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ABSTRACT 

Previous research indicates that serotonin (5-HT) enhances the acquisition of 

stress-induced changes in behavior; although it is unclear which serotonin 

receptors mediate this enhancement. 5-HT2 receptors are potential candidates 

because activation at these receptors is associated with increased fear and 

anxiety. In this study we investigated whether pharmacological treatments 

targeting 5-HT2A and 5-HT2C receptors modulated the acquisition and 

expression of conditioned defeat. Conditioned defeat is a social defeat model in 

Syrian hamsters (Mesocricetus auratus) that is characterized by increased 

submissive and defensive behavior and a loss of territorial aggression following 

social defeat. In experiment 1, we injected the 5-HT2C receptor agonist mCPP 

(0.3, 1.0, or 3.0 mg/kg) or vehicle prior to social defeat and tested subjects for 

conditioned defeat behavior in a social interaction test 24 hours later. In 

experiment 2, subjects received a social defeat, and 24 hours later we injected 

mCPP (0.3, 1.0, or 3.0 mg/kg) or vehicle prior to a social interaction test. We 

found that injection of mCPP increased the expression, but not acquisition, of 

conditioned defeat. In experiment 3, we injected the 5-HT2A receptor antagonist 

MDL 11,939 (0.5 or 2.0 mg/kg) or vehicle prior to a social defeat and tested 

subjects for conditioned defeat behavior. In experiment 4, subjects received a 

social defeat, and 24 hours later we injected MDL 11,939 (0.5 or 2.0 mg/kg) or 

vehicle prior to a social interaction test. We found that injection of MDL 11,939 

significantly decreased the acquisition, but not expression, of conditioned defeat. 

These data suggest that pharmacological activation of 5-HT2C receptors 
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enhances the expression of conditioned defeat, while pharmacological blockade 

of 5-HT2A receptors impairs the acquisition of conditioned defeat. These data 

extend other studies indicating that 5-HT signaling at 5-HT2A receptors facilitate 

memories for aversive events and 5-HT signaling at 5-HT2C receptors enhance 

stress-induced anxiety.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 



vii	  
	  

TABLE OF CONTENTS 

Section          Page 

Introduction…………………………………………………………………………….. 1 
Methods………………………………………………………………………………… 6 
Results………………………………………………………………………………… 12 
Discussion…………………………………………………………………………….. 17 
List of References……………………………………………………………………. 24 
Vita…………………………………………………………………………………….. 38 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



viii	  
	  

LIST OF FIGURES 
 

Figure           Page 
 
Figure 1……………………………………………………………………………… 33 
Figure 2……………………………………………………………………………… 34 
Figure 3……………………………………………………………………………… 35 
Figure 4……………………………………………………………………………… 36 
Figure 5……………………………………………………………………………… 37 
 
 
 
 
 
 



1 
	  

 
 

INTRODUCTION 

Psychosocial stress in humans can lead to a variety of psychiatric 

disorders, including major depression, acute stress disorder, and post-traumatic 

stress disorder (Ramboz et al., 1998, Naughton et al., 2000, Middlemiss et al., 

2002, Davidson, 2003). The biological basis for stress-related mental illness 

remains poorly understood. Animal models of fear and anxiety have been used to 

understand the neural mechanisms underlying these psychiatric disorders. 

Because most of the stressors that are experienced by humans are social in 

nature (Brown and Prudo, 1981, Kessler, 1997, Bjorkqvist, 2001), ethologically 

relevant animal models that examine social conflict are particularly useful for 

determining how social experience alters the brain and subsequent behavior. 

Previous research has used physical stressors such as forced swim, foot shock 

and immobilization test. Although these are potent stressors that activate the 

stress response, physical stressors activate slightly different neural circuitry 

compared to psychosocial stressors (Canteras and Blanchard, 2008). 

Social defeat is a robust stressor that activates the HPA-axis (Blanchard 

et al., 1995, Koolhaas et al., 1997). Social defeat also leads to several long-

lasting behavioral and physiological changes, such as decreased locomotor 

activity /exploratory behavior (Meerlo et al., 1996a, Koolhaas et al., 1997, Rygula 

et al., 2005), changes in circadian rhythmicity  (Meerlo et al., 1996a, Meerlo et 

al., 2002) and altered feeding and body weight (van de Poll et al., 1982, Meerlo 

et al., 1996b, Bartolomucci et al., 2004, Foster et al., 2006). The behavioral 
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effects produced by social defeat stress are noticeably similar to symptoms of 

depression, and many of these effects are reversed with antidepressant 

treatments (e.g., drugs or controlled sleep deprivation) (Fuchs et al., 1996, 

Meerlo et al., 1996a, Berton et al., 1999). Social defeat also produces changes in 

the serotonergic system. Serotonin’s (5-HT’s) specific role in fear and anxiety-like 

behavior is mixed. Conflicting data from human and animal research support 

both an anxiolytic and anxiogenic role for 5-HT (Gordon and Hen, 2004). More 

research is being conducted on various 5-HT receptors that may be mediating 

the changes in anxiety behavior. 

Siberian and Syrian hamsters have been used as rodent models in 

circadian rhythms, obesity, and agonistic behavior (Wade and Bartness, 1984a, 

b). Syrian hamsters are especially useful for studying changes in agonistic 

behavior because they are solitary aggressive animals that will defend their 

territory from conspecifics (Nowack and Paradiso 1983). In a laboratory setting, 

singly housed hamsters defend their territory from intruders who are placed in 

their home cage (Albers 2002). However if a Syrian hamster loses an aggressive 

encounter, it will fail to display its’ natural territorial aggression in future 

encounters and instead display submissive and defensive behavior towards a 

novel intruder (Huhman et al., 2003). This switch in agonistic behavior has been 

called conditioned defeat and has been used as a model for stress-induced 

anxiety disorders (Huhman, 2006). 

Stressful events are known to increase fear and anxiety. Exposure to a 

predator is an ethologically relevant stressor that causes an increase in flight, 
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avoidance, and risk assessment in a mouse defensive test battery (Blanchard et 

al., 1990, Griebel et al., 1995). Predator odor increases different types of 

defensive behavior in both mice and rats depending on whether the threat is 

uncertain, distal, or proximal (Blanchard and Blanchard 2008). For instance, rats 

perform cautious exploration, such as risk assessment, in novel environments, 

when danger is certain. When a predator is perceived at a distance, tense and 

attentive immobility (freezing) ensues. Finally, when a predator is near or in 

actual contact with the rat, the animal flees whenever possible or otherwise 

threatens back or even attacks the predator defensively (Blanchard and 

Blanchard, 1988). Our lab has attempted to differentiate these defensive 

behaviors in hamsters by quantifying flight as a fear-like response, and stretch 

attends as an anxiety-like response. 

Serotonin (5-HT) I a neurochemical increased during stressful events and 

known to modulate fear and anxiety. Previous research suggests that disruption 

of 5-HT is linked to anxiety disorders and serotonergic drugs are used as 

pharmacological treatment for many anxiety disorders (Owens and Nemeroff, 

1998, Ballenger, 1999). The majority of 5-HT neurons that innervate stress-

sensitive regions of the forebrain project from the dorsal raphe nucleus (DRN). 

Increases in 5-HT concentrations in the DRN are associated with exposure to 

stressful stimuli such as forced swim (Kirby et al., 1995) and foot shock 

(Yoshioka et al., 1995). 5-HT has been shown to increase anxiety in conflict tests 

in rats tested in an elevated t-maze (Graeff, 2002). Our lab has shown that social 

defeat activates 5-HT neurons in the DRN (Cooper et al., 2009). Additionally, we 
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have shown that blocking 5-HT activity by activating 5-HT1A autoreceptors in the 

DRN disrupts the acquisition and expression of conditioned defeat (Cooper et al., 

2008).  

 It is unclear which 5-HT receptors in the forebrain facilitate stress-induced 

changes in fear and anxiety. 5-HT2 receptors are potential candidates for 

translating stress-induced increases in 5-HT into increased anxiety-like behavior. 

5-HT2 receptors are postsynaptic, G-protein coupled receptors, that elevate 

cytosolic Ca++ (Conn and Sanders-Bush, 1986). The three subtypes of 5-HT2 

receptors (2A, 2B, and 2C) have different distributions in the brain. While 5-HT2B 

receptors are found mainly in the periphery, 5-HT2A and 5-HT2C receptors are 

widely distributed throughout the brain. 5-HT2A receptors occur in high densities 

in the frontal cortex, piriform cortex, ventro-caudal part of the hippocampus 

(CA3), medial mammilary nucleus, the pontine nuclei, the motor cranial nerve 

nuclei in the brainstem, and the ventral horn of the spinal cord (Pompeiano et al., 

1994). High densities of 5-HT2C receptors are found in retrosplenial, piriform and 

entorhinal cortex, anterior olfactory nucleus, lateral septal nucleus, subthalamic 

nucleus, amygdala, subiculum and ventral part of CA3, lateral habenula, 

substantia nigra pars compacta, several brainstem nuclei and the whole grey 

matter of the spinal cord (Pompeiano et al., 1994). 5-HT2C receptors contribute 

to the expression of fear and anxiety. Pharmacological activation of 5-HT2C 

receptors has induced panic attacks in humans (Kahn et al., 1988). 

Administration of a 5-HT2C receptor agonist before testing has been shown to 

increase the expression of learned helplessness behavior, such as reduced 
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social exploration, in rats (Strong et al., 2009). 5-HT2A receptors are important 

for the formation of emotional memories.  Injection of 5-HT2A receptor agonists 

prior to training has been shown to facilitate eye blink conditioning in rabbits 

(Harvey, 2003). 

The purpose of this study was to examine the role of 5-HT2A and 5-HT2C 

receptors in conditioned defeat. We chose the drug mCPP, a 5-HT2C receptor 

agonist, because previous research in animal and human studies has shown that 

mCPP increases anxiety. We choose MDL 11,939, a 5-HT2A receptor antagonist 

because of its’ high affinity for 5-HT2A receptors over other 5-HT receptors. We 

hypothesized that 5-HT2C receptor activation prior to testing would increase the 

production of conditioned defeat behavior. Also we hypothesized that 5-HT2A 

receptor blockade prior to social defeat training would impair the formation of 

conditioned defeat. 
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METHODS 

 
Animals 

Subjects were adult male Syrian hamsters (Mesocricetus auratus) that 

weighed 130–190 g (3–4 months) at the start of the study, and were individually 

housed for 10–14 days prior to testing. Older hamsters that weighed 180–200 g 

(>6 months) were individually housed and used as resident aggressors for social 

defeat training. Immature hamsters that weighed 90–120 g (2 months) were 

group-housed (three or four animals per cage) and used as non-aggressive 

opponents for conditioned defeat testing. All animals were housed in 

polycarbonate cages (20 cm × 40 cm × 20 cm) with corncob bedding, cotton 

nesting materials, and wire mesh tops. Animal cages were not changed for at 

least 1 week prior to testing to allow individuals to scent mark their territory. 

Animals were housed in a temperature-controlled colony room (20 ± 2 °C) and 

maintained on a 14:10 h light-dark cycle with food and water available ad libitum. 

All procedures were approved by the University of Tennessee Animal Care and 

Use Committee and are in accordance with the US National Institutes of Health 

Guide for the Care and Use of Laboratory Animals.  

 

Conditioned defeat protocol 

During social defeat training subjects experienced either one 15-min or 

one sub-optimal 10-min aggressive encounter in a resident aggressor's home-

cage. The 10-min aggressive encounters were used to avoid a ceiling effect 

when we expected drug treatment to increase conditioned defeat behavior. 



7	  
	  

During social defeat training subjects were reliably attacked and defeated by 

resident aggressors. To standardize the amount of aggression received and the 

duration of social defeat, timing of aggressive encounters began at the first attack 

by the resident aggressor, which usually occurred within the first 60 s. During 

social defeat training we recorded the total duration of aggression and the 

number of attacks displayed by resident aggressors. No-defeat control subjects 

did not receive a social defeat. To investigate whether drug treatments affected 

agonistic behavior in the absence of social defeat experience, we included no-

defeat control groups that were exposed to a resident aggressor's empty cage. 

We performed all training and subsequent testing under red or dim light (< 40 lux) 

during the first 3 h of the dark phase of the light-dark cycle. 

Behavioral testing occurred 24 h after training and consisted of one, 5-min 

encounter with a novel, non-aggressive opponent in the subject's home cage. 

Testing sessions were digitally recorded and later scored by researchers blind to 

the experimental conditions using an ethogram adapted from Albers et al.(2002).  

A second researcher scored a subset of testing sessions; inter-observer reliability 

was 91% with a kappa of coefficient of .292. We recorded the total duration of 

four classes of behavior during the 5-min tests: (a) non-agonistic social 

(approach, investigate, sniff, and nose touch); (b) nonsocial (locomotion, 

exploration, self-groom, nest build, and feed); (c) submissive and defensive 

(flight, avoid, tail up, upright and side defense, full submissive posture, stretch-

attend, head flag, attempt to escape from cage); and (d) aggressive (upright and 

side offense, chase, and attack including bite). For a more detailed analysis of 
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the subject's agonistic behavior, we also quantified the frequency of flight, 

stretch-attend, and attack.  

 

Drugs 

We dissolved 1-(3-Chlorophenyl)piperazine (mCPP; Sigma-Aldrich) in 

sterile saline as per previous research (Fox at al. 2008). mCPP is a non-selective 

5-HT2 receptor agonist which shows a preferential affinity at 5-HT2C receptors 

(Kimura et al., 2009). We dissolved α-phenyl-1-(2-phenylethyl)-4-piperidine 

methanol (MDL 11,939; Tocris) in sterile saline with 1% of acetic acid and 

adjusted the pH to 5.5 with NAOH as per previous research (Welsh et al., 1998). 

MDL 11,939 is a highly selective 5-HT2A receptor antagonist (Welsh et al., 

1998). All drugs were administered in a 0.3 ml volume using an intraperitoneal 

injection (i.p.) with a 1ml syringe. 

 

Experiments 1 and 2: 5-HT2C receptor agonist 

We designed experiment 1 to test whether injection of a 5-HT2C receptor 

agonist would enhance the acquisition of conditioned defeat. We injected mCPP 

(0.3 mg/kg, N=11; 1.0 mg/kg, N=11; or 3.0 mg/kg, N=11) or vehicle (N = 11) 

15 min prior to a 10-min social defeat. Animals were tested for conditioned defeat 

behavior 24 h later. 

We designed experiment 2 to test whether injection of a 5-HT2C receptor 

agonist would enhance the expression of conditioned defeat. Hamsters received 

a 10-min social defeat, and 24 hours later we injected mCPP (0.3 mg/kg, N=10; 
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1.0 mg/kg, N=11; or 3.0 mg/kg, N=10) or vehicle (N=11) 15-minutes prior to 

conditioned defeat testing. No defeat controls received exposure to a resident 

aggressor's empty cage during training, and 24 h later we injected mCPP (1.0 

mg/kg, N=8) or vehicle (0.0 mg/kg, N=8) 15-minutes prior to conditioned defeat 

testing. 

 

Experiments 3 and 4: 5-HT2A receptor antagonist 

We designed Experiment 3 to test whether injection of a selective 5-HT2A 

receptor antagonist would reduce the acquisition of conditioned defeat. We 

injected MDL 11,939 (0.5 mg/kg, N=11; or 2.0 mg/kg, N=10) or vehicle (N=10) 

30 min prior to a 15-min social defeat. For no defeat controls, we injected MDL 

11,939 (2.0 mg/kg, N=8) or vehicle (0.0 mg/kg, N=9) 30 min prior to exposure to 

a resident aggressor's empty cage. Animals were tested for conditioned defeat 

behavior 24 h later as described above. 

We designed Experiment 4 to test whether injection of a selective 5-HT2A 

receptor antagonist would reduce the expression of conditioned defeat. Hamsters 

receive a 15-min social defeat, and 24 h later we injected MDL 11,939 (0.5 

mg/kg, N=11; or 2.0 mg/kg, N=10) or vehicle (N=10) 30 min prior conditioned 

defeat testing. Likewise, no defeat controls received exposure to a resident 

aggressor's empty cage during training, and 24 h later we injected MDL 11,939 

(2.0 mg/kg, N=8) or vehicle (0.0 mg/kg, N=8) 30 min prior to conditioned defeat 

testing. 

Data analysis 
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Several subjects were not included in statistical analysis because of 

difficulties with the conditioned defeat protocol. Nine animals were excluded 

because they were attacked by intruders during testing, two were excluded 

because of insufficient defeats, and 25 animals were excluded because two 

cohorts of subjects failed to show conditioned defeat behavior. The 2 excluded 

cohorts were bred in the Walters Life Science building at the University of 

Tennessee, Knoxville, born in June and July, and had no obvious reason for not 

showing conditioned defeat. Our lab is currently investigating individual variation 

in our subjects to explain why Syrian hamsters can widely vary in their display of 

conditioned defeat behavior.  We analyzed the data with both cohorts included, 

dropping all animals that did not shown conditioned defeat, and by dropping 

cohorts when vehicle control subjects did not show conditioned defeat and the 

statistical results were similar for all three types of analyses. 

For social defeat training, we analyzed the total duration of aggression 

received by subjects and the frequency of attacks received by subjects. For 

conditioned defeat testing, we separately analyzed the total durations of 

submissive and defensive, non-agonistic social, nonsocial, and aggressive 

behavior, as well as the frequencies of attack, flight, and stretch-attend posture. 

Conditioned defeat data were analyzed using two-way ANOVAs with defeat 

experience (defeat; no defeat) and drug dose as independent variables. To 

investigate a dose-response relationship for drug treatments in defeated subjects 

we performed one-way ANOVAs with Tukey or LSD post-hoc tests.  We used t-

tests to further investigate the effect of drug treatment in no defeat controls. All 
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statistical tests were two-tailed and the alpha level was p < 0.05. Data are 

presented as mean ± S.E. 
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RESULTS 

Experiment 1: mCPP and acquisition of conditioned defeat 

Injection of mCPP prior to social defeat did not significantly alter the 

acquisition of conditioned defeat (Fig 1). mCPP treatment did not significantly 

alter the duration of submissive and defensive behavior (F(3,43) = 0.279, 

p = 0.840). Likewise, animals injected with 0.3, 1.0 or 3.0 mg/kg of mCPP did not 

show significant changes in frequency of flight (F(3,43) = 1.177, p = 0.330) or 

stretch-attend postures (F(3,43) = .320, p = 0.811) compared to vehicle controls 

(Table 1). Injection of mCPP prior to social defeat did not alter the duration of 

non-agonistic social behavior (F(3,43) = .390, p = 0.760), nonsocial behavior 

(F(3.43) = .346, p = 0.792),   or aggressive behavior (F(3,43) = 1.306, p = 0.286).  

Injection of mCPP prior to social defeat training did not alter the amount of 

aggression resident aggressors directed toward subjects. Vehicle controls 

received 200.5 s (±33.3) of aggression during social defeat and individuals 

injected with 0.3, 1.0, or 3.0 mg/kg of mCPP received 250.5 s (±28.9), 291.5 

(±24.6) and 296.0 s (±28.4) of aggression, respectively (F(3,43) = 0.55, p = 0.567). 

Vehicle controls received 12.3 (±1.1) attacks during social defeat and individuals 

injected with 0.3, 1.0 and 3.0 mg/kg of mCPP received 10.8 (±1.6), 13.7 (±2.1) 

and 12.7 (±1.9), attacks, respectively (F(3,43) = 1.41, p = 0.796).  

 

Experiment 2: mCPP and expression of conditioned defeat 

Injection of mCPP prior to behavioral testing dose dependently increased 

the expression of conditioned defeat (Fig 2). A nearly significant drug by defeat 
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interaction (F(1,36) = 4.116, p = 0.051) was found for the duration of submissive 

and defensive behavior. This result indicates that 1.0 mg/kg of mCPP increased 

submissive and defensive behavior in defeated subjects, but not in no defeat 

controls. Also, a one-way ANOVA on defeated subjects showed a significant 

increase in submissive and defensive behavior at 1.0 mg/kg mCPP 

(F(3,40) = 4.204, p = 0.012, Tukey, p = .011) but not at 3.0 mg/kg (Tukey, p = ???). 

However, mCPP did not significantly change the frequency of flight (F(1,36) = .216, 

p = 0.645) or stretch-attend postures (F(1,36) = .430, p = 0.517) compared to 

vehicle controls (Table 2). To measure the selectivity of mCPP’s effect on 

conditioned defeat behavior we also quantified three other classes of behavior, 

non-agonistic social, nonsocial, aggressive behavior. We expect a selective 

effect of mCPP on submissive/defensive behavior but not on the other classes of 

behavior. Our results were as expected, injection of mCPP prior to behavioral 

testing did not alter the duration of other classes of behavior such as non-

agonistic social (F(1,36) = 0.081, p = 0.778), nonsocial (F(1,36) = 1.270, p = 0.268), 

or aggression (F(1,36) = 0.515, p = 0.478). 

No defeat controls did not show greater aggression (F(1,36) = .515, 

p = 0.478) but did show less submissive and defensive behavior (F(1,36) = 17.382, 

p < 0.001)  compared to defeated subjects (Fig. 2). Also, injection of mCPP in no 

defeat control animals did not alter the duration of submissive and defensive 

(t = -1.260, p = 0.248), aggressive (t = 1.000, p = .351), non-agonistic social (t = 

.476, p = .649), or nonsocial behavior (t = -.643, p = .541). Similarly, no defeat 

controls injected with mCPP or vehicle did not significantly differ in the number of 
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attacks initiated during conditioned defeat testing (t = 1.000, p = .351; Table 2).  

 

Experiment 3: MDL 11,939 and acquisition of conditioned defeat 

Injection of MDL 11,939 prior to social defeat dose dependently decreased 

the acquisition of conditioned defeat (Fig 3). We found significant drug by defeat 

interaction (F(1,36) = 4.793, p = 0.036) was found for the duration of submissive 

and defensive behavior. This result indicates that 2.0 mg/kg of MDL 11,939 

reduced submissive and defensive behavior in defeated subjects, but not in no 

defeat controls. However, a one-way ANOVA on defeated subjects showed a 

marginally significant decrease in submissive and defensive behavior at 2.0 

mg/kg (F(1,30) = 2.594, p = 0.093, LSD, p = .05). MDL 11,939 did not significantly 

change the frequency of flight (F(1,36) = .378, p = 0.543) or stretch-attend postures 

(F(1,36) = .757, p = 0.391) compared to vehicle controls (Table 3). Also, injection of 

MDL 11,939 prior to social defeat did not alter the duration of other classes of 

behavior such as non-agonistic social (F(1,36) = 0.204, p = 0.661), nonsocial 

(F(1,36) = 0.012, p = 0.912), or aggression (F(1,36) = 0.196, p = 0.661). 

No defeat controls showed greater aggression (F(1,36) = 9.412, p = 0.004) 

and less submissive and defensive behavior at testing (F(1,36) = 17.945, 

p = 0.000) compared to defeated subjects (Fig. 3). However, injection of MDL 

11,939 in no defeat control animals did not alter the duration of submissive and 

defensive (t(1,36)  = 1.174, p = 0.279), aggressive (t (1,36) = .417, p = .689), non-

agonistic social (t (1,36) = -.361, p = .729), or nonsocial behavior (t (1,36) = -.203, p 

= .845). Similarly, no defeat controls injected with MDL 11,939 or vehicle did not 
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significantly differ in the number of attacks displayed during conditioned defeat 

testing (t (1,36) = .403, p = .699; Table 3).  

Injection of MDL 11,939 did not alter the level of aggression subjects 

received during social defeat training. Vehicle controls received 307 s (±57.9) of 

aggression during social defeat and individuals injected with 0.5 or 2.0 mg/kg of 

MDL 11,939 received 303 s (±47.5) and 277.3 s (±53.3), respectively 

(F(2,28) = 0.095, p = 0.909). Vehicle controls received 21.7 (±1.2) attacks during 

social defeat and individuals injected with 0.5 or 2.0 mg/kg of MDL 11,939 

received 19.5 (±2.5)and 16.4 (±3.3), attacks, respectively (F(2,28) = 0.857, 

p = 0.436).  

 

Experiment 4: MDL 11,939 and expression of conditioned defeat 

Injection of MDL 11,939 prior to behavioral testing did not significantly 

alter the expression of conditioned defeat (Fig 4). We did not find a significant 

drug by defeat interaction for the duration of submissive and defensive behavior 

(F(1,37) = 0.98, p = 0.757). Also, a one-way ANOVA on defeated subjects did not 

reveal a significant difference in submissive and defensive behavior 

(F(1,31) = 0.248, p = 0.782). Likewise, animals injected with 0.5 or 2.0 mg/kg of 

MDL 11,939 did not show significant changes in frequency of flight 

(F(1,37) = 0.287, p = 0.837) or stretch-attend postures (F(1,37) = 1.400, p = 0.245) 

compared to vehicle controls (Table 4). Injection of MDL 11,939 prior to 

conditioned defeat testing did not produce changes in the duration of non-

agonistic social behavior (F(1,37) = 1.227, p = 0.276) or aggressive behavior 
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(F(1,37) = 0.314, p = 0.579). However we found a significant drug by defeat 

interaction for nonsocial behavior (F(1,37) = 4.672, p = 0.038), but a one-way 

ANOVA on defeated subjects did not show a significant effect of drug treatment 

on nonsocial behavior (F(2,31) = 2.619, p = 0.090). The modest increase in 

nonsocial behavior appears related to increased cage climbing, nest building, 

and self-grooming and is not directly attributed to drug-induced hyper-locomotion. 

No defeat controls showed elevated aggression (F(1,37) = 5.309, p = 0.027) 

and reduced submissive and defensive behavior (F(1,37) = 10.354, p = 0.003) 

compared to defeated subjects (Fig. 4). Also, injection of MDL 11,939 in no 

defeat control subjects did not alter the duration of aggression (t (1,36) = 1.052, p = 

.328), submission (t (1,36)  = .037, p = .971), non-agonistic social (t (1,36) = -.361, p 

= .729), or nonsocial behavior (t (1,36)   = -.203, p = .845). Similarly, no defeat 

controls attacked non-aggressive opponents at testing more often than did defeat 

animals (F(1,37) = 5.309, p = 0.027), although MDL 11,939 injection did not alter 

frequency of attacks (t (1,36)  = 1.055, p = .326; Table 4). 
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DISCUSSION 

In each experiments we found an effect of social defeat on conditioned 

defeat behavior. Specifically, defeated animals show increased submissive and 

defensive behavior and decrease in aggressive behavior, when compared to no 

defeat control subjects. Also, in all experiments pharmacological manipulations 

did not produce a significant change in the behavior of no defeat subjects. 

Because the effects of drug treatment were limited to defeated subjects, we 

concluded the prior psychosocial stress is required for the 5-HT2 ligands used 

here to modulate agonistic behavior. Our study shows that administration of 

mCPP, a nonselective 5-HT2C receptor agonist, increases the expression but 

not acquisition of conditioned defeat behavior. These results suggest that 

activation of 5-HT2C receptors are important for the production of submissive 

and defensive behavior at testing but not the development of conditioned defeat 

behavior. We found that injection of MDL 11,939, a selective 5-HT2A receptor 

antagonist, reduces the acquisition but not expression of conditioned defeat 

behavior. These results suggest that 5-HT2A receptor blockade impairs the 

development of conditioned defeat but is not critical for the production of 

submissive and defensive behavior at testing. Together these data suggest that 

5-HT may act at 5-HT2C and 5-HT2A receptors to facilitate the expression and 

acquisition of conditioned defeat, respectively. In sum, these results support our 

overarching hypothesis that defeat-induced increases in serotonin act at 5-HT2 

receptors in the forebrain to promote conditioned defeat behavior. 
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Administration of mCPP exacerbates panic attacks in humans with panic 

disorder causing behavioral effects such as increased anxiety, depression and 

panic attacks (Kahn et al., 1988). Also, mCPP increases the expression of 

anxiety-like behavior in several animal models including the social interaction test 

(Bagdy et al., 2001), light/dark transition box test (Bilkei-Gorzo et al., 1998), and 

open field test (Campbell and Merchant, 2003). Although mCPP often is used as 

a 5-HT2C receptor agonist, the drug pharmacology is complex. mCPP activates 

several other receptors and binds with equal affinity to 5-HT2C and 5-HT2B 

receptors. It binds to 5-HT2C receptors with a ten-fold greater selectivity than 5-

HT2A receptors and a two fold greater selectivity than 5-HT1A (Roth et al., 1995, 

Campbell and Merchant, 2003). The non-selective binding of mCPP at 5-HT 

receptors could explain the non-linear dose response curve in our results. We 

found that 1.0 mg/kg of mCPP increased conditioned defeat, whereas 3.0 mg/kg 

was less effective. Our data is consistent with other research showing inverted U-

shaped dose response curves for mCPP effects. For example, mCPP treatment 

increases anxiety in an open field test at doses between 3 and 300 pmol but not 

at 3000 pmol (Campbell and Merchant, 2003). One, possibility is that mCPP fails 

to increase conditioned defeat at high doses because it binds to other receptors, 

such as the 5-HT1A receptor. This possibility would be consistent with our 

previous finding that activation of 5-HT1A receptors in the basolateral amygdala 

(BLA) decreases conditioned defeat (Morrison et al., 2011). In a learned 

helplessness model, another 5-HT2C receptor agonist, CP-809101, has been 

shown to impaire escape behavior in the absence of prior stress (Strong et al., 
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2009). Unlike with Strong et al. (2009), activation of 5-HT2C receptors in our 

study did not create conditioned defeat behavior in our no defeat subjects. Thus, 

activation of 5-HT2C receptors appears to interact with social defeat to enhance 

the display of submissive and defensive behavior, however it does not produce 

conditioned defeat itself.  

We also quantified flees and stretch attends in an attempt to differentiate 

fear and anxiety. Threat stimuli, like predator odor, increases different types of 

defensive behavior in both mice and rats.  These defensive behaviors have been 

divided into fear-like responses, which include escape behavior, and anxiety-like 

behavior, which include risk assessment (Blanchard and Blanchard 2008). In our 

animals we used flees to represent escape behavior and stretch attends to 

represent risk assessment behavior. MDL and mCPP failed to significantly alter 

the frequency of flees or stretch attends. Because there were no significant 

changes in flee or stretch attend behavior our study was unable to differentiate 

the effect of 5-HT2 receptors on this aspect of fear and anxiety. Future research 

will require us to modify our ethogram to more carefully address fearful and 

anxious types of behavior. 

Several brain regions may underlie the effect of mCPP on the expression 

of conditioned defeat.  Brain regions such as the bed nucleus of the stria 

terminalis (BNST) and central nucleus of the amygdala (CeA), have been 

implicated in the link between 5-HT2C receptors and the expression of anxiety 

and fear-like responses. 5-HT2C receptor knock-out mice show reduced c-Fos 

immunoreactivity in the BNST and CeA following exposure to an anxiety-
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provoking stimulus (Heisler et al., 2007). Systemic mCPP administration has 

been shown to increase the expression of c-Fos in the anterolateral BNST 

(Singewald et al., 2003). Also, the anxiogenic effects of mCPP have been linked 

to 5-HT2A/2C receptors expressed by BNST projection neurons (Hammack et 

al., 2009). The BLA is another key brain region because it contains 5-HT2C 

receptor protein (Pompeiano et al., 1994) and plays a critical role in the 

expression of conditioned defeat . Others have found that 5-HT2C receptor 

activation within the BLA causes acute fear-like responses in an open-field test 

(Campbell and Merchant, 2003). Similarly, 5-HT2C receptor activation in the BLA 

reduces social exploration in the learned helplessness model (Christianson et al., 

2010).  

Pharmacological treatments targeting 5-HT2A receptors have been shown 

to modulate several types of learning including spatial, emotional, and 

associative learning in several species (Harvey et al., 1982, Alhaider et al., 1993, 

Williams et al., 2002). Activation of 5-HT2A receptors by lysergic acid 

diethylamide, LSD (Gimpl et al., 1979, Siegel et al., 1996), 2,5-dimethoxy-4-

methylamphetamine, DOM (Harvey et al., 1982), 3,4 

methylenedioxyamphetamine, MDA (Romano et al., 1991), and 

methylenedioxymethamphetamine, MDMA (Romano and Harvey, 1994) 

enhances eye blink conditioning in rabbits. Also blockade of 5-HT2A receptors 

with ritanserin (Welsh et al., 1998), mianserin (Romano et al., 1991), MDL 11,939 

(Welsh et al., 1998), and pizotifen (Ginn and Powell, 1986) has been shown to 

impair eye blink conditioning in rabbits. These studies suggest that 5-HT2A 
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receptor activation facilitates, while 5-HT2A receptor blockade disrupts eye blink 

conditioning. The 5-HT2A receptors’ role in modulating aversive learning is not 

limited to eye blink conditioning in rabbits; other animal and human studies have 

shown that activation or blockade of 5-HT2A receptors modulates the formation 

of memories for aversive events. For example, the acquisition of active 

avoidance was enhanced in rats using quipazine, a 5-HT agonist, and was 

blocked by ketanserin, a 5-HT2A/2C antagonist, suggesting that the enhanced 

formation of active avoidance was facilitated by 5-HT2A receptors (Alhaider et 

al., 1993). Similarly, cyproheptadine, a 5-HT2A/2C receptor antagonist, impaired 

the acquisition of active aviodance (Titov et al., 1983, Ma and Yu, 1993). In 

humans, injection of ritanserin has been shown to impair learning in an aversive 

classical conditioning test (Hensman et al., 1991).  

Consistent with the research on classical conditioning and active 

avoidance, our results support a role for 5-HT2A receptors in the acquisition of 

stress-related memories. Our results indicate that blockade of 5-HT2A receptors 

prior to social defeat impairs the acquisition of conditioned defeat behavior. MDL 

11,939 may impair the acquisition of conditioned defeat by acting in several brain 

regions that have been implicated in emotional memories. 5-HT2A receptors in 

the hippocampus and frontal cortex have been implicated in eye blink 

conditioning (Takehara et al., 2003). Importantly, neural transmission in the 

hippocampus and prefrontal cortex are necessary for the development of 

conditioned defeat. Previous research has shown that inactivation of the 

hippocampus using musicmol disrupted the acquisition of conditioned defeat  
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(Markham et al., 2010) and inactivation of  medial prefrontal cortex impairs 

conditioned defeat resistance in dominant hamsters (Morrison and Cooper, 2010. 

Online). The BLA is another candidate brain region for mediating the effect of 

MDL 11,939 on the development of conditioned defeat. We have previously 

shown that Syrian hamsters have 5-HT2A receptors in the BLA (Morrison et al., 

2011), and neural plasticity in the BLA is critical for the development of 

conditioned defeat (Jasnow et al., 2005, Markham et al., 2010, Day et al., 2011). 

Also, 5-HT2A receptors are present on GABAergic interneurons and 

glutamatergic pyramidal cells in the BLA of rats (McDonald and Mascagni, 2007). 

One possible explanation for our results is that MDL 11,939 may preferentially 

block 5-HT2A receptors on BLA glutamatergic cells and thereby impair the 

development of conditioned defeat. Interesting, serotonergic input can 

desensitize 5-HT2A receptors in vitro (Roth et al., 1995). Thus, another 

possibility is that MDL 11,939 might prevent the desensitization at 5-HT2A 

receptors on GABAergic neurons in the BLA and thus enable serotonergic 

inhibition of the BLA pyramidal neurons at testing (Fig. 5). 

These data extend our understanding the role of 5-HT in the acquisition 

and expression of conditioned defeat.  We have previously shown that enhancing 

5-HT signaling in the DRN increases conditioned defeat (Cooper et al., 2008). It 

was unclear which post-synaptic receptors mediated this increase in conditioned 

defeat. The current study indicates that the 5-HT2 receptors play a key role in 

facilitating conditioned defeat. Our data are consistent with previous research 

suggesting that activation of 5-HT2C receptors is important for the expression of 
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anxiety-like behavior. While the role of 5-HT2A receptors in the acquisition of 

anxiety-like behavior is unclear and our findings provide a novel example of the 

role of 5-HT2A receptors in the formation of anxiety-like behavior. This study 

builds upon our working model of mechanisms by which 5-HT can modulate the 

acquisition and expression of conditioned defeat (see Fig. 5). In sum, our results 

indicate that conditioned defeat is an elegant model for investigating 5-HT’s role 

in anxiety disorders. 
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APPENDIX A 
 
 
Table 1. 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	  	  	  	  
Behavior       0.0 mg/kg       0.3 mg/kg       1.0 mg/kg          3.0 mg/kg   p value 
Flee               .455 ± .366     .091 ± .091     1.091 ± .732      .182 ± .122        > .05 
 
Stretch          .364 ± .203      .364 ± .152     .273 ± .141        .545 ± .287        > .05 
Attend 
 
Attack           .000 ± .000      .000 ± .000     .000 ± .000        .545 ± .455        > .05 
The frequencies of flee, stretch attend, and attack (mean ± SE) during 
conditioned defeat testing are shown. All subjects received social defeat and 
were treated with 0.0 mg/kg, 0.3 mg/kg, 1.0 mg/kg, and 3.0 mg/kg of mCPP prior 
to social defeat.  
 
 
 
 
	  
Table	  2.	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
Behavior   D 0.0 mg/kg   D 0.3 mg/kg   D 1.0 mg/kg    D 3.0 mg/kg       ND 0.0 mg/kg  ND 1.0 mg/kg   p value 
Flee          1.800 ± .853   1.222± 1.102  1.091 ± .995     .182 ± .122     .000 ± .000       .000 ± .000         > .05 
 
Stretch     .000 ± .000       .111 ± .111      .091 ± .091     .167 ± .167     .000 ± .000      .250 ± .250         > .05 
Attend 
 
Attack      .500 ± .500       .000 ± .000      .000 ± .000     .455 ± .282     .500 ± .500      .000 ± .000          > .05 

The frequencies of flee, stretch attend, and attack (mean ± SE) during 
conditioned defeat testing are shown. Defeated (D) animals were treated with 0.0 
mg/kg, 0.3 mg/kg, 1.0 mg/kg, 3.0 mg/kg of mCPP and No Defeat (ND) animals 
treated with 0.0 mg/kg and 2.0 mg/kg of mCPP did not significantly differ in any 
category of behavior. Subjects received i.p. injection prior to conditioned defeat 
testing. 
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Table	  3.	  
	  
                  
Behavior   D  0.0 mg/kg   D 0.5 mg/kg   D 2.0 mg/kg   ND 0.0 mg/kg   ND 2.0 mg/kg    p value 
Flee          .400 ± .267     .091 ± .091   .200 ± .267     .200 ± .133        .000 ± .000          > .05 
 
Stretch     .400 ± .163     .182 ± .182    .200 ± .267     .000 ± .000        .000 ± .000         > .05 
Attend 
 
Attack      .000 ± .000      .273 ± .273   .200 ± .200     .556 ± .444        .375 ± .263         > .05 
The frequencies of flee, stretch attend, and attack (mean ± SE) during 
conditioned defeat testing are shown. Defeated (D) animals were treated with 0.0 
mg/kg 0.5 mg/kg, or 2.0 mg/kg of MDL 11,939 prior to social defeat. No Defeat 
(ND) animals were treated with 0.0 mg/kg or 2.0 mg/kg of MDL 11,939 before 
exposure to an aggressor’s empty cage. Subjects did not significantly differ in 
any category of behavior.  
 
 
Table 4. 
 
                 
Behavior  D 0.0 mg/kg   D 0.5 mg/kg   D 2.0 mg/kg     ND 0.0 mg/kg   ND 2.0 mg/kg     p value 
Flee       1 .182 ± 1.086  1.900 ± .824  1.455 ± .824     .000 ± .000        .625 ± .625         > .05 
 
Stretch      .000 ± .000     .300 ± .300    .273 ± .195     .000 ± .000        .000 ± .000         > .05 
Attend 
 
Attack       .000 ± .000      .000 ± .000   .000 ± .000     2.125 ± 1.716     .250 ± .250        = .027 
The frequencies of flee, stretch attend, and attack (mean ± SE) during 
conditioned defeat testing are shown. Defeated (D) animals were treated with 0.0 
mg/kg, 0.5 mg/kg, or 2.0 mg/kg of MDL 11,939 prior to conditioned defeat testing. 
No Defeat (ND) animals were treated with 0.0 mg/kg or 2.0 mg/kg of MDL 11,939 
before conditioned defeat testing. No defeat controls attacked more often than 
did defeat subjects. 
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APPENDIX B 
 

	  
	  

	  
	  
	  
	  
Figure 1.  Durations (mean ± S.E.) of submissive and defensive, aggressive, 
non-agonistic social, and nonsocial behavior are shown for a 5-minute test with a 
novel, non-aggressive opponent. Subjects received an injection of mCPP (0.3 
mg/kg, N=11; 1.0 mg/kg, N=11; or 3.0 mg/kg, N=11) or vehicle (N=11) 15 min 
before social defeat training.  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  



34	  
	  

	  
	  

	  
	  
Figure 2.  Durations (mean ± S.E.) of submissive and defensive, aggressive, 
non-agonistic social, and nonsocial behavior are shown for a 5-minute test with a 
novel, non-aggressive opponent. Defeated animals received an injection of 
mCPP (0.3 mg/kg, N=10; 1.0 mg/kg, N=11; or 3.0 mg/kg, N=10) or vehicle 
(N=11) 15 minutes before behavioral testing. Likewise controls received an 
injection of mCPP (1.0 mg/kg, N=8) or vehicle (N=8) 15 minutes before 
behavioral testing. * indicates significantly different than defeated, vehicle 
controls. ** indicates significantly different than defeated subjects. 
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Figure 3.  Durations (mean ± S.E.) of submissive and defensive, aggressive, 
non-agonistic social, and nonsocial behavior are shown for a 5-minute test with a 
novel, non-aggressive opponent. Defeated animals received an injection of MDL 
11,939 (0.5 mg/kg, N=11 or 2.0 mg/kg, N=10) or vehicle 30 minutes before social 
defeat training. Likewise, controls received an injection of MDL 11,939 (2.0 
mg/kg, N=8) or vehicle (N=9) 30 minutes before exposure to a resident 
aggressor’s empty cage. * indicates significantly different than defeated, vehicle 
controls. ** indicates significantly different than defeated subjects. 
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Figure 4.  Durations (mean ± S.E.) of submissive and defensive, aggressive, 
non-agonistic social, and nonsocial behavior are shown for a 5-minute test with a 
novel, non-aggressive opponent. Defeated animals received an injection of MDL 
11,939 (0.5 mg/kg, N=11 or 2.0 mg/kg, N=10) or vehicle (N=10) 30 minutes 
before behavioral testing. Likewise controls received an injection of MDL 11,939 
(2.0 mg/kg, N=8) or vehicle (N=8) 30 minutes before behavioral testing. * 
indicates significantly different than defeated, vehicle controls. ** indicates 
significantly different than defeated subjects. 
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APPENDIX C 
	  
	  

	  
	  
 
Figure 5. Proposed neural circuit underlying 5-HT1A, 5-HT2A, and 5-HT2C 
receptors role in conditioned defeat behavior. Social defeat activates 5-HT 
neurons in the dorsal raphe nucleus (DRN), in which in turn increases 5-HT 
release into the basolateral amygdala (BLA). 5-HT1A receptor activation in the 
BLA inhibits glutametergic projection cells causing a reduction in the acquisition 
of conditioned defeat behavior. 5-HT2A receptors may facilitate the acquisition of 
conditioned defeat in two separate ways. 5-HT2A receptor activation in the BLA 
may enhance activity of the glutametergic cells projecting to the central 
amygdala, causing an increase in the acquisition of conditioned defeat behavior. 
Also, 5-HT2A receptor activation in the BLA may cause desensitization of 5-
HT2A receptors on GABAergic interneurons and disinhibit glutametergic 
projection cell causing a reduction in conditioned defeat behavior. 5-HT2C 
receptor activation in the central amygdala on glutametergic projection cell may 
an increase the expression of conditioned defeat behavior. 
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