
Algorithms for Advection on Hybrid Parallel Computers

A Dissertation

Presented for the

Doctor of Philosophy

Degree

The University of Tennessee, Knoxville

James Buford White III

May 2011

My test case is explicit time integration of linear advection with constant uniform

velocity in a three-dimensional periodic domain. I describe this case in more detail

in Section 2.1. My target computers include a Cray XT5, a Cray XE6, and two

multicore Infiniband clusters with different GPU generations; I provide details for

these computers in Section 2.2.

I test a variety of implementations of the test case, all in Fortran with OpenMP

shared-memory parallelism:

• single task,

• bulk-synchronous MPI,

• MPI using nonblocking communication for overlap,

• MPI using OpenMP threading for overlap,

• GPU resident,

• GPU with bulk-synchronous MPI,

• GPU with MPI overlap using CUDA streams,

• GPU and CPU computation with bulk-synchronous MPI, and

• GPU and CPU computation partitioned for overlap with nonblocking MPI and

CPU-GPU communication.

I describe these implementations in more detail in Section 2.3. My implementations

build off the work in Micikevicius (2009), where that author investigates GPU

implementations of a three-dimensional finite-difference computation, including

implementations with MPI parallelism. I benefit from the algorithms described

in Micikevicius (2009), and I extend them with three-dimensional data decomposition

for greater scalability, along with further decomposition to include the CPUs in the

computation.

5

I present performance results in Section 2.4. First I investigate the potential for

MPI overlap with computation and the relative performance of different numbers

of OpenMP threads per MPI task for a given total core count. I then explore

the dependence of GPU performance on block size and the potential for overlap

of GPU computation with CPU computation, MPI communication, and CPU-GPU

communication. Finally I consider the effect of the CPU-GPU load balance.

My performance results summarize a suite of runs for each implementation that

spans the space of various tuning parameters, with particular emphasis on 1) the

number of OpenMP threads per MPI task and 2) the relative size of the CPU and

GPU computational domains. I do not perform automatic tuning, but I hope my

results will inform efforts in automatic tuning, such as Datta et al. (2008), Kamil

et al. (2010), and Nath et al. (2010). These works concentrate on automatically

tuning multicore and GPU block sizes, but they do not address distributed-memory

tuning or CPU-GPU load balancing.

I conclude this chapter in Section 2.5 with a summary of my most-significant

results and a discussion of their implications for automatic tuning and future

architectures.

2.1 Test Case

My long-term goal is to accelerate the simulation of climate and weather, and a

prominent component of atmospheric dynamics is advection. Perhaps the simplest

case of advection is linear advection with uniform constant velocity.

∂tu+ c ·∇u = 0 (2.1)

The symbol ∂t indicates a partial derivative with respect to time. For three space

dimensions, I have state u = u(x, y, z, t) and uniform constant velocity c = {cx, cy, cz}.

6

My test domain is a three-dimensional cube with periodic boundaries, and the

initial condition for u(t = 0) is a Gaussian wave at the center of the cube. Equation 2.1

moves the wave in the direction of the velocity without changing its shape.

I choose a strong-scaling problem for my test, where the global problem size

stays the same as the number of parallel processes increases. Changing the grid

size for climate simulations is typically a complex task because of various physical-

process parameterizations that may depend on the grid size, so climate simulations

are typically strong-scaling problems.

I discretize in space using a uniform grid of 420 × 420 × 420 points, again with

periodic boundaries. I choose this size to just fit within the memory of a single GPU,

with each dimension divisible by the GPU “warp” size (Portland Group, 2009) plus

the domain overlap. Section 2.4.3 has more information about GPU block sizes and

their performance impact.

I discretize in time using an explicit Lax-Wendro fftechnique (Lax and Wendroff,

1960); I expand the state u(t +∆) in a Taylor series around small time step ∆ and

use Equation 2.1 to change time derivatives into space derivatives. I use a 3 × 3× 3

stencil centered around the point u(x, y, z, t), with unknown coefficients, and expand

in a Taylor series around the small grid spacing δ. I subtract the time expansion from

the space expansion and form equations for the coefficients by canceling terms. With

a 3×3×3 stencil, I can cancel all terms through O(∆2) and some higher-order terms.

The resulting discrete equation for a single time step is the following.

u(x, y, z, t+∆)≈
�

i,j,k=−1..+1

aijku(x+ iδ, y + jδ, z + kδ, t) (2.2)

The values of aijk appear in Table 2.1, in terms of the constant uniform velocity

components cx, cy, and cz and the ratio ν = ∆/δ. Note that the values of aijk for this

test are the same for every grid point and time step because the velocity is constant

and uniform. My method is O(∆3) for a single time step and O(∆2) for a fixed

simulated time. It is numerically stable for ν ≤ max{|cx|, |cy|, |cz|}, and I run the test

7

Table 2.1: Values of coefficients aijk used in Equation 2.2, where cx, cy, and cz are
the velocity components and ν = ∆/δ.

a−1−1−1 cxcycyν
3(1 + cxν)(1 + cyν)(1 + czν)/8

a−1−1 0 −2cxcyν2(1 + cxν)(1 + cyν)(c2zν
2 − 1)/8

a−1−1+1 cxcyczν
3(1 + cxν)(1 + cyν)(czν − 1)/8

a−1 0−1 −2cxczν2(1 + cxν)(1 + czν)(c2yν
2-1)/8

a−1 0 0 4cxν(1 + cxν)(c2yν
2 − 1)(c2zν

2 − 1)/8
a−1 0+1 −2cxczν2(1 + cxν)(−1 + czν)(−1 + c2yν

2)/8
a−1+1−1 cxcyczν

3(1 + cxν)(−1 + cyν)(1 + czν)/8
a−1+1 0 −2cxcyν2(1 + cxν)(−1 + cyν)(−1 + c2zν

2)/8
a−1+1+1 cxcyczν

3(1 + cxν)(−1 + cyν)(−1 + czν)/8
a0−1−1 −2cyczν2(1 + cyν)(1 + czν)(−1 + c2xν

2)/8
a0−1 0 4cyν(1 + cyν)(−1 + c2xν

2)(−1 + c2zν
2)/8

a0−1+1 −2cyczν2(1 + cyν)(−1 + czν)(−1 + c2xν
2)/8

a0 0−1 4czν(1 + czν)(−1 + c2xν
2)(−1 + c2yν

2)/8
a0 0 0 −8(−1 + c2xν

2)(−1 + c2yν
2)(−1 + c2zν

2)/8
a0 0+1 4czν(−1 + czν)(−1 + c2xν

2)(−1 + c2yν
2)/8

a0+1−1 −2cyczν2(−1 + cyν)(1 + czν)(−1 + c2xν
2)/8

a0+1 0 4cyν(−1 + cyν)(−1 + c2xν
2)(−1 + c2zν

2)/8
a0+1+1 −2cyczν2(−1 + cyν)(−1 + czν)(−1 + c2xν

2)/8
a+1−1−1 cxcyczν

3(−1 + cxν)(1 + cyν)(1 + czν)/8
a+1−1 0 −2cxcyν2(−1 + cxν)(1 + cyν)(−1 + c2zν

2)/8
a+1−1+1 cxcyczν

3(−1 + cxν)(1 + cyν)(−1 + czν)/8
a+1 0−1 −2cxczν2(−1 + cxν)(1 + czν)(−1 + c2yν

2)/8
a+1 0 0 4cxν(−1 + cxν)(−1 + c2yν

2)(−1 + c2zν
2)/8

a+1 0+1 −2cxczν2(−1 + cxν)(−1 + czν)(−1 + c2yν
2)/8

a+1+1−1 cxcyczν
3(−1 + cxν)(−1 + cyν)(1 + czν)/8

a+1+1 0 −2cxcyν2(−1 + cxν)(−1 + cyν)(−1 + c2zν
2)/8

a+1+1+1 cxcyczν
3(−1 + cxν)(−1 + cyν)(−1 + czν)/8

8

at the maximum stable value of ν. See Section 4.2.1 for details on the development

and stability of this method.

To measure performance, I measure the time to perform multiple time steps. I vary

the number of steps to ensure that each experiment runs long enough for accurate

measurements, at least 5 seconds per measurement. Given the measured time in

seconds, the grid size, and the number of times steps, I analytically compute the

performance in GF (billions of floating-point operations per second) based on the

53 floating-point operations appearing in Equation 2.2: 27 multiplications and 26

additions.

2.2 Computers

I present results for four computers: a Cray XT5, a Cray XE6, and two multicore

Infiniband clusters with different generations of NVIDIA GPUs. Technical details

of each computer are given in Table 2.2. The Cray XT5 is JaguarPF, the primary

computer at the Oak Ridge Leadership Computing Facility (OLCF), with a peak

performance of 2.3 PF. The Cray XE6 is Hopper II, the primary computer at

the National Energy Research Scientific Computing Center (NERSC), with a peak

performance of almost 1.3 PF. Lens is the OLCF analysis cluster and includes GPUs

originally intended to support visualization. Each node of Lens has an NVIDIA Tesla

C1060 capable of fast double-precision floating-point operations. The final computer

is Yona, an experimental OLCF cluster with newer, faster NVIDIA Tesla C2050 GPUs

and a faster PCIe bus connecting the GPUs to the CPUs and main memory. The

primary intent of the GPUs on Yona is for general-purpose computation, including

double-precision floating-point computation. I use PGI Fortran 10.9 on Hopper II

at NERSC and 10.6 on the OLCF computers. On Lens and Yona, the OLCF GPU

clusters, this includes PGI CUDA Fortran. I compile all cases with the options “-mp

-fast -gopt -Minfo=all”. On Lens I add “-Mcuda=cc13”, and on Yona I add

9

“-Mcuda=cc20”. These additional options reflect the most-recent CUDA versions

supported by the respective GPUs.

2.3 Implementations

I test a variety of implementations designed to measure the relative performance

improvement from overlapping CPU computation, GPU computation, parallel com-

munication, and CPU-GPU communication. Each implementation is Fortran with

OpenMP directives, most include MPI for parallel communication, and the GPU

implementations include CUDA Fortran. See the following subsections for details.

2.3.1 Single Task

The baseline implementation uses a single task with multiple threads. I use the

Fortran intrinsic “system clock” to measure the wall-clock time of the time steps.

Each time step has three algorithmic steps.

1. Copy periodic boundaries.

2. Compute the new state using Equation 2.2.

3. Copy the new state to the current state.

Step 1 copies boundary points into halo, or ghost, points on the opposite boundary,

and Step 2 uses the halo points. Step 1 uses doubly nested loops, and Steps 2 and 3

use triply nested loops. I use OpenMP to parallelize these loops, the outer loops in

Step 1 and the outer-most two loops in Steps 2 and 3 (using the OpenMP option

“collapse(2)”). I verify the implementation by recording norms of the difference

between the computed state and the analytic state.

10

Table 2.2: Technical details of tested computers.

System JaguarPF Hopper II Lens Yona
Compute nodes 18688 6392 31 16
Memory per node (GB) 16 32 64 32
AMD Opteron sockets per node 2 2 4 2
Cores per Opteron socket 6 12 4 6
Opteron clock (GHz) 2.6 2.1 2.3 2.6
Interconnect Cray SeaStar 2+ Cray Gemini DDR Infiniband QDR Infiniband
MPI Cray MPT 4.0.0 Cray MPT 5.1.3 OpenMPI 1.3.3 OpenMPI 1.7a1
NVIDIA Tesla GPU – – C1060 C2050
GPU memory (GB) – – 4 3

11

2.3.2 Bulk-Synchronous MPI

The bulk-synchronous MPI implementation adds distributed-memory parallelism to

the single-task implementation. The data-distribution algorithm gives each task a

subdomain that is as close to the same size as possible and as close to cubic as

possible, with the constraint that no task gets an empty domain. If the number of

tasks is the cube of an integer, and if that integer is a divisor of 420 (the domain

size in each dimension), then every task has a cubic subdomain of the same size. In

other cases, the subdomain size is largest in the x dimension and smallest in the z

dimension, to best enable memory locality. The largest subdomain is at most one

grid point larger in each dimension than the smallest. The subdomains are aligned

in each dimension, so each MPI task has 26 neighbors. Note that a task may be its

own neighbor in decompositions with small or prime numbers of tasks.

I perform a barrier immediately before measuring the start time and the end time.

The implementation is bulk synchronous: it performs all of Step 1 from Section 2.3.1,

through parallel communication, before proceeding to Steps 2 and 3, which involve

only local computation. And those steps complete before starting Step 1 for the next

iteration.

To perform Step 1, the master thread first issues nonblocking receive calls for 6

neighbors. Serially in each dimension, all threads copy into send buffers, the master

thread sends and completes the receives, and all threads copy from receive buffers into

halos. The dimensions are serialized so that the x corners can be sent to y neighbors,

and x and y to z. This well-established strategy reduces the number of neighbor

exchanges from 26 to 6 for this three-dimensional case.

2.3.3 MPI Using Nonblocking Communication for Overlap

I attempt to overlap computation and communication using a common strategy; I

partition the computation in Step 2 of Section 2.3.1 and interleave the partitioned

computations with substeps of Step 1. I first partition each local domain into interior

12

points and boundary points, where the boundary points are those that touch halo

points. I then partition the interior points into thirds along the z dimension. The

first third executes between nonblocking initiation of the x communication and its

completion, the second third within the y communication, and the final third within

the z. The threads compute the boundary points after the communication.

2.3.4 MPI Using OpenMP Threading for Overlap

Instead of using nonblocking MPI communication, I attempt to overlap computation

and communication in this implementation using an asynchronous OpenMP thread

to perform the MPI communication. I again partition the computation in Step 2 of

Section 2.3.1 into interior and boundary points. The master thread (“!$omp master”)

performs the MPI communication and then joins in the computation of the interior

points, while the other threads begin computation on the interior points immediately.

I implement this by changing the scheduling of the threading for the interior points

to “schedule(guided)”, which distributes chunks of work as threads request them,

with chunks proportional in size to the remaining work divided by the number of

threads (OpenMP Architecture Review Board, 2008). An OpenMP barrier ensures

that the master thread completes communication before computation begins on the

boundary points.

2.3.5 GPU Resident

Recall that the problem size is roughly as large as possible while still fitting within

the memory of a single GPU, called its “global memory”. This constraint allows me

to compare against the best-case scenario for GPU performance, where the problem

resides within the GPU memory for the length of the computation, with no memory

exchanges with the CPUs.

My GPU implementation uses CUDA Fortran (Portland Group, 2009) and is

based on the algorithm in Micikevicius (2009). The aijk values are in GPU “constant

13

memory”. I partition the domain along the x and y dimensions such that each two-

dimensional thread block gets a unique xy block, along with a halo. The threads

iterate over the z direction. On each iteration, a thread block copies a slab of

xy points from global memory into “shared memory”, memory that is local to the

thread block and shared among the threads in the block. Note that the thread block

includes threads associated with halo points that only perform memory operations.

Halo threads beyond the boundary of the global domain copy from the opposite

boundary to implement periodicity. The interior threads compute and update local

state variables and store the completed computations in global memory.

The CPU issues a CUDA kernel call for each time step, flipping the arguments

between two GPU state variables to avoid the need for an extra copy operation. The

CPU and GPU synchronize immediately before timer calls. I do not include the time

to copy the initial state to the GPU or copy the final result from it. This represents

a best-case scenario for GPU computation, where a computation might run for hours

between CPU-GPU checkpoints, and the relative cost of copying between CPU and

GPU is negligible.

2.3.6 GPU with Bulk-Synchronous MPI

This multi-GPU implementation uses CPUs to perform MPI communication. I

partition the domain among tasks as in the CPU-only MPI implementations. Instead

of a single GPU kernel, I define separate kernels for the interior points and for each

pair of boundary faces in each dimension. The kernel for the interior points is a

simplified version of the single-GPU kernel, without the logic for copying opposite

boundaries. Each boundary-face kernel copies halo values from a buffer and writes

boundary values to both the state variable and an outgoing buffer. I need the buffers

to allow communication between CPU and GPU to be in large contiguous chunks.

For each time step, a CPU copies boundary buffers from the GPU, communicates

the boundaries as in the CPU-only bulk-synchronous implementation, copies halo

14

buffers back to the GPU, and makes kernel calls for the faces and interior. Note that

the target computers have more CPU cores than GPUs, and I can have more than

one MPI task issuing calls to a particular GPU. The number of MPI tasks per GPU

is a tunable performance parameter.

2.3.7 GPU with MPI Overlap Using CUDA Streams

This implementation uses multiple CUDA streams to overlap computation of interior

points with CPU-GPU communication and MPI communication. For each time step,

a CPU first issues a kernel call to one CUDA stream for the computation of interior

points. It then performs the MPI communication and issues kernel calls to a second

stream to copy halo buffers to the GPU, compute the boundary values, and copy the

boundary buffers back from the GPU. The interior computation can thus overlap the

MPI communication, buffer copies, and, on some GPUs, the boundary computation.

The CPU ends the time step by synchronizing the two CUDA streams.

2.3.8 CPU and GPU Computation with Bulk-Synchronous

MPI

This implementation computes on both the CPUs and GPUs. I partition each task’s

domain between CPU and GPU as a block in a box. The GPU is responsible for the

interior block, and the CPU is responsible for an enclosing box. Figure 2.1 gives a

two-dimensional representation of this decomposition. I can tune the thickness of the

box walls to balance the load between the CPU and GPU.

A CPU task starts each time step by exchanging inner halo and boundary buffers

with the GPU and outer halos and boundaries with other tasks through MPI. It then

issues the GPU kernels for the inner block points and computes the outer box points.

The CPU and GPU may thus overlap computation.

15

global domain decomposed
into MPI-task domains!

task domain partitioned into
CPU and GPU domains!

halo for MPI
communication!

halos for CPU-GPU
communication!

CPU(s)!

GPU!

Figure 2.1: Domain decomposition for CPU-GPU implementations described in
Sections 2.3.8 and 2.3.9. The test domain is three dimensional, but this figure is
simplified to two dimensions.

16

2.3.9 CPU and GPU Computation Partitioned for Overlap

with Nonblocking MPI and CPU-GPU Communica-

tion

This implementation computes on both CPUs and GPUs and attempts the most-

extensive overlap. It uses the same CUDA kernels and domain decomposition

(Figure 2.1) as the implementation in Section 2.3.8, but it uses separate CUDA

streams for the GPU interior and boundary points. A CPU task starts each time step

by issuing a kernel call for the GPU interior points. It then issues nonblocking MPI

receives and asynchronous memory copies to the GPU, followed by kernel calls for the

GPU boundary points and asynchronous memory copies from the GPU. It overlaps

MPI communication in each dimension with the computation of CPU interior points

of that same dimension. For example, it overlaps communication to the ±x neighbors

with computation of the interior and inner-boundary points of the ±x walls of the

box in Figure 2.1. Finally it computes the outer boundary points and synchronizes

the CUDA streams.

This implementation has the potential to overlap CPU computation, GPU

computation, MPI communication, and CPU-GPU communication. Because it

may overlap more than two types of operation, this implementation may improve

performance by more than a factor of two. The thickness of the CPU box domain is

again a tunable parameter to balance the load between CPUs and GPUs.

These implementations vary greatly in complexity, and the number of lines

of code can hint at the programmer-productivity costs of the various strategies

for improving performance. Figure 2.2 shows the lines of Fortran code for each

implementation, minus blank lines and lines containing only comments. MPI

parallelization adds 57–73% more lines, with the nonblocking overlap adding the

most. Targeting a single GPU with CUDA Fortran uses just 6% more lines than

targeting a single process with OpenMP threading, but adding MPI parallelism to

17

Single (with OpenMP)
Bulk Synchronous

Nonblocking Overlap
OpenMP Overlap

GPU Resident
GPU Bulk Synchronous

GPU Overlap
CPU GPU Bulk Synchronous

CPU GPU Overlap

0 225 450 675 900

Figure 2.2: Lines of Fortran code for each implementation, minus blank lines and
comments.

the GPU computation almost triples the number of lines. The combination of CPU

computation, GPU computation, and MPI parallelism is most expensive, with the full-

overlap implementation using exactly four times as many lines as the single-process

multithreaded implementation (860 versus 215).

2.4 Results

2.4.1 MPI Performance and Overlap

First I consider the potential performance improvement of MPI overlap. Figure 2.3

shows the performance of each implementation on JaguarPF for a range of core counts.

JaguarPF has no GPUs, so no GPU implementations are included. Each value is the

best result for a given number of cores, among all measured numbers of OpenMP

threads per MPI task. Because JaguarPF has two 6-core sockets per node, I include

measurements for 1, 2, 3, 6, and 12 threads per task.

18

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 2000 4000 6000 8000 10000 12000 14000

P
er

fo
rm

an
ce

 (
G

F
)

Cores

Bulk Synchronous
Nonblocking Overlap

OpenMP Overlap

Figure 2.3: The best performance of each JaguarPF implementation for a range of
core counts.

19

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 10000 20000 30000 40000 50000

P
er

fo
rm

an
ce

 (
G

F
)

Cores

Bulk Synchronous
Nonblocking Overlap

OpenMP Overlap

Figure 2.4: The best performance of each Hopper-II implementation for a range of
core counts.

For core counts below 4000, the implementation with overlap from nonblocking

communication (Section 2.3.3) can slightly outperform the bulk-synchronous imple-

mentation (Section 2.3.2). At 6000 and above, as the work per core dwindles, the

bulk-synchronous implementation has a significant advantage. The implementation

using an OpenMP thread for overlap (Section 2.3.4) consistently lags in performance.

Figure 2.4 shows analogous results for Hopper II. It has two 12-core sockets per

node, where each socket has two 6-core chips, so I include measurements for 1, 2,

3, 6, 12, and 24 threads per task. Likely because of the newer Gemini interconnect,

Hopper II scales better than JaguarPF, so I include results out to 49152 cores. Like

for JaguarPF, the implementation with overlap from nonblocking communication

20

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 2000 4000 6000 8000 10000 12000 14000

P
er

fo
rm

an
ce

 (
G

F
)

Cores

Threads/Task
12

6
3
2
1

Figure 2.5: The performance of the bulk-synchronous implementation (Sec-
tion 2.3.2) on JaguarPF for a range of core counts and various numbers of OpenMP
threads per MPI task.

(Section 2.3.3) performs slightly better than the bulk-synchronous implementation

(Section 2.3.2) for core counts below some limit, but that limit is an order of

magnitude higher on Hopper II. Again the implementation using an OpenMP thread

for overlap (Section 2.3.4) consistently lags in performance.

Figures 2.11 and 2.12, which I explain in detail in Section 2.4.4, show results for

Lens and Yona. For my test case on these smaller computers, overlap of computation

and communication improves performance little or none at all.

2.4.2 OpenMP Threads Per MPI Task

Each result in Figures 2.3 and 2.4 is for the best-performing number of OpenMP

threads per MPI task for that number of cores. Here I consider one implementation

21

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 10000 20000 30000 40000 50000

P
er

fo
rm

an
ce

 (
G

F
)

Cores

Threads/Task
24
12
6
3
2
1

Figure 2.6: The performance of the bulk-synchronous implementation (Sec-
tion 2.3.2) on Hopper II for a range of core counts and various numbers of OpenMP
threads per MPI task.

22

on JaguarPF and Hopper II, the bulk-synchronous one (Section 2.3.2), and explore

the performance impact of the number of threads per task. Figures 2.5 and 2.6 show

the results for JaguarPF and Hopper II, respectively.

Different numbers of threads per task perform best at different total core counts.

It may not be clear from the figures, but each of 1, 2, 3, 6, and 12 threads per MPI task

performs best for at least one of the tested number of cores on each computer. Only

24 threads per task (on Hopper II) is never optimal. On JaguarPF the best number of

threads per task generally increases as the total number of cores increases. The results

vary more on Hopper II, but larger numbers of threads per task are best at the highest

core counts. Unlike the case of communication overlap, my tests show significant

performance improvement from hybrid MPI and OpenMP parallelism, particularly

at high core counts.

Figures 2.7 and 2.8 are analogous to Figures 2.5 and 2.6, but for Lens and Yona.

They also show significant variability in the best number of threads per task. On

Lens, which has four 4-core sockets per node, I have measurements for 1, 2, 4, 8,

and 16 threads per task. The best number for my test is either 4, 8, or 16, with no

clear correlation with total core count. On Yona, which like JaguarPF has two 6-core

sockets per node, I have measurements for 1, 2, 3, 6, and 12 threads per task. For its

relatively small core counts, the best number of threads per task is 1, 2, 3, or 6. Like

JaguarPF, Yona shows a general increase in the best number of threads per task as

the total core count increases.

2.4.3 GPU Block Size

My GPU implementations have many performance variables, including: overlap

strategy, OpenMP threads per MPI task (and thus MPI tasks per GPU), CPU-GPU

load balance, and GPU block size. To simplify my analysis, I first consider block sizes

for the GPU-resident implementation (Section 2.3.5).

23

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250

P
er

fo
rm

an
ce

 (
G

F
)

Cores

Threads/Task
16
8
4
2
1

Figure 2.7: The performance of the bulk-synchronous implementation (Sec-
tion 2.3.2) on Lens for a range of core counts and various numbers of OpenMP threads
per MPI task.

24

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100 120 140 160 180

P
er

fo
rm

an
ce

 (
G

F
)

Cores

Threads/Task
12
6
3
2
1

Figure 2.8: The performance of the bulk-synchronous implementation (Sec-
tion 2.3.2) on Yona for a range of core counts and various numbers of OpenMP
threads per MPI task.

25

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30 35

P
er

fo
rm

an
ce

 (
G

F
)

Y Block

X Block
16
32
64

128

Figure 2.9: Performance of the GPU-resident implementation (Section 2.3.5) on
Lens using a variety of two-dimensional block sizes.

26

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 5 10 15 20 25 30 35

P
er

fo
rm

an
ce

 (
G

F
)

Y Block

X Block
16
32
64

128

Figure 2.10: Performance of the GPU-resident implementation (Section 2.3.5) on
Yona using a variety of two-dimensional block sizes.

Figure 2.9 shows the performance on Lens for a variety of two-dimensional block

sizes. The C1060 GPUs on Lens support three-dimensional block sizes of up to 512

elements, and they have a “warp” size of 32. Memory access is fastest for contiguous

blocks of at least a half warp, so I only consider x dimensions of 16, 32, 64, and 128. I

use two-dimensional blocks instead of three because they allow better memory reuse

in my test. I vary the y dimension up to the maximum total size of 512 elements.

An x dimension of 32, the warp size, tends to provide the best performance, with

the top performance coming from a block size of 32× 11. I use this block size for all

my parallel GPU experiments on Lens. (See Datta et al. (2008) for an investigation

of automatic tuning of GPU block size.)

Figure 2.10 shows the analogous performance on Yona. The C2050 GPUs on Yona

support block sizes of up to 1024 elements, and they have a “warp” size of 32. Again,

27

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 50 100 150 200 250

P
er

fo
rm

an
ce

 (
G

F
)

Cores

CPU GPU Overlap
CPU GPU Bulk Sync

Bulk Sync
Nonblocking Overlap

OpenMP Overlap
GPU Overlap

GPU Bulk Sync

Figure 2.11: The best performance of each Lens implementation for a range of core
counts. The GPU implementations use one GPU per 16 cores.

the best performance comes from an x block size of 32, but with a slightly smaller y

block size of 8. I use this block size, 32× 8, for all my parallel GPU experiments on

Yona.

2.4.4 Parallel GPU Performance and Overlap

Figure 2.11 shows the performance of each implementation on Lens for a range of core

counts. Each value is the best performance for that implementation, among a variety

of threads per task and, where applicable, box thicknesses (from Figure 2.1). The

CPU-only implementations benefit little from overlap, but the GPU implementations

benefit greatly from overlap, particularly for the full-overlap case (Section 2.3.9),

where CPU computation, GPU computation, MPI communication, and CPU-GPU

28

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 20 40 60 80 100 120 140 160

P
er

fo
rm

an
ce

 (
G

F
)

Cores

CPU GPU Overlap
CPU GPU Bulk Sync

GPU Overlap
GPU Bulk Sync

Bulk Sync
Nonblocking Overlap

OpenMP Overlap

Figure 2.12: The best performance of each Yona implementation for a range of core
counts. The GPU implementations use one GPU per 12 cores.

communication can occur concurrently. In fact, the best CPU-GPU performance

exceeds the sum of the best CPU-only performance plus the best GPU-computation

performance.

The results for Yona are still more striking. Figure 2.12 shows the best

performance of each implementation for a range of core counts. The GPUs are a

larger fraction of the computational power on Yona than on Lens, so the performance

of the best CPU-GPU implementation is more than four times the performance of

the best CPU-only implementation.

29

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 50 100 150 200 250 300

P
er

fo
rm

an
ce

 (
G

F
)

Cores (1 GPU per 16 Cores)

Threads/Task, Box Width
16, 2
16, 4
16, 6
8, 4

8, 11

Figure 2.13: The performance of the CPU-GPU overlap implementation
(Section 2.3.9) on Lens for various combinations of OpenMP threads per MPI task
and box thickness.

30

The best box thickness is often just one, so the CPUs are responsible for just a

veneer of points around the GPU’s domain. The reduction in box thickness on Yona

versus Lens makes sense in general because the GPUs on Yona are a larger fraction of

the total computational power than the GPUs on Lens. The remarkable thinness of

the box, however, spread across all twelve CPU cores, indicates that load balancing

is not the key feature of this implementation.

The key feature is instead most likely to be the decoupling of MPI communication

and CPU-GPU communication that a veneer of CPU points provides. Notice

from Figure 2.10 that the best GPU-resident performance on Yona is 86 GF. This

implementation keeps all memory operations, including periodic-boundary exchanges,

on the GPU. Using the CPUs for this boundary exchange—in other words, using the

implementations in Sections 2.3.6 and 2.3.7 on one node—cuts the performance to

24 and 35 GF, respectively. The best CPU-GPU overlap performance on one node

is 82 GF, with a box thickness of 3 with 2 tasks per node. The CPUs are not

taking load away from the GPU as much as hiding the the cost of the CPU-GPU

communication, and thus bringing performance back up to the level of the GPU-

resident implementation.

2.5 Conclusions

I presented performance results for various Fortran implementations of a three-

dimensional linear-advection test case on four computers: a Cray XT5 (JaguarPF),

a Cray XE6 (Hopper II), a multicore Infiniband cluster with NVIDIA Tesla C1060

GPUs (Lens), and a multicore Infiniband cluster with NVIDIA Tesla C2050 GPUs

(Yona). I tested hybrid MPI and OpenMP implementations that perform bulk-

synchronous computation and communication, that use nonblocking communication

for overlap of computation and communication, and that use OpenMP threads for

overlap. I found that attempting to overlap MPI communication with computation

32

numbers of parallel processes (Drake et al., 1995), but the spectral transform that

the methods rely on grows super-linearly with the number of grid points, an issue at

very high resolution.

I describe a scalable semi-Lagrangian method with computational complexity that

is linear with the number of grid points, for the particular case of tracer transport

on the sphere. Tracer transport is an important part of atmospheric models, and it

grows in importance as the complexity of physical and chemical processes increases

in the model. Greater physical fidelity in atmospheric chemistry, the carbon cycle,

the sulfur cycle, etc. leads to increases in the number of tracers transported by the

dynamics (Morgenstern et al., 2010).

Global climate models are moving from longitude-latitude horizontal grids to

other spherical grids with more-homogenous grid spacing, no singularities, and better

suitability for parallel computers. In particular, a growing number of major climate

models now support the cubed-sphere grid (Williamson, 2007; Ronchi et al., 1996;

Taylor and Fournier, 2010), and a variety of tracer-transport methods target the

cubed sphere, including explicit methods using finite-volume (Putman and Lin,

2007), spectral-element (Taylor et al., 1997), and discontinuous-Galerkin spatial

discretizations (Nair et al., 2005), along with semi-Lagrangian methods using finite-

volume discretizations (Lauritzen et al., 2010; Harris et al., 2011).

The target here is a method with a linear increase in total computational cost

as the number of grid points increases, where the method can efficiently spread that

cost across parallel tasks to allow resolution increases at nearly constant throughput.

Important elements of this method include a semi-Lagrangian formulation, which is

numerically stable for time steps that are large compared to the grid spacing, and

the cubed-sphere grid, which allows efficient decomposition into parallel tasks and

localized computation of Lagrangian-parcel trajectories.

Important features of tracer-transport methods for climate modeling include

highly accurate mass conservation and shape preservation. Climate models often

run for a century or more of simulated time, driving the conservation requirement for

36

along with my results and comparisons with the existing results in Lauritzen and

Skamarock (2011b) and Nair and Lauritzen (2010). Section 3.5 augments these

numerical tests with measurements and analyses of parallel performance, including

so-called “strong” and “weak” scaling, along with “spatial” scaling, a variety of weak

scaling that keeps the time step constant. Finally, Section 3.6 gives conclusions and

future prospects for the work in this chapter.

3.1 Transport Method

Consider the tracer transport equation in advective form as follows:

∂φ

∂t
+ v ·∇φ =

Dφ

Dt
= 0, (3.1)

where φ is the tracer concentration per unit mass. For the surface of a sphere S, v is

the two-dimensional horizontal wind vector, and ∇ is the two-dimensional gradient

operator defined on S. D/Dt is the Lagrangian total derivative,

D

Dt
=

∂

∂t
+ v ·∇. (3.2)

I discretize the surface of the sphere using a cubed sphere (Ronchi et al., 1996).

Table 3.1 gives the angular face coordinates (α,β) in terms of Cartesian coordinates

(x, y, z) for each of the six cube faces forming the sphere. The discrete face coordinates

are equi-angular with range [−π/4, π /4]. The discretized tracer-concentration value

φijk has position

αi = −π

4
+ iδ, (3.3)

βj = −π

4
+ jδ, (3.4)

on face k, where the angular spacing is

δ =
π

2n
, (3.5)

38

Table 3.1: Angular face coordinates of the cubed sphere in terms of Cartesian
coordinates.

Face α β

1 arctan(−x/z) arctan(y/z)
2 arctan(y/x) arctan(z/x)
3 arctan(−x/y) arctan(z/y)
4 arctan(y/x) arctan(−z/x)
5 arctan(−x/y) arctan(−z/y)
6 arctan(x/z) arctan(y/z)

Figure 3.1: Cubed-sphere grid for n = 30 in Equation 3.5.

for i, j = 0, . . . , n. Figure 3.1 shows the grid for n = 30. Redundant points exist

along face edges, so for example φ001 = φn03 = φ004.

To integrate Equation 3.1 forward a single time step, the method first computes

the past location of each point on the grid. In other words, for each grid point, the

method computes the location at the previous time step of the infinitesimal parcel

that arrives at that grid point at the current time. Consider φ = φ(α(t), β(t), t) along

a Lagrangian path on a particular face of the cubed sphere. Expand the Lagrangian

39

(a) Gaussian hills (b) cosine bells

(c) slotted cylinders (d) correlated cosine bells

Figure 3.2: Contour plots of initial conditions for the non-divergent winds at 1.5◦

resolution, interpolated from the cubed-sphere grid onto a longitude-latitude grid.
Contours are in increments of 0.05. Rough contours are artifacts of the interpolation
to the longitude-latitude grid.

Table 3.4: Values used for the convergence plots in Figures 3.3, 3.4, and 3.6, where
n is as in Equation 3.5.

Resolution Points (n) Time Steps
3◦ 30 30
1.5◦ 60 60
0.75◦ 120 120
0.375◦ 240 240
0.1857◦ 480 480

49

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

0.1875°0.375°0.75°1.5°3°

3rd

3rd + fixer

4th

4th + fixer

(a) l1, Gaussian hills

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

0.1875°0.375°0.75°1.5°3°

3rd

3rd + fixer

4th

4th + fixer

(b) l1, cosine bells

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

0.1875°0.375°0.75°1.5°3°

3rd

3rd + fixer

4th

4th + fixer

(c) l2, Gaussian hills

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

0.1875°0.375°0.75°1.5°3°

3rd

3rd + fixer

4th

4th + fixer

(d) l2, cosine bells

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

0.1875°0.375°0.75°1.5°3°

3rd

3rd + fixer

4th

4th + fixer

(e) l∞, Gaussian hills

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

0.1875°0.375°0.75°1.5°3°

3rd

3rd + fixer

4th

4th + fixer

(f) l∞, cosine bells

Figure 3.3: Error norms for a range of spatial resolutions with non-divergent winds.
Time steps decrease with increasing resolution, as shown in Table 3.4. Solid lines show
results with third-order interpolation, and dashed lines with fourth-order. Points
marked with “x” are for the original method, and points marked with a box include
the mass fixer. The upper thin line shows a slope of second-order convergence, and
the lower thin line shows that of third-order convergence.

50

Table 3.7: Convergence rates for my tests with divergent winds. “Order” is the
order of accuracy of the interpolation. “Limiter” shows whether the limiter is active.

Initial conditions Order Limiter K1 K2 K∞
Gaussian hills 3rd no 2.4 2.3 2.1

yes 2.4 2.3 2.1
4th no 2.9 2.8 2.8

yes 2.9 2.8 2.8
cosine bells 3rd no 2.2 2.0 1.6

yes 2.2 2.0 1.6
4th no 2.4 2.1 1.8

yes 2.5 2.2 1.7

Table 3.8: Effective resolution, as indicated by “Resolution”, where “Divergent”
indicates whether the winds are divergent or non-divergent, “Order” indicates the
order of accuracy of the interpolation, and n is as in Equation 3.5.

Divergent Order Resolution Points (n) Time Steps l2

no 3 1.4◦ 64 64 0.0327
4 1.2◦ 75 75 0.0325

yes 3 1.7◦ 52 52 0.0329
4 1.6◦ 57 57 0.0321

Though Lauritzen and Skamarock (2011b) recommends the divergent-wind tests, it

does not provide results for comparison.

Effective Resolution

“Effective resolution” is defined in Lauritzen and Skamarock (2011b) as the resolution

for which l2 is approximately 0.033 for the cosine-bells initial conditions with no

limiters or fixers. Table 3.8 shows effective resolutions for my method, defined

conservatively as the maximum resolutions where l2 ≤ 0.033. For this test case,

the lower-order interpolation performs better (coarser effective resolution), and the

divergent winds are less challenging than the non-divergent. Lauritzen and Skamarock

(2011b) reports that the effective resolution of CSLAM for the non-divergent winds

using 120 time steps is 1.5◦. This is slightly better than for my method, but mine

uses just over half as many time steps.

55

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

0.1875°0.375°0.75°1.5°3°

3rd

3rd + fixer

4th

4th + fixer

(a) l1

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

0.1875°0.375°0.75°1.5°3°

3rd

3rd + fixer

4th

4th + fixer

(b) l2

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

0.1875°0.375°0.75°1.5°3°

3rd

3rd + fixer

4th

4th + fixer

(c) l∞

Figure 3.10: Error norms for the cosine-bells test case with non-divergent winds
over a range of resolutions. The number of time steps is constant at 30. Line and
point styles are as in Figure 3.3.

64

negligible for one tracer, but it grows with tracer number and reduces performance

by about 30% for 100 tracers.

In contrast to strong-scaling, weak-scaling tests change the size of the problem as

the number of tasks increases such that the number of grid points per task remains

constant. Figure 3.13 shows the performance and runtimes for a weak-scaling test,

where each task has a domain of 30× 30 grid points per tracer. The lines show small

deviations from horizontal, indicating good scalability. The relative cost of the fixer

grows with the number of tracers, up to 25–30% for 100 tracers.

Figure 3.13b demonstrates the issue with traditional weak scaling through

increasing resolution. Because the number of time steps increases linearly with

resolution, perfect weak scalability for a two-dimensional problem leads to an increase

in total runtime proportional to the square root of the number of tasks.

The time stability of the semi-Lagrangian method allows a third type of scaling,

“spatial scaling”, where the spatial resolution increases with the number of tasks, but

the time step stays constant. Perfect spatial scaling has constant performance and

constant total runtime for a fixed number of tracers.

Figure 3.14 shows the performance and runtime of a spatial-scaling test, where

each task has a domain of 30 × 30 grid points per tracer, and the number of time

steps stays constant at 30. This performance test corresponds to the convergence test

shown in Figure 3.10. The performance does not scale as well as for the weak-scaling

test, and the runtime goes up by a factor of as much as 2.7 from 6 to 1536 tasks

(for 100 tracers with no fixer). Compare this, however, to the factor of 21.6 for the

equivalent weak-scaling case.

Figure 3.15 shows the cost increase in the interpolation phase, which explains the

differences in scalability between the weak- and spatial-scaling tests. Figure 3.15a

shows that the communication volume per task of the spatial-scaling test increases

significantly more than that of the weak-scaling test, and Figure 3.15b shows some of

the reason why. For the weak-scaling test, the average number of neighbors each task

71

 100

 1000

 10000

 100000

 1 10 100 1000 10000

tr
ac

er
s

x
 t

im
e

st
ep

s
/

se
co

n
d

MPI tasks

100 tracers
100 tracers w/fixer

10 tracers
10 tracers w/fixer

1 tracer
1 tracer w/fixer

(a) performance

 0.01

 0.1

 1

 10

 1 10 100 1000 10000

ti
m

e
(s

ec
o

n
d

s)

MPI tasks

100 tracers
100 tracers w/fixer

10 tracers
10 tracers w/fixer

1 tracer
1 tracer w/fixer

(b) runtime

Figure 3.13: Weak-scaling test. Each MPI task has a domain of 30× 30 grid points
per tracer. The number of time steps increases with the square root of the number of
tasks (linearly with resolution). Dashed lines indicate “w/fixer”, where the mass fixer
is active. The thin solid line in Figure 3.13b shows a runtime increase proportional
to the square root of the number of tasks.

72

 100

 1000

 10000

 100000

 1 10 100 1000 10000

tr
ac

er
s

x
 t

im
e

st
ep

s
/

se
co

n
d

MPI tasks

100 tracers
100 tracers w/fixer

10 tracers
10 tracers w/fixer

1 tracer
1 tracer w/fixer

(a) performance

 0.01

 0.1

 1

 1 10 100 1000 10000

ti
m

e
(s

ec
o

n
d

s)

MPI tasks

100 tracers
100 tracers w/fixer

10 tracers
10 tracers w/fixer

1 tracer
1 tracer w/fixer

(b) runtime

Figure 3.14: Spatial-scaling test. Each MPI task has a domain of 30 × 30 grid
points per tracer. The number of time steps stays constant at 30. Dashed lines
indicate “w/fixer”, where the mass fixer is active.

73

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000

b
y

te
s

p
er

 t
as

k
 p

er
 t

im
e

st
ep

MPI tasks

100 tracers, spatial scaling
10 tracers, spatial scaling

1 tracer, spatial scaling
100 tracer, weak scaling
10 tracers, weak scaling

1 tracer, weak scaling

(a) communication volume

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

 4.2

 4.4

 1 10 100 1000 10000

n
ei

g
h

b
o

rs
 /

 t
as

k

MPI tasks

spatial scaling
weak scaling

(b) message count

Figure 3.15: Communication costs of spatial-scaling and weak-scaling tests for
increasing task counts. The communication volume is the average number of bytes
sent by each task during each time step, not including global reductions. The message
count is the average number of neighbors per time step that a task sends interpolations
requests to.

74

queries during the interpolation phase shrinks slightly with increasing task count. For

the strong-scaling test, however, the number of neighbors increases significantly.

For spatial scaling, the time step stays constant as the resolution increases, so

the past location of a grid point gets farther and farther away relative to the grid

spacing. The likelihood that each past location is not in the local domain gets higher

until, at some resolution, all the past locations are remote to that task. The past

locations may also spread farther from each other relative to the grid spacing, since

the increasing Courant number amplifies any variability in the wind fields.

For the case of weak scaling, however, the time step stays constant relative to

the grid spacing, so the past locations do not get farther away. As the resolution

increases, the wind fields have less variability across the local domain, so the spread

of past locations decreases. Thus the average number of neighbors decreases.

3.6 Conclusions

In this chapter, I presented a semi-Lagrangian method for two-dimensional tracer

transport on a sphere. My method is stable for arbitrary Courant numbers, grows

linearly in computational complexity with the number of grid points, and has

computational complexity independent of the Courant number. The method uses

a cubed-sphere discretization, backward projection of the Lagrangian grid locations

that is O(∆4) per time step, and interpolation that is O(δ3) or O(δ4), where ∆ is the

time step and δ is the grid spacing. The resulting method has accuracy approaching

O(∆3) for simulations of a fixed time length with smooth initial conditions or with

δ � ∆. As is, the method conserves mass to O(∆3).

I also presented a mass fixer that conserves mass to machine precision for non-

divergent wind fields, while limiting tracer values to a prescribed range, also to within

machine precision. The fixer maintains the same accuracy as the unaltered method.

The fixer requires non-divergent winds for the tests used here because the tests do

not define a density field, and the method does not solve for density. For tests with

75

divergent winds, I apply only the limiter. In a full climate simulation, the method

for integrating wind dynamics would likely provide a density field, so the fixer would

be applicable even if the winds were divergent.

I presented results for the new suite of numerical tests defined in Lauritzen

and Skamarock (2011b). Tests with a constant Courant number of 10.4 show

convergence approaching the expected third order for Gaussian hills with fourth-

order interpolation and convergence of second order for cosine bells. The effective

resolution of my method, defined as the resolution that provides l2 error of about

0.033 for cosine bells, is about 1.3◦ for the non-divergent case and about 1.6◦ for the

divergent case. A test with discontinuous initial conditions, slotted cylinders, shows

the effectiveness of the fixer at conserving mass while eliminating unphysical values.

A test of nonlinearly correlated cosine bells shows that the method has mixing errors

of the same order as the standard error norms, and that the fixer significantly reduces

the overshooting error, lo. Additional tests not included in Lauritzen and Skamarock

(2011b) demonstrate the numerical stability of the method at high Courant numbers,

above 150. The method favors relatively large Courant numbers for best accuracy,

about 10–20, an order of magnitude higher than the stability limits of explicit

methods.

Finally I presented a parallel implementation of the method with a dynamic algo-

rithm for parallel interpolation of past grid locations. The algorithm allows arbitrary

winds and time steps by computing the necessary neighbors for communication at

each time step. Performance tests on NERSC Hopper II show scaling past 1000

parallel tasks for a 0.2◦ strong-scaling problem with one tracer, and up to 10,000

tasks for 100 tracers. Weak-scaling tests show near-perfect parallel efficiency and

improving computational efficiency with increasing numbers of tracers, but they also

show increasing relative cost of the fixer with increasing numbers of tracers. The

numerical stability of the method allows tests of spatial scaling, where the time step

and physical dimensions stay constant while the resolution and task count increase.

76

Chapter 4

Stability of Time Integrators and

Spatial Discretizations for

Advection

A goal of my work is to maximize the throughput of advection by maximizing the

length of each time step and by minimizing the computation time per time step.

In a parallel context, minimizing the computation time per time step is related to

minimizing the number of phases per step. For example, Runge-Kutta methods are

popular and well developed (Baker and Overman, 2005; Gottlieb et al., 2009; Shu,

2009; Sescu et al., 2010), but they require multiple phases per time step. Multi-step

methods ironically use only one phase per time step (Baker and Overman, 2005), but

they require the state of the system at multiple past time steps. For climate and

weather simulation, this means that checkpoint and restart of a simulation requires

much higher input and output volumes, and the startup of a simulation may be

difficult to construct or may be less accurate because of the need for initial conditions

at multiple times.

Thus I have the following goals for a high-throughput time-integration method.

• A single phase per time step, to minimize the computation time per step.

78

As in previous chapters and sections, subscripts on u indicate partial derivatives. The

subscript on the constant velocity cx indicates that it is in the ±x direction.

Similarly, the two-dimensional (u = u(x, y, t)) and three-dimensional (u =

u(x, y, z, t)) cases are

ut + cxux + cyuy = 0 (4.56)

ut + cxux + cyuy + czuz = 0 (4.57)

The derivations and analyses in the following sections use the Courant num-

bers (Courant et al., 1967) ν{x,y,z} = c{x,y,z}∆/δ for convenience, where ∆ is again the

time step.

4.2.1 Explicit Methods with Centered Differencing

For the one-dimensional explicit case, approximate the future state u(x, t +∆) with

a three-point stencil of the current state.

u(x, t+∆)≈ a−1u(x− δ, t) + a0u(x, t) + a1u(x+ δ, t) (4.58)

Expand in a Taylor series around small δ, replace time derivatives with space

derivatives using Equation 4.55, and group derivative terms.

(1− a−1 − a0 − a1)u(x, t)− δ(νx − a−1 + a1)ux(x, t)

+
1

2
δ
2(ν2

x − a−1 − a1)uxx(x, t) ≈ 0 (4.59)

Solve for the ai values by canceling the term multiplying each derivative.

a−1 =
1

2
νx(1 + νx) (4.60)

a0 = 1− ν
2
x (4.61)

a1 =
1

2
(νx − 1)νx (4.62)

100

The three-dimensional test function,

u(x, y, z, t) = e
−λt+iθx/δ+iφy/δ+iψz/δ

, (4.85)

results in the analogous amplification magnitude

|r|2 =
�
(1− ν

2
x + ν

2
x cos θ)

2 + ν
2
x sin

2
θ
�
×

�
(1− ν

2
y + ν

2
y cosφ)

2 + ν
2
y sin

2
φ
�

×
�
(1− ν

2
z + ν

2
z cosψ)

2 + ν
2
z sin

2
ψ
�

(4.86)

Again in three dimensions, the method is stable for −1 ≤ ν{x,y,z} ≤ 1, or for a

maximum Courant number of ν =
√
3.

4.2.2 Explicit Methods with Upwind Differencing

Next consider the effects of upwinding and downwinding on these explicit Taylor

methods with regular grids. Start in one dimension by shifting the three-point stencil

by −δ.

u(x, t+∆)≈ a−2u(x− 2δ, t) + a−1u(x− δ, t) + a0u(x, t) (4.87)

Expand in a Taylor series and solve for the ai values as before.

a−2 =
1

2
(νx − 1)νx (4.88)

a−1 = (2− νx)νx (4.89)

a0 =
1

2
(νx − 2)(νx − 1) (4.90)

The resulting method is again O(δ3) per time step.

The amplification magnitude is

|r|2 = 1

2

�
2 + 3(νx − 2)(νx − 1)2νx + (νx − 2)(νx − 1)2νx(cos 2θ − 4 cos θ)

�
, (4.91)

and Figure 4.14 plots it across the range of θ. For this case, the method is stable for

105

In my experiments, I find no time integrator, neither explicit nor implicit, that is

stable for arbitrary time steps for advection with an irregular grid. This disappointing

result led me to pursue semi-Lagrangian methods, described in Chapter 3.

4.4 Stability of Interpolation on a Two-Dimensional

Spatial Grid

The Taylor methods in Section 4.2, culminating in the three-dimensional method

described by Table 2.1, appear very similar to interpolating polynomials in Lagrange

form (Baker and Overman, 2005). This similarity foreshadows the success of

semi-Lagrangian methods for linear advection, methods which rely heavily on

interpolation. The stability of semi-Lagrangian methods similarly relies on the

stability of interpolation. In this section I analyze the stability of two-dimensional

interpolation to explore the potential of semi-Lagrangian advection for various grids.

4.4.1 Nine-Point Regular Grid

First consider interpolating a function u(x, y) on a regular two-dimensional grid. In

particular, consider interpolating the value u(x�, y�) near point u(x, y). Again δ is the

grid spacing.

u(x�
, y

�) ≈ a−1−1u(x− δ, y − δ) + a0−1u(x, y − δ) + a+1−1u(x+ δ, y − δ)

+ a−10u(x− δ, y) + a00u(x, y) + a10u(x+ δ, y) (4.197)

+ a−11u(x− δ, y + δ) + a01u(x, y + δ) + a11u(x+ δ, y + δ)

Much like for the Taylor time integrators, I expand in a Taylor series and solve for the

coefficients. With nine coefficients, I cancel all terms up to second order derivatives,

along with higher-order terms uxxy, uxyy, and uxxyy. The coefficients are as follows,

131

1/2, or within the central square of the sixteen-point stencil. The third-order method

from Section 4.4.1 has superior stability properties, with stable interpolation across

the stencil.

I slightly misuse this fourth-order method in Chapter 3. Away from the edges of

each cubed-sphere face, I use the method properly, only interpolating points within

the central square of the sixteen-point stencil. At the edges, however, I interpolate

points within the stencil but outside the central square. The resulting theoretical

instability is not enough to make the empirical tests unstable.

4.4.3 Six-Point Pentagonal Grid

The nine-point stencil from Section 4.4.1 has more points than it needs for third

order. The minimum number of points is six, to cancel terms for u, ux, uy, uxx, uyy,

and uxy. Here I explore the stability of a minimal stencil for third order, a pentagon

of points with an additional point in its center. Such an arrangement of points arises

in spherical geodesic grids, such as those described in Randall et al. (2002).

Consider the following pentagonal stencil.

u(x�
, y

�) ≈ a0u(x, y) + a1u(x, y + δ)

+ a2u(x+ δ

�
5/8 +

√
5/8, y − (1−

√
5)δ/4)

+ a3u(x+ δ

�
5/8−

√
5/8, y − (1 +

√
5)δ/4)

+ a4u(x− δ

�
5/8−

√
5/8, y − (1 +

√
5)δ/4)

+ a5u(x− δ

�
5/8 +

√
5/8, y − (1−

√
5)δ/4) (4.228)

136

4.4.4 Seven-Point Hexagonal Grid

Though pentagons do appear in geodesic discretizations of the sphere, hexagons

dominate (Randall et al., 2002). Hexagons also commonly appear in arbitrary

unstructured triangular discretizations. Pentagonal stencils do not appear to be stable

for interpolation, while square nine-point stencils are stable. What about hexagonal

stencils?

u(x�
, y

�) ≈ a0u(x, y) + a1u(x− δ, y) + a2u(x+ δ, y) (4.236)

+ a3u(x− δ/2, y +
√
3δ/2) + a4u(x+ δ/2, y +

√
3δ/2)

+ a5u(x− δ/2, y −
√
3δ/2) + a6u(x+ δ/2, y −

√
3δ/2)

This method has one extra coefficient beyond those needed for second order, and the

third-order factors available for cancelation are uxxx and uxxy. First consider canceling

the uxxx term. The coefficients of the resulting O(δ3) method are as follows.

a0 = 1− δ
2
x − δ

2
y (4.237)

a1 =
1

6

�
δx + 3δ2x − 4δ3x − δ

2
y

�
(4.238)

a2 =
1

6

�
δx(1 + δx)(4δx − 1)− δ

2
y

�
(4.239)

a3 =
1

6

�
4δ3x + δy(

√
3 + 2δy)− 2δx(2 +

√
3δy)

�
(4.240)

a4 =
1

6

�√
3(1 + 2δx)δy − 4δx(δ

2
x − 1) + 2δ2y

�
(4.241)

a5 =
1

6

�
4δx(δ

2
x − 1) +

√
3(2δx − 1)δy + 2δ2y

�
(4.242)

a6 =
1

6

�
4δx(1− δ

2
x)−

√
3(1 + 2δx)δy + 2δ2y

�
(4.243)

140

Bibliography

Baker, G. R. and Overman, E. A. (2005). The Art of Scientific Computing—Draft

XI. The Ohio State University. 78, 80, 101, 131

Brightwell, R., Riesen, R., and Underwood, K. (2005). Analyzing the impact

of overlap, offload, and independent progress for Message-Passing-Interface

applications. International Journal of High Performance Computing Applications,

19(2):103–117. 4

Courant, R., Friedrichs, K., and Lewy, H. (1967). On the partial difference equations

of mathematical physics. IBM Journal, pages 215–234. 46, 100

Crank, J. and Nicolson, P. (1996). A practical method for numerical evaluation of

solutions of partial differential equations of the heat-conduction type. Advances in

Computational Mathematics, 6(1):207–226. 87, 113

Datta, K., Murphy, M., Volkov, V., Williams, S., Carter, J., Oliker, L., Patterson, D.,

Shalf, J., and Yelick, K. (2008). Stencil computation optimization and auto-tuning

on state-of-the-art multicore architectures. In Conference on High-Performance

Networking and Computing. 6, 27

Drake, J., Foster, I., Michalakes, J., Toonen, B., and Worley, P. (1995). Design and

performance of a scalable parallel community climate model. Parallel Computing,

21(10):1571–1591. 36

150

Drake, J. B., Jones, P. W., Vertenstein, M., White III, J. B., and Worley, P. H.

(2008). Petascale Computing: Algorithms and Applications, chapter 7, pages 125–

146. Chapman & Hall/CRC. 37

Gottlieb, S., Ketcheson, D. I., and Shu, C.-W. (2009). High-order strong-stability-

preserving time discretizations. Journal of Scientific Computing, 38:251–289. 78

Harris, L. M., Lauritzen, P. H., and Mittal, R. (2011). A flux-form version of

the conservative semi-Lagrangian multi-tracer transport scheme (CSLAM) on the

cubed-sphere grid. Journal of Computational Physics, 230(4):1215–1237. 36, 37

Kamil, S., Chan, C., Oliker, L., Shalf, J., and Williams, S. (2010). An auto-tuning

framework for parallel multicore stencil computations. In IEEE International

Symposium on Parallel and Distributed Processing. 6

Kogge, P., Bergman, K., Borkar, S., Campbell, D., Carlson, W., Dally, W., Denneau,

M., Franzon, P., Harrod, W., Hill, K., Hiller, J., Karp, S., Keckler, S., Klein,

D., Lucas, R., Richards, M., Scarpelli, A., Scott, S., Snavely, A., Sterling, T.,

Williams, R., and Yellick, K. (2008). Exascale computing study: Technology

challenges in achieving exascale systems. Technical report, DARPA Information

Processing Techniques Office. 2

Lauritzen, P., Nair, R., and Ullrich, P. (2010). A conservative semi-Lagrangian

multi-tracer transport scheme (CSLAM) on the cubed-sphere grid. Journal of

Computational Physics, 229(5):1401–1424. 36, 37, 51

Lauritzen, P. H. and Skamarock, W. (2011a). Workshop on transport schemes on the

sphere. http://www.cgd.ucar.edu/cms/pel/tracer-workshop.html. 51

Lauritzen, P. H. and Skamarock, W. C. (2011b). Test-case suite for 2D

passive tracer transport: A proposal for the NCAR transport workshop.

http://www.cgd.ucar.edu/cms/pel/papers/LS2010.pdf. xii, 37, 38, 46, 47, 48, 51,

55, 56, 59, 60, 63, 76

151

Lax, P. and Wendroff, B. (1960). Systems of conservation laws. Communications on

Pure and Applied Mathematics, 13:217–237. 7, 79, 98

Message Passing Interface Forum (2008). MPI: A Message Passing Interface

Standard. University of Tennessee, 2.1 edition. 66

Micikevicius, P. (2009). 3D finite-difference computation on GPUs using CUDA. In

2nd Workshop on General Purpose Processing on Graphics Processing Units. 5, 13

Morgenstern, O., Giorgetta, M., Shibata, K., Eyring, V., Waugh, D., Shepherd, T.,

Akiyoshi, H., Austin, J., Baumgaertner, A., Bekki, S., Brühl, P. B. C., Chipperfield,

M., Cugnet, D., Dameris, M., Dhomse, S., Frith, S., Garny, H., Gettleman, A.,

Hardiman, S., Hegglin, M., Jöckel, P., Kinnison, D., Lamarque, J.-F., Mancini,

E., Manzini, E., Marchand, M., Michou, M., Nakamura, T., Nielsen, J., Olivié,

D., Pitari, G., Plummer, D., Rozanov, E., Scinocca, J., Smale, D., Teyssèdre, H.,

Toohey, M., Tian, W., and Yamashita, Y. (2010). Review of the formulation of

present-generation stratospheric chemistry-climate models and associated external

forcings. Journal of Geophysical Research—Atmospheres, 115(D00M02). 36

Nair, R. D. and Lauritzen, P. H. (2010). A class of deformational-flow test cases

for linear transport problems on the sphere. Journal of Computational Physics,

229(23):8868–8887. 38, 41, 45, 46, 47, 51

Nair, R. D., Thomas, S. J., and Loft, R. D. (2005). A discontinuous-Galerkin transport

scheme on the cubed sphere. Monthly Weather Review, 133(4):814–828. 36

Nath, R., Tomov, S., and Dongarra, J. (2010). An improved MAGMA GEMM for

Fermi GPUs. Technical Report UT-CS-10-655, University of Tennessee Computer

Science. 6

OpenMP Architecture Review Board (2008). OpenMP Application Program Interface.

13

152

Pjesivac-Grbovic, J., Angskun, T., Bosilca, G., Fagg, G., Gabriel, E., and Dongarra,

J. (2007). Performance analysis of MPI collective operations. Cluster Computing—

The Journal of Networks, Software Tools, and Applications, 10(2):127–143. 67

Portland Group (2009). CUDA Fortran Programming Guide. 7, 13

Putman, W. M. and Lin, S. J. (2007). Finite-volume transport on various cubed-

sphere grids. Journal of Computational Physics, 227(1):55–78. 35, 36

Randall, D. A., Ringler, T. D., Heikes, R. P., Jones, P. W., and Baumgardner, J.

(2002). Climate modeling with spherical geodesic grids. Computing in Science and

Engineering, 4(5):32–41. 136, 140

Ronchi, C., Iacono, R., and Paolucci, P. (1996). The “cubed sphere”: A new method

for the solution of partial differential equations in spherical geometry. Journal of

Computational Physics, 124(1):93–114. 36, 38

Sescu, A., Afjeh, A. A., Hixon, R., and Sescu, C. (2010). Conditionally stable

multidimensional schemes for advective equations. Journal of Scientific Computing,

42:96–117. 78

Shet, A. G., Sadayappan, P., Bernholdt, D. E., Nieplocha, J., and Tipparaju, V.

(2008). A framework for characterizing overlap of communication and computation

in parallel applications. Cluster Computing, 11(1):75–90. 4

Shu, C.-W. (2009). High-order weighted essentially nonoscillatory schemes for

convection-dominated problems. SIAM Review, 51(1):82–126. 78

St Cyr, A. and Thomas, S. J. (2005). High-order finite-element methods for parallel

atmospheric modeling. In Sunderam, V., Van Albada, G., Sloot, P., and Dongarra,

J., editors, Computational Science—ICCS 2005, volume 3514 of Lecture Notes in

Computer Science, pages 256–262, Berlin. Springer-Verlag. 4

153

