5/21/2011 88 63 57 100 68 36 0  
5/22/2011 91 78 64 93 65 36 0.03 Rain-Thunderstorm
5/23/2011 88 75 62 100 71 42 0  
5/24/2011 89 79 68 79 57 34 T Rain 
5/25/2011 93 78 63 93 60 26 0  
5/26/2011 80 72 63 93 71 48 0.64 Rain-Thunderstorm
5/27/2011 80 72 63 87 69 51 T Rain 
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APPENDIX B.  SOLIDS CONTENT, E. COLI AND BOBAC RAW DATA
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Table B1. Fractional manure solids concentrations during the summer in-field manure sampling period. 

Cow 
Patty 

Sample Day 
0 1 2 3 7 8 11 21 

1 0.118 0.118 0.178 0.426 0.518 0.806 0.612 0.707 
2 0.117 0.151 0.271 0.181 0.670 0.708 0.444 0.638 
3 0.127 0.139 0.208 0.189 0.324 0.698 0.507 0.662 
4 0.140 0.157 0.293 0.246 0.720 0.604 
5 0.117 0.132 0.149 0.167 0.401 0.382 0.244 0.849 
6 0.111 0.133 0.178 0.185 0.668 0.589 0.294 0.453 
7 0.127 0.138 0.169 0.179 0.517 0.741 0.505 0.588 
8 0.151 0.149 0.217 0.195 0.495 0.405 0.236 0.604 
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Table B2. Fractional manure solids concentrations during the fall in-field manure sampling period. 

Cow 
Patty 

Sample Day 
0 1 2 3 4 8 10 17 24 

1 0.084 0.094 0.100 0.145 0.121 0.195 0.131 0.299 0.148 
2 0.094 0.099 0.091 0.135 0.123 0.162 0.135 0.248 0.166 
3 0.100 0.106 0.114 0.126 0.144 0.186 0.159 0.372 0.192 
4 0.096 0.097 0.116 0.135 0.156 0.262 0.168 0.295 0.247 
5 0.086 0.109 0.106 0.126 0.122 0.156 0.145 0.378 0.188 
6 0.101 0.109 0.121 0.135 0.171 0.261 0.188 0.466 0.227 
7 0.109 0.110 0.113 0.121 0.137 0.207 0.137 0.184 0.181 
8 0.096 0.090 0.095 0.122 0.133 0.121 0.121 0.207 0.151 
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Table B3. Fractional manure solids concentrations during the winter in-field manure sampling period. 

Cow 
Patty 

Sample Day 
0 1 2 3 4 7 8 18 25 

1 0.113 0.133 0.130 0.126 0.151 0.204 0.265 0.537 0.865 
2 0.103 0.127 0.106 0.114 0.132 0.188 0.188 0.526 0.828 
3 0.112 0.125 0.151 0.122 0.139 0.231 0.423 0.614 0.865 
4 0.113 0.143 0.105 0.126 0.136 0.182 0.204 0.225 0.856 
5 0.119 0.154 0.121 0.127 0.138 0.148 0.174 0.236 0.550 
6 0.129 0.154 0.122 0.137 0.150 0.211 0.204 0.270 0.394 
7 0.121 0.131 0.119 0.119 0.158 0.215 0.285 0.452 0.866 
8 0.134 0.154 0.132 0.137 0.166 0.217 0.237 0.458 0.838 



 67

Table B4. Fractional manure solids concentrations during the spring in-field manure sampling period. 

Cow 
Patty 

Sample Day 
0 1 2 3 4 8 10 15 17 25 

1 0.087 
2 0.100 0.679 
3 0.078 
4 0.117 0.442 0.273 0.558 
5 0.152 
6 0.081 
7 0.089 
8 0.116 0.158 0.212 0.280 0.337 
9 0.149 0.142 0.216 0.164 0.155 0.337 0.279 0.459 0.346 
10 0.125 0.124 0.165 0.148 0.679 0.791 0.833 0.827 0.327 
11 0.138 0.180 0.197 0.221 0.238 0.788 0.826 0.808 0.353 
12 0.133 0.174 0.198 0.342 0.762 0.805 0.838 0.864 0.495 
13 0.121 0.113 0.143 0.206 0.412 0.745 0.728 0.697 0.480 
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Table B5. Manure culturable E. coli concentrations (CFU/gram-wet-manure) during the summer in-field manure sampling 

period. 

Cow 
Patty 

Sample Day 
0 1 2 3 4 7 8 11 21 

1 8.72E+03 2.66E+04 5.59E+03 4.65E+02 1.00E+03 1.04E+03 2.81E+03 0.00E+00 0.00E+00
2 2.84E+03 7.43E+03 1.60E+03 3.25E+04 2.57E+03 8.12E+03 5.98E+03 1.68E+03 1.00E+02
3 3.85E+03 5.89E+03 2.35E+03 3.38E+03 4.58E+03 7.02E+03 5.79E+05 9.30E+03 0.00E+00
4 5.14E+04 2.40E+05 1.04E+05 5.79E+05 1.67E+05 2.72E+04 2.76E+04
5 6.74E+03 6.39E+03 3.71E+03 5.67E+03 3.26E+03 3.36E+03 1.12E+06 1.55E+03 1.00E+02
6 1.50E+02 1.11E+03 4.05E+02 5.31E+04 8.82E+03 2.91E+03 1.04E+05 9.80E+05 8.40E+02
7 2.42E+06 2.42E+06 2.42E+06 2.42E+06 1.99E+06 2.42E+06 2.36E+05 3.08E+05 1.79E+05
8 5.87E+04 1.20E+05 2.94E+04 1.19E+04 5.80E+04 4.25E+02 1.00E+05 1.58E+04 3.30E+04
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Table B6. Manure culturable E. coli concentrations (CFU/gram-wet-manure) during the fall in-field manure sampling 

period. 

Cow 
Patty 

Sample Day 
0 1 2 3 4 8 10 17 24 

1 1.00E+02 1.43E+03 1.19E+04 8.08E+03 5.33E+03 5.02E+04 2.60E+02 4.75E+03 1.00E+02
2 2.05E+02 3.04E+03 1.17E+03 7.52E+04 9.30E+02 7.60E+02 1.42E+03 6.09E+03 3.70E+02
3 2.60E+02 1.94E+03 2.22E+04 1.50E+02 4.30E+02 8.03E+03 1.00E+02 2.85E+03 2.48E+03
4 1.00E+02 1.05E+03 3.64E+04 8.27E+03 3.15E+02 1.66E+05 2.31E+03 4.87E+03 2.29E+04
5 1.04E+04 1.90E+04 1.96E+05 7.40E+04 5.50E+04 2.24E+04 1.43E+04 2.76E+03 4.45E+03
6 3.02E+03 1.36E+04 9.82E+03 7.52E+04 9.80E+03 5.76E+04 6.30E+03 1.47E+03 3.10E+02
7 1.38E+03 3.10E+02 1.15E+03 5.11E+04 1.49E+03 1.00E+02 0.00E+00 0.00E+00 0.00E+00
8 1.00E+02 3.10E+03 0.00E+00 9.20E+02 4.90E+02 8.69E+03 2.00E+03 1.00E+03 0.00E+00

 



 70

Table B7. Manure culturable E. coli concentrations (CFU/gram-wet-manure) during the winter in-field manure sampling 

period. 

Cow 
Patty 

Sample Day 
0 1 2 3 4 7 8 18 25 

1 2.45E+05 2.86E+05 5.90E+05 4.86E+05 3.65E+04 2.95E+05 2.25E+05 4.98E+04 2.60E+03
2 3.01E+05 7.27E+05 2.11E+05 1.19E+05 8.59E+04 1.12E+05 1.26E+05 1.11E+03 6.24E+04
3 2.32E+05 2.96E+05 1.92E+05 3.64E+04 7.33E+04 3.85E+04 1.47E+05 1.52E+05 1.98E+05
4 1.20E+06 2.38E+05 2.08E+05 2.31E+05 1.30E+06 3.45E+05 2.42E+06 1.48E+05 4.31E+04
5 1.73E+06 2.42E+06 5.75E+05 7.27E+05 7.27E+05 7.27E+05 5.30E+05 1.85E+05 1.23E+04
6 9.64E+03 5.37E+04 1.86E+03 1.89E+03 4.17E+03 4.04E+04 1.21E+05 2.82E+04 1.00E+02
7 9.80E+05 2.42E+06 8.66E+05 3.26E+05 2.42E+06 2.42E+06 2.42E+06 1.00E+02 3.38E+03
8 2.42E+06 2.42E+06 2.42E+06 2.42E+06 2.42E+06 2.42E+06 2.42E+06 2.86E+05 6.94E+04
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Table B8. Manure culturable E. coli concentrations (CFU/gram-wet-manure) during the spring in-field manure sampling 

period. 

Cow 
Patty 

Sample Day 
0 1 2 3 4 8 10 15 17 25 

1 5.20E+02 
2 2.05E+02 3.45E+03 
3 1.57E+03 
4 1.23E+04 3.66E+04 2.26E+04 3.93E+03
5 8.69E+03 
6 8.75E+02 
7 1.11E+03 
8 8.42E+03 1.26E+05 1.41E+06 1.78E+05 7.11E+04
9 2.42E+06 2.42E+06 9.80E+05 6.49E+05 1.03E+04 2.70E+04 2.42E+06 2.42E+06 2.22E+05

10 1.63E+05 2.28E+05 9.50E+04 1.77E+05 1.34E+04 4.42E+04 1.53E+06 8.16E+05 3.26E+05
11 1.30E+06 2.42E+06 6.49E+05 1.41E+06 5.02E+04 9.90E+04 7.21E+05 2.08E+05 4.37E+04
12 1.72E+05 2.42E+06 2.42E+06 2.42E+06 2.42E+05 5.34E+05 2.42E+06 2.42E+06 2.60E+05
13 1.00E+02 1.26E+03 9.25E+02 1.12E+04 1.00E+02 1.00E+02 5.28E+04 4.35E+05 2.65E+04
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Table B9. Manure E. coli 23S gene abundance (copies/gram-wet-manure) during the summer in-field manure sampling 

period. 

Cow 
Patty 

Sample Day 
0 1 2 3 4 7 8 11 

1 2.67E+07 8.73E+07 1.15E+07 1.25E+07 2.42E+07 2.02E+07 7.40E+07 1.83E+08
2 4.21E+07 3.10E+07 6.18E+06 4.66E+06 2.01E+07 9.30E+07 1.13E+08 9.53E+07
3 1.77E+07 3.80E+07 1.47E+07 1.88E+07 1.85E+07 2.10E+07 1.71E+08 1.24E+08
4 6.25E+07 4.47E+07 2.65E+07 1.93E+07 2.27E+07 4.95E+07 1.21E+08
5 5.21E+07 3.94E+07 4.88E+06 1.33E+07 1.64E+07 2.55E+07 7.75E+07 6.90E+07
6 2.36E+07 5.43E+07 6.40E+06 2.54E+07 1.65E+07 2.29E+07 1.01E+08 7.57E+07
7 1.65E+08 1.45E+08 3.89E+07 2.28E+07 4.04E+07 2.22E+07 8.55E+07 1.39E+08
8 6.11E+07 4.59E+07 1.34E+07 1.77E+07 1.61E+07 2.58E+07 2.83E+07 1.94E+08
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Table B10. Manure E. coli 23S gene abundance (copies/gram-wet-manure) during the fall in-field manure sampling period. 

Cow 
Patty 

Sample Day 
0 1 2 3 4 10 17 24 

1 5.17E+07 2.50E+07 2.49E+07 2.57E+07 2.20E+07 2.29E+07 5.26E+07 3.55E+07
2 2.79E+07 2.76E+07 2.77E+07 7.74E+07 3.01E+07 0.00E+00 0.00E+00 4.27E+07
3 1.62E+07 2.93E+07 2.83E+07 2.07E+07 2.25E+07 0.00E+00 0.00E+00 2.88E+07
4 3.11E+07 2.77E+07 2.77E+07 2.95E+07 2.30E+07 2.06E+07 0.00E+00 3.85E+07
5 4.42E+07 3.12E+07 3.08E+07 3.24E+07 1.97E+07 1.53E+07 0.00E+00 3.78E+07
6 7.48E+08 2.04E+07 2.72E+07 2.67E+07 3.76E+07 1.34E+07 0.00E+00 3.52E+07
7 2.64E+07 3.95E+07 3.24E+07 2.43E+07 2.69E+07 2.28E+07 2.91E+07 2.93E+07
8 3.37E+07 2.31E+07 1.77E+07 2.62E+07 2.45E+07 1.15E+07 3.18E+07 3.00E+07
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Table B11. Manure E. coli 23S gene abundance (copies/gram-wet-manure) during the winter in-field manure sampling 

period. 

Cow 
Patty 

Sample Day 
0 1 2 3 4 7 8 18 25 

1 5.63E+08 1.37E+08 1.02E+08 8.34E+07 6.17E+07 8.82E+07 2.14E+08 1.02E+07 0.00E+00
2 1.53E+08 1.05E+08 1.29E+08 2.21E+08 7.40E+07 3.09E+08 7.99E+06 0.00E+00 0.00E+00
3 2.33E+08 6.79E+07 1.07E+08 8.73E+07 1.02E+08 4.18E+06 8.71E+10 0.00E+00 5.59E+07
4 9.03E+07 6.57E+07 8.79E+07 2.97E+07 1.76E+08 9.16E+07 6.90E+07 2.27E+07 6.42E+07
5 1.59E+08 4.33E+08 1.01E+08 8.86E+07 1.35E+08 1.91E+07 7.02E+06 0.00E+00 0.00E+00
6 3.51E+07 1.25E+08 8.89E+07 9.16E+08 5.97E+07 0.00E+00 0.00E+00 0.00E+00 0.00E+00
7 8.31E+08 1.02E+08 1.19E+08 5.19E+08 2.74E+08 4.43E+08 1.63E+08 0.00E+00 0.00E+00
8 5.02E+09 5.27E+08 8.27E+07 0.00E+00 4.52E+08 9.11E+07 3.69E+08 4.75E+06 6.69E+07
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Table B12. Manure E. coli 23S gene abundance (copies/gram-wet-manure) during the spring in-field manure sampling 

period. 

 
Cow 
Patty 

Sample Day 
0 1 2 3 4 8 10 15 17 25 

1 0.00E+00 
2 0.00E+00 0.00E+00 
3 0.00E+00 
4 4.05E+06 0.00E+00 0.00E+00 3.49E+07
5 0.00E+00 
6 0.00E+00 
7 0.00E+00 
8 0.00E+00 0.00E+00 3.13E+07 4.39E+06 0.00E+00
9 3.67E+08 5.66E+07 9.99E+06 1.79E+07 2.31E+07 3.80E+07 1.41E+09 1.24E+09 2.72E+08
10 0.00E+00 0.00E+00 2.05E+07 0.00E+00 9.21E+07 5.29E+07 5.80E+08 0.00E+00 3.97E+07
11 3.16E+07 1.79E+07 1.94E+07 2.73E+07 1.41E+07 4.68E+07 2.63E+08 1.64E+07 1.73E+07
12 8.33E+06 1.01E+08 6.97E+07 1.13E+09 7.86E+08 6.68E+08 1.65E+08 1.97E+08 4.98E+07
13 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.47E+07 0.00E+00 1.00E+07 8.06E+06
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Table B13. Manure BoBac 16S gene abundance (copies/gram-wet-manure) during the summer in-field manure sampling 

period. 

 
Cow 
Patty 

Sample Day 
0 1 2 3 4 7 8 11 21 

1 1.16E+10 3.19E+10 6.66E+09 1.01E+09 1.43E+08 0.00E+00 0.00E+00 0.00E+00 0.00E+00
2 1.25E+10 2.03E+10 8.45E+09 4.55E+09 1.21E+09 7.95E+06 0.00E+00 0.00E+00 0.00E+00
3 1.10E+10 8.72E+09 8.72E+09 8.72E+09 1.73E+09 2.44E+08 3.38E+07 0.00E+00 0.00E+00
4 1.92E+10 8.93E+09 4.11E+09 4.37E+08 1.48E+08 1.79E+07 0.00E+00 0.00E+00
5 1.49E+10 1.26E+10 1.21E+10 2.72E+09 2.67E+09 1.73E+08 4.07E+07 1.75E+07 0.00E+00
6 8.41E+09 9.11E+09 1.00E+10 8.58E+09 1.57E+09 3.58E+07 6.59E+07 0.00E+00 0.00E+00
7 1.16E+10 9.02E+09 9.61E+09 4.63E+09 2.63E+09 9.27E+08 3.16E+08 0.00E+00 0.00E+00
8 1.23E+10 2.16E+10 9.62E+09 5.93E+09 1.44E+09 1.38E+08 3.84E+08 0.00E+00 0.00E+00
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Table B14. Manure BoBac 16S gene abundance (copies/gram-wet-manure) during the fall in-field manure sampling 

period. 

Cow 
Patty 

Sample Day 
0 1 2 3 4 10 17 24 

1 1.72E+10 3.32E+10 1.70E+10 7.98E+06 3.82E+08 1.13E+09 1.06E+08 1.29E+07 
2 7.41E+09 2.45E+10 4.37E+08 1.15E+09 0.00E+00 1.37E+08 0.00E+00 1.11E+08 
3 1.36E+10 1.84E+10 5.54E+08 8.81E+07 0.00E+00 2.74E+08 8.83E+07 0.00E+00 
4 1.00E+10 2.10E+10 6.52E+09 4.16E+08 1.36E+08 1.87E+08 1.07E+08 0.00E+00 
5 4.51E+09 2.69E+10 1.38E+08 4.83E+08 2.27E+09 0.00E+00 0.00E+00 0.00E+00 
6 1.43E+10 3.79E+10 4.70E+09 0.00E+00 0.00E+00 8.10E+07 4.38E+07 0.00E+00 
7 3.83E+09 2.20E+10 7.38E+06 0.00E+00 7.50E+09 3.28E+08 3.78E+07 5.24E+08 
8 6.23E+09 1.78E+10 3.98E+09 1.27E+09 1.94E+08 4.97E+08 6.11E+08 2.12E+08 
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Table B15. Manure BoBac 16S gene abundance (copies/gram-wet-manure) during the winter in-field manure sampling 

period. 

Cow 
Patty 

Sample Day 
0 1 2 3 4 7 8 18 25 

1 1.62E+10 7.28E+09 1.66E+10 1.32E+10 6.01E+09 1.38E+10 1.12E+10 5.59E+08 3.16E+09
2 2.05E+10 3.44E+09 8.20E+09 9.04E+09 7.83E+09 2.04E+10 4.29E+09 1.29E+07 8.30E+08
3 1.72E+10 6.41E+09 1.10E+10 5.54E+09 7.69E+09 5.95E+09 2.92E+09 1.73E+08 6.87E+08
4 2.78E+10 1.64E+10 1.02E+10 5.06E+09 1.23E+10 8.86E+09 3.53E+09 9.03E+08 7.43E+08
5 7.04E+09 7.60E+09 1.11E+10 1.01E+09 1.24E+10 1.18E+09 1.40E+09 1.17E+09 2.16E+07
6 2.82E+10 1.22E+10 6.47E+09 2.89E+09 7.04E+09 3.23E+08 1.01E+09 8.22E+07 6.77E+06
7 1.17E+10 3.50E+09 9.59E+09 8.73E+09 0.00E+00 9.38E+09 5.72E+08 0.00E+00 1.14E+08
8 2.35E+10 4.90E+09 2.04E+09 1.96E+09 2.44E+07 1.31E+09 4.16E+08 1.79E+08 1.14E+10

 



 79

Table B16. Manure BoBac 16S gene abundance (copies/gram-wet-manure) during the spring in-field manure sampling 

period. 

Cow 
Patty 

Sample Day 
0 1 2 3 4 8 10 15 17 25 

1 2.70E+09 
2 1.83E+09 2.26E+09 
3 1.05E+08 
4 7.28E+08 3.74E+08 8.99E+06 2.42E+07
5 1.60E+09 
6 2.18E+09 
7 3.09E+08 
8 9.10E+08 3.76E+09 1.31E+09 9.85E+08 7.03E+08
9 1.42E+09 9.97E+08 2.05E+08 5.61E+06 5.47E+07 1.71E+07 0.00E+00 0.00E+00 0.00E+00
10 1.24E+09 1.13E+09 1.35E+09 2.44E+08 0.00E+00 7.55E+06 7.07E+06 3.09E+07 0.00E+00
11 1.85E+09 1.83E+08 1.09E+09 1.01E+09 0.00E+00 6.44E+06 0.00E+00 0.00E+00 0.00E+00
12 2.73E+09 9.21E+08 2.64E+08 4.27E+08 4.82E+08 7.01E+06 2.80E+07 0.00E+00 1.54E+07
13 1.24E+09 1.12E+09 1.51E+09 3.12E+09 0.00E+00 0.00E+00 2.11E+08 0.00E+00 4.34E+06
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