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Abstract 

            Soil sampling can help producers gain more accurate knowledge about soil nutrient 

properties and field-level characteristics. This information aids in the placement and timing of 

fertilizer application. Optimal input application may lower variable costs, increase economic 

returns, and moderate off-site environmental impacts of farming. Yet producer decisions to 

incorporate soil information into management practices and perceptions about the value of soil 

test information over time depends on a wide range of economic, social, and producer 

characteristics. Studies examining the value of soil information for optimal nutrient management 

may help inform producers considering adopting these technologies about the potential benefits 

of soil testing. This thesis provides two studies examining (1) the factors associated with the 

adoption of precision soil sampling and the length of time this information is perceived useful by 

cotton producers, and (2) the value of soil test information with regards to optimal potassium 

fertilizer management in cotton production over multiple growing seasons. 

Perceptions about the usefulness of soil test information over time depend on a variety of 

factors directly or indirectly related to input management. In the first study, the adoption and 

frequency of soil testing is examined as a function of off-farm, farm business, information 

sources, and operator characteristics using a Poisson hurdle regression model. Analyzing data 

from a survey of cotton farmers in 12 Southern states, the length of time producers perceived soil 

test information to be useful were influenced by farmer experience, land tenure, and the use of 

other information gathering technologies such as Greenseeker® and electro conductivity. 

In the second study, optimal potassium (K) management with information about fertilizer 

carryover was analyzed using a dynamic programming model. Monte Carlo simulation results 

suggest the information site-specific technologies provides with respect to residual fertilizer 
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carryover effects of K are greatest when a producer is able to identify the magnitude of soil 

carryover capacity and incorporate this information to manage K. The information obtained from 

this research may provide insight for cotton producers, agribusiness firms, and agricultural 

service providers about the perception and potential benefits of soil sampling information to 

manage inputs in cotton production.    
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Precision agriculture (PA) technologies provide producers more efficient methods to 

collect, manage, and interpret information. More accurate information about crop yield response, 

soil properties, and growing conditions can increase cost savings and improve profit margins 

(Swinton and Lowenberg–DeBoer, 1998). Precision agriculture technologies can also 

complement environmental conservation efforts by enhancing water quality and soil fertility by 

reducing nutrient runoff (Bongiovanni and Lowenberg-DeBoer, 2004); moderating the use or 

changing the mix of fertilizers and pesticides (Griffin et al., 2004); or improving tillage and 

chemical application efficiency using global positioning (GPS) guidance systems and variable 

rate applicators (Fawcett and Towery, 2002). For example, in 2006, the National Resource 

Conservation Service (NRCS) reported that if GPS guidance systems were used on 10% of the 

planted crop acres in the United States, herbicide use would decrease by 1.89 million liters per 

year and insecticide use would decrease by 2 million kilograms per year (NRCS, 2006). 

Precision agriculture technologies can also moderate direct and indirect energy costs by lowering 

the number of tractor trips across fields (Griffin, Lambert, and Lowenberg–DeBoer, 2004; 

Daberkow, Lambert, and Musser, 2007), with fuel savings estimated to be as much as 60.57 

million liters per year (NRCS, 2006). 

Yet despite the potential private and social benefits typically associated with precision 

agriculture, adoption rates of key components like variable rate management technologies (VRT) 

remain low. According to the USDA‟s Agricultural and Resource Management Survey (ARMS), 

15% of the 30,946 ha corn acres planted in 2005 were managed using GPS-reference soil maps, 

and 12% of the total corn hectares planted were managed using some type of variable rate 

technology (ARMS, 2005). For cotton production, adoption rates appeared even lower according 

to national surveys. Of the 4,144 ha of cotton acres planted in 2003, GPS-based soil maps were 
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made on 6% of these hectares, and inputs were managed using VRT on 5% of the total cotton 

hectares planted (ARMS, 2003).   

Some federal conservation programs provide cost-share incentives to encourage adoption 

of information gathering and variable rate management technologies. Under these voluntary 

nutrient management programs, producers collect information about soil and yield variability 

using precision soil sampling, conducting electroconductivity tests, or monitor yields with GPS 

before applying nutrients. Cost reimbursements for these programs typically range between 

$19.76 per ha (in Alabama, 2009) to $64.22 per ha (in Tennessee) (NRCS, 2010). Precision 

farming program eligibility requirements under federal and state programs such as the 

Environmental Quality Incentives Program (EQIP), the Conservation Stewardship Program 

(CSP), and the Agricultural Management Assistance (AMA) program familiarize producers with 

the potential benefits of precision input management while reducing the perceived risk producers 

may associate with technology adoption. Environmental and financial benefits typically 

associated with these programs may also be significant. According to the USDA‟s Final Benefit-

Cost Analysis for EQIP, producers who adopted nutrient management conservation practices 

(e.g., NRCS conservation practice 590) applied significantly less nitrogen (27.97 kg/ha), 

potassium (5.59 kg/ha), and potash (14.54 kg/ha) compared to non adopters, leading to corn 

fertilizer input cost savings of $30.41 per ha for nitrogen and $5.93 per ha for potassium (USDA, 

2010).  

The value of soil information for managing nutrients has been studied in conjunction with 

federal cost-share support programs, along with a variety of crops, fertilizers, and field 

conditions (e.g., Perrin, 1976; Adams et al., 1983; Schnitkey et al., 1996; Watkins et. al., 1998; 

Bongiovanni and Lowenberg-Deboer, 2000; Bongiovanni and Lowenberg-Deboer, 2001; Hurley 
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et al., 2001; Lambert et al., 2003; Lambert et al., 2007). Previous studies examining the returns 

to management knowing yield response, soil dynamics, and input placement and timing are 

numerous. Yet the profitability of site-specific nutrient application of phosphorous (P), nitrogen 

(N), and potassium (K) based on soil test information varies according to research conditions, the 

crops studied, and in the case of on-farm trials, the managerial capability of producers and 

farm/field heterogeneity. The estimated returns to soil test information may affect producer 

perceptions of soil sampling as an effective management tool and hence the decision to adopt 

and continuing using soil testing, as potential profitability has been shown to influence the 

adoption decision (Batte and Arnholt, 2003; Daberkow and McBride, 2003; Roberts et al., 2004; 

Adrian et al., 2005; Walton et al., 2008; Walton et al., 2010). Yet in addition to prospects of 

increased returns, there are a number of factors explaining why producers may adopt and 

continue using precision soil testing. However, few studies have identified the factors 

influencing how long producers perceive soil test information to be useful after collecting grid or 

zone soil tests. 

Anecdotal evidence suggests that precision soil sampling (PSS) information has a useful 

life of three to four years before information needs to be updated. The length of time a producer 

chooses between soil testing may be driven by a number of factors, including the extent to which 

the producer uses other PA technologies in conjunction with PSS, the information sources used 

to gather PSS information, and the economic value added in terms of increased profit margins 

from using soil information to manage inputs. Following optimal input policies, a producer will 

apply field information to manage nutrients so long as the marginal value of information is 

greater than the marginal costs of collecting, managing, and implementing that information. 
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Thus, in addition to its potential influence on adoption decisions, the perceived value of soil 

sampling information may affect how long a producer waits before updating soil information. 

This two-part thesis identifies (1) the factors influencing the adoption and re-test decision 

of precision soil sampling information for cotton producers, and (2) the economic returns from 

using information about residual carryover capacity of soil to manage potassium. The first study 

uses a Poisson hurdle regression model to identify the off-farm, operator, business, and 

information sources influencing the decision to adopt precision soil sampling and subsequently 

the time period between updating soil test information. Understanding the factors contributing to 

the perceived usefulness of soil test information (as measured by the time between which 

producers conduct soil tests) may provide guidance to agricultural service providers with respect 

to product marketing, and may also augment Extension outreach efforts to provide information 

about the benefits and costs of soil sampling, nutrient management, and optimal time period 

between soil tests. 

The second study analyzes a multi-year cotton yield response and K carryover 

experiment using dynamic programming to determine the benefits from optimal K fertilizer 

management in lieu of information about K soil carryover. The results suggest that proper 

identification of soil nutrient properties and fertilizer carryover may result in substantially higher 

expected profits over a multi-period planning horizon. Monitoring the cycle of potassium flow 

by soil testing over several years could provide valuable information about potassium carryover 

potential of soils, which in turn could lower input costs and increase profit over an intermediate 

planning horizon. Quantifying the value of soil sampling information as measured by increased 

economic returns may also provide information to cotton producers about the benefits of soil 

sampling with respect to potassium management when K carryover is significant. 
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Abstract 

Precision soil sampling helps farmers identify nutrient variability within fields to optimize input 

management. Anecdotal evidence suggests that soil test information has a useful life of 3 to 4 

years before information needs to be updated. However, perceptions about the perceived 

usefulness of soil test information over time may depend on a variety of factors, including field 

variability, farmer experience and education, farm size, Extension recommendations, and other 

factors indirectly related to input management. In 2009, a survey of cotton farmers in 12 

Southern states collected information about the use of precision soil sampling technologies. A 

regression model including farm operator and business characteristics, use of precision 

agriculture technologies, and information sources analyzed (1) the adoption of soil testing 

technologies by cotton farmers and (2) the number of years adopters perceived soil test 

information to be useful. A number of farm operator and business characteristics were associated 

with the length of time producers perceived the information they obtained from soil tests to be 

useful, including farmer experience, land ownership, and the use of other information gathering 

technologies such as Greenseeker® and electroconductivity.   
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Introduction 

 

Nutrient management decisions for cotton producers involve trade-offs among a number 

of crop, growing environment, and economic factors. These factors include plant genetics, 

weather, input and output prices, soil fertility heterogeneity, pest outbreaks, and other field 

characteristics. Determining optimal nutrient management policies is challenged by the inherent 

complexity and numerous interactions surrounding input management. Yet, identifying optimal 

nutrient management policies over a planning horizon is important for maintaining soil fertility, 

increasing profit margins, and reducing variable input costs. To gain a more comprehensive 

understanding of soil variability, crop nutrient requirements, and expected returns, producers 

often seek additional information. Precision soil sampling supplements a broader array of 

knowledge gathering technologies that can increase information about production and may be 

useful in making more informed nutrient management decisions.  

Precision information gathering technologies that aid field data collection and site-

specific referencing include personal digital assistants (PDAs) and global positioning (GPS) 

devices, yield monitors, aerial and satellite imagery, precision soil sampling technologies, and 

other-on-the-go sensors. Precision soil sampling technologies assist producers in identifying soil 

nutrient spatial variability for macro and micro-nutrients. Grid soil sampling, in which a field is 

systematically divided into equal-sized grids with a recommended 2.5 samples per ha (5 to 10 

cores per sample) (Ferguson and Hergert, 2009) and zone sampling, in which historical 

knowledge of a field is used to partition the field into different management zones, are different 

from traditional methods of soil sampling by providing within-field nutrient levels as opposed to 

whole field nutrient levels. These methods may provide a more accurate representation of 

nutrient variability in fields and may help producers implement site-specific fertilizer 
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applications. Producers invest in precision agriculture (PA) technologies when the expected 

returns from information collection and implementation are greater than the fixed costs of 

adoption and variable managerial costs. Several studies have considered the factors related to the 

adoption of PA technologies and their continued use (e.g., Batte and Arnholt, 2003; Daberkow 

and McBride, 2003; Roberts et al., 2004; Walton et al., 2008; Walton et al., 2010). Ease-of-use, 

usefulness, and increased profits are common reasons why farmers adopt and continue to use PA 

technologies (Daberkow, 1997; Roberts et al., 1999; Adrian et al., 2005). Another reason for 

adoption may include the prospect of more reliable information newer technologies can provide 

compared to existing practices. While expectations about the profitability and usefulness of PA 

technologies may encourage producers to adopt soil testing, there is little empirical evidence 

explaining how long producers perceive soil information to be useful before they decide to re-

test. 

The length of time a producer chooses between taking soil samples is influenced by a 

number of factors, including familiarity with other PA technologies (e.g., yield monitoring, 

remote sensing, or variable rate technologies), the public or private information sources used by 

producers to gather knowledge about new technologies, and the inherent soil variability of fields. 

Direct experience with other PA technologies may offset unfamiliarity with processing and 

applying soil sampling information, which may correspond with improved synthesis of soil 

sampling data, its applicability, and an increased time period between testing. But over time, 

producer perceptions about the length of time soil test information is useful may change as 

experience with soil sampling technologies accumulates and information about within-field soil 

variability is updated.  
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This research identifies the farm business, operator, off-farm characteristics, and 

information sources used by producers that influence precision soil sampling adoption and the 

period of time soil test information is perceived to be useful by cotton farmers. As producers 

realize economic benefits from PA technologies, they may also demand more accurate, real-time, 

site specific information. Understanding the factors contributing to the perceived usefulness of 

soil test information as measured by the time producers wait between soil tests may provide 

guidance to agricultural service providers with respect to product marketing or farm visits. 

Findings may also help Extension tailor outreach efforts concerning the optimal timing between 

soil sampling. To the extent that soil tests are required by some conservation programs (e.g., the 

United States Department of Agriculture‟s (USDA) Environmental Quality Incentives Program 

and the Conservation Stewardship Program), information about the factors related to producer 

willingness to comply with prescribed nutrient management plans may also be helpful.  

 

Data 

The 2009 Cotton Incorporated Precision Agriculture survey was mailed to 13,783 

producers in Alabama, Arkansas, Georgia, Florida, Louisiana, Mississippi, Missouri, North 

Carolina, South Carolina, Tennessee, Texas, and Virginia. Using Dillman‟s (1978) general mail 

survey procedure, the questionnaire was mailed February 20, 2009 with a reminder post card sent 

two weeks later and a follow-up mailing to producers who had not responded sent on March 27, 

2009. The list frame comprised cotton producers in these states, and was provided by the Cotton 

Board (Memphis, Tennessee, November, 2009). The survey included questions about producer 

adoption of PA technologies, farm and operator characteristics, and the number of seasons 

producers waited between soil tests. The response rate was 12.5% (1,723). Mooney et al. (2010) 
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provide summary of the key details of the survey. Of the cotton farmers responding, 40% (652) 

had adopted precision soil testing, and the average time between soil tests was 2.5 years (Figure 

1). 

Post-stratified survey weights were estimated to align the survey sample with the number 

of cotton farmers enumerated by the USDA‟s 2007 Agricultural Census (USDA, 2007). While 

the survey weights do not adjust for non-response, post-stratified weights are useful for 

calibrating the survey data such that the response pattern of respondents closely approximates the 

distribution of the population of cotton producers (see Lohr, 1999 for a review). The weights 

used in this study are „raking‟ weights suggested by Brackstone and Rao (1976), which are 

estimated by iteratively normalizing cell weights by the Cartesian product of the marginal row 

(cotton hectares farmed size classes) and column (state cotton farm numbers) totals from the 

Agricultural Census cotton farm population. The weights are classified in a matrix along two 

dimensions: the number of cotton farms belonging to one of six size classes (i = .404 – 40.06, 

40.47 – 100.77, 101.17 – 201.94, 202.34 – 404.28, 404.68 – 808.97, 809.37+ cotton ha) and the 

number of cotton farms in each state surveyed (h = Alabama, Arkansas, Missouri, Georgia, 

Virginia, South Carolina, North Carolina, Louisiana, Tennessee, Texas, Florida, and 

Mississippi), yielding 72 stratum. At the t-th iteration, the weight associated with the (i,h)th cell 

are the population of cotton farms (N) enumerated in the sampled states normalized by the 

number of farms (n) in the ih-th stratum (e.g., wih = Nih/nih), where Nih = nih wih. The raking 

algorithm minimizes the differences between the row-column sums of the cells with the target 

values of the farm size and state cotton farm numbers. The calculation rescaling the rows (e.g., 

cotton hectares farmed size classes) is:  
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(1)               
    

   
   

    
  

   

.                      

 

The calculation rescaling the columns (number of cotton farms in each state) is, 

 

(2)                
    

   
   

    
  

   

,          

 

where t indexes the iterations, and b and c are the target row (the 2007 Agricultural Census total 

for each cotton farm size class in all states combined) and column totals (the 2007 Agricultural 

Census total number of cotton farms for all farm size classes in each state) respectively. The 

algorithm continues until convergence; e.g., the difference between the row and column sums of 

the matrix and the numerical values of b and c is small (for example, .00001). By construction, 

the sum-product of the weights with the survey counts in each size class-by-state category 

closely approximate the Agricultural Census 2007 farm numbers in the states and size classes 

surveyed. Thus, each respondent in a given farm size class and state receive the same weight. By 

incorporating information about the cotton farm population into the survey design, the leverage 

attributed to respondents belonging to different size classes and different states may be 

moderated or increased, depending on the characteristics of the entire population and the survey 

response pattern.  

 

Conceptual Model 

The decision to adopt soil testing and to retest following some period are examined using 

a hurdle count model (Cameron and Trivedi, 1998, p. 124). Hurdle models are typically applied 
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to attend to problems arising from sample selection bias and the discrete, non-negative nature of 

the outcome (i.e., the number of years soil test information is perceived to be useful). In the 

survey, a producer must have adopted grid or zone soil sampling to answer how long soil test 

information was perceived to be useful before retesting. Thus, the first stage of the model (the 

“hurdle”) explains the decision to adopt precision soil testing using a logit regression that models 

the adoption decision (1 = yes, 0 = no) to use precision soil sampling. Given the decision to 

adopt precision soil testing (a binary outcome), the number of years between tests (a positive, 

discrete variable; k = 1,2,…,K) is subsequently modeled using a Poisson regression.  

A farmer is hypothesized to maximize expected (discounted) profits over a time horizon, 

subject to input and commodity prices and technology constraints. The producer must weigh the 

benefits and cost of incorporating precision agriculture technologies into their current operation. 

There are often additional variable and fixed costs to consider in the initial period such as the 

implementation of an input management plan based on soil test information and the collection 

and storage of data. These cost differences also affect profits.  

Let the expected utility of profit (π) from adopting (not adopting) precision soil sampling 

(PSS) technology at the beginning of time period    to be E[ (   
   )] (       

      ). Define the 

latent utility producer i receives from adoption (AD) of precision soil sampling as   
    

       
              

      . Producers adopt soil sampling when   
    > 0 (Walton et al. 

2008).   

Given the decision to soil test, the producer subsequently chooses the amount of time 

until retesting. It is hypothesized that the time period between soil tests is also consistent with 

profit maximization. Let E[          
        represent the expected utility from profits k 
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seasons after the initial soil test and             
       the utility of realized profits in k-1 

seasons after the initial soil test in   .  Defining  

 

(3)                             
              

   
                    

      , 

 

as the utility gained from retesting (RT) k periods after the previous soil test, a profit maximizing 

producer will retest soil when the realized utility from k-1 season is greater than the expected 

utility from waiting another period between soil tests;   
     . 

The unobservable latent variables   
    and   

    are hypothesized to be functions of 

observable covariates, xi, (including farm household and business attributes, operator 

characteristics, and possibly off-farm factors), and unknown parameters, βAD  and αRT. The 

decision to adopt soil testing is modeled as a linear random utility function (McFadden, 1974): 

 

(4)             
        

       
  ,        

 

where   
   is a random disturbance term. Utility is unobservable, but the decision to adopt can be 

modeled with a dichotomous variable, such that   
   = 1 if   

    > 0 and   
  = 0 otherwise. The 

probability of adopting precision soil sampling is therefore: 

      

(5)          
            

   
              

                        

        
       

   ] 
 

                  
   ) . 
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After adoption, the producer decides how long to wait between tests before updating soil 

test information. Because the choice set is observed as years (a discrete, countable decision), the 

decision is appropriately modeled using a count regression model such as the Poisson or negative 

binomial models (Cameron and Trivedi, 1998). Typically, the log link function is used to model 

expected counts, which implies   
         

     (Madalla, 1983, p. 53; Greene, 1993, p. 676-

677; Schabenberger and Pierce, 2002, p. 399; Cameron and Trivedi, 2005, p. 668). The decision 

how long to wait between soil tests is   
    if   

   < 0. The conditional probability of waiting 

k years before re-testing after adopting precision soil sampling is therefore: 

 

(6)           
           

     
       

    
                

       

   
 

 

              
       

            
     

     

          
            

 

 

The model was estimated using full information maximum likelihood estimation (FIML). 

The statistical software program STATA® 11 was used to run the model with the command 

hplogit. A heteroskedastic robust covariance matrix was estimated using the survey weights 

(Wooldridge, 2004), which was subsequently used to make inferences about the covariates 

explaining adoption of soil sampling and the period between testing.     

 

Empirical Model 

The variables hypothesized to be associated with the precision soil test adoption decision 

and the length of time between soil tests are summarized as four categories: 1) farm operator 

characteristics, 2) information sources, 3) information gathering/processing technologies, and 4) 
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off-farm and regional attributes. Definitions of the covariates, their hypothesized signs, and the 

survey sample and weighted means are summarized in Table 1.   

 

Farm Operator Characteristics 

 

The natural logarithm of the average cotton hectares grown in 2007 and 2008 (ACRES) 

was hypothesized to be positively associated with the decision to adopt soil testing, but 

negatively related to the years between testing. The more acres a producer manages, the more 

likely soil fertility may vary, increasing the difficulty of efficient input management. Producers 

may therefore be more likely to invest in precision soil sampling technologies to better 

understand soil variability, but soil information may also need to be updated more frequently. 

The proportion of owned land to total farmland operated (LANDTEN) was expected to be 

positively correlated with PSS adoption and the period between sampling because operators who 

own relatively more land may be concerned about decisions affecting the future soil fertility and 

quality of their cropland. These operators may also consider management decisions over a longer 

time horizon and may take more time until updating soil information. Operators reporting higher 

shares of income from farming (INCFARM) were expected to be more likely to adopt precision 

soil sampling technologies and test more frequently. Producers with more farming experience 

(FARMCOMMIT), as measured by years farming divided by operator age, were hypothesized to 

be less likely to adopt precision soil sampling technologies but more likely to extend the time 

between soil tests. Previous studies identifying the factors affecting PA technology adoption 

decisions have included variables such as age, years farming, experience, and education 

(Daberkow and McBride, 2003; Sevier and Lee, 2004; Paxton et al., 2010). Including age and 

experience, for example, in the same regression may introduce redundant information and 
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possibly multicollinearity. The variable FARMCOMMIT constructed in this study is a proxy for 

the knowledge capital gained with increased years and commitment to farming. The variable 

provides a way to measure knowledge capital without having to include some combination of 

age or experience in the same model, thus reducing problems that could arise due to collinearity. 

Experienced farmers content with current management plans may perceive it too costly to 

change production practices and therefore may resist adoption of new technologies (Batte et al., 

1990). And after adoption, producers may more easily understand how information relates to 

particular fields, which may correspond with longer lapses between soil testing. Operators with a 

bachelor‟s degree (BS) were expected to be more likely to adopt soil testing and to wait longer 

periods between soil tests because higher levels of education may facilitate the synthesis of 

complex information obtained from precision soil sampling (Batte et al., 1990). The percentage 

of non-cotton crop hectares to total hectares of crops farmed (OCROPS) and soil fertility 

variability (YVAR) of fields (as measured by the difference in fields‟ third most productive and 

third least productive areas) were hypothesized to be positively related with adoption of soil 

testing but negatively correlated with the time period between tests. Greater yield variability may 

encourage the adoption of information gathering technologies like soil sampling but also 

encourage more frequent testing.   

 

Information Sources 

Access to and use of information sources may influence the likelihood of adopting soil 

sampling and the time period between soil testing. Information from crop consultants 

(INFOCONS), trade shows (INFOSHOWS), and the use of consultants or dealers to apply inputs 

(APPCONS) were hypothesized to be positively correlated with the adoption of soil testing but 
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negatively associated with the time period between soil tests. Field operation consultants, or 

those working for private service providers, may have financial reasons for promoting or 

marketing soil tests and encouraging producers to test soils more frequently. The expected signs 

associated with information gathered from other farmers (INFOOTH) and university Extension 

services (INFOEXTEN) were ambiguous. Soil test adoption and soil testing frequency may be 

related to the field characteristics of a farm. Therefore, it is hard to definitively surmise the 

influence other farmers and Extension services would have on the adoption and frequency of soil 

testing, given that information derived from these sources will depend on differing field 

characteristics. Producers pursuing media outlets, such as the internet or other news sources 

(INFOMEDIA), for information about PA may be more likely to adopt soil testing and increase 

the time period between soil tests. In addition to the usual television and radio information 

outlets, the internet has become a fast-growing avenue through which communication and 

learning materials are acquired (Dimmick et al., 2004). Operators who frequently use the internet 

may already be familiar with computer technologies that might complement soil test 

interpretation and management. This complementary information used in conjunction with PSS 

may increase the time period between tests. The number of farm suppliers (FARMSUPPLY) 

located in a county may also be positively correlated with the soil test adoption decision, but 

negatively associated with the time period between soil testing. Access to technologies and 

technical support may increase the likelihood operators adopt soil test technologies but decrease 

the time period between tests.  
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Site-Specific Information Gathering Technologies 

The use of aerial imagery (IMAGE), cotton yield monitors to generate yield maps 

(YMMAP), GPS/PDA handheld devices (HANDHELD), soil electroconductivity technologies 

(ELECTRIC), Greenseeker® technology (GREENSEEK), and the use of computers for farm 

management decisions (COM) were hypothesized to be positively associated with the likelihood 

of soil test adoption and the time period between testing. The use of handheld GPS/PDA devices 

may complement precision soil sampling, increasing the efficiency of field data information 

collection and storage (Walton et al., 2010) and thus increasing soil test adoption rates. Yet, the 

use of precision technologies with PSS may also provide complementary information about soil 

quality, which could moderate soil testing frequency. 

The use of a variable rate technology plan (VRTPLAN) was excluded from the adoption 

equation but included in the time-between-testing equation. In the survey, cotton producers could 

only respond to the question concerning the use a variable rate fertilizer management plan if they 

had conducted soil sampling tests. Thus, the variable is not an accurate measure for explaining 

soil test adoption. VRTPLAN was hypothesized to be negatively correlated with the time period 

between soil tests.  

 

Off Farm Regional Attributes 

Six regional variables from the USDA‟s Economic Research Service (Table 1, USDA 

Farm Resource Regions, 2007) were included in the adoption and retesting period model. The 

Southern Seaboard was the reference region. Five other regions including Heartland 

(HEARTLAND), Prairie Gateway (PRAIRIE), Eastern Uplands (EASTUP), Fruitful Rim 

(FRUITFUL), and Mississippi Portal (MISSPORT) regions were included to control for 
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geographic differences in growing seasons, weather conditions, and input costs (Khanna, 2001).  

An orthogonal restriction was used to code these binary variables; therefore the coefficients 

associated with each region are interpreted as the difference between the regional average and 

the population average of the surveyed states (Lentner and Bishop, 1993). 

 

Model Specification and Analysis 

Specification tests were conducted to determine the appropriateness between several 

alternative models describing the PSS adoption decision and years between soil testing. Vuong‟s 

(1989) statistic was estimated to compare the zero-inflated Poisson (ZIP) model with a standard 

Poisson regression. A characteristic of the Poisson model is its tendency to display 

overdispersion due to the model‟s implicit assumption that the variance equals its mean (Greene, 

2000, p. 884). Zero inflated count and hurdle models provide a way to model count data with 

many excess zeros while also allowing for overdispersion. The Vuong test is useful for 

comparing the two-non nested models. The null hypothesis of the Vuong test is that both models 

have similar measures of goodness-of-fit. The alternative hypothesis is that the ZIP‟s goodness-

of-fit is statistically smaller than the standard Poisson. To test this hypothesis, likelihood ratio 

tests were estimated to determine the goodness-of-fit for the Poisson-hurdle model (PHM) and 

the ZIP models. The Poisson hurdle model differs from the zero-inflated Poisson model because 

the hurdle model parameters for the binary portion of the PHM can be estimated separately from 

the nonzero count portion of the model. The likelihood ratio statistic (LR) was calculated as LR 

= 2(log-likelihood unrestricted – log-likelihood restricted) with k - 1 degrees of freedom 

(Wooldridge, 2004). Lastly, the negative binomial logit hurdle model was compared to the 

Poisson hurdle model. The negative binomial logit hurdle model relaxes the assumption 
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maintained by the Poisson specification that the mean and variance are equal. When the 

overdispersion coefficient of the negative binomial regression is not different from zero, the 

negative binomial model reduces to the Poisson hurdle model (Freese and Long, 2006).  

Variance inflation factors (VIFs) were used to detect multicollinearity. Multicollinearity 

arises when two or more regressors are highly, but not perfectly, correlated. Problems include 

coefficients with unexpected signs, high coefficients of determination, and low t statistics 

(Greene, 2000). In general, VIFs greater than ten suggest there may a problems arising from 

multicollinearity, and inference about covariates may be compromised (Chatterjee and Price, 

1991).   

 

Coefficient Interpretation  

The log odds ratio (LOGODDS) was used to determine the effect covariates had on the 

odds of a cotton producer adopting precision soil sampling. The log odds ratio for the logit 

regression model is, 

 

(7)                      
     

     

       
     

       
    ,        

 

where      
      is the probability a cotton producer adopted precision soil sampling, and   is 

the estimated parameter of covariate j.   

For the Poisson regression model, the coefficients measure the effect a covariate had on 

the number of years between soil retesting. To interpret the Poisson coefficients, the average 

response was calculated for all individuals following Cameron and Trivedi (1998, p. 80). The 

Poisson model coefficients are reported (Table 2), and the marginal effects are discussed with 
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respect to the variables influencing the perceived years of usefulness. The marginal effects of the 

Poisson count model for continuous explanatory variables were estimated as, 

 

(8)     

 

 
 

          

    
    

 

   

   

  
 

 

where    is the average years precision soil sampling information is considered useful by 

producers who adopted precision soil sampling, and α is the estimated parameter associated with 

covariate j (Cameron and Trivedi,1998). For discrete explanatory variables, the marginal effects 

were estimated as, 

 

(9)      
             

             
          

          

 

in which d is a covariate that takes on values of 0 or 1. Thus, a producer with characteristic j 

would, on average, wait          more years before retesting.  

 

Results 

Results from the 2009 survey showed that of the cotton farmers responding, 40% (652) 

had adopted precision soil testing. Of those producers indicating they currently used or who had 

previously adopted grid or zone soil sampling, 14% (258) responded that they had adopted GPS 

technology to collect soil sampling information. 
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The first-stage logit and second stage Poisson models appear to explain adoption and the 

period between soil tests as a function of farm operator, business, and regional attributes. In 

regards to the adoption decision, the logit model correctly predicted 94.1% of actual producer 

responses. The null hypothesis that all coefficients (       ) were zero was rejected at the 1% 

level (Wald = 197, d.f. = 26).  The pseudo R
2
 measure was 0.52. The VIFs suggested collinearity 

was not serious for the logit model (average 2.2; maximum 8.2) or the Poisson model (average 

1.9; maximum 7.1).      

The Vuong test statistic, comparing the zero-inflated Poisson (ZIP) model to the standard 

Poisson model was 8.24, indicated the ZIP model was favored over the standard Poisson model. 

This suggests some gains in efficiency with respect to censoring zero counts. The likelihood ratio 

comparing the ZIP to the Poisson hurdle specification was 18,180 (13 degrees of freedom), 

which suggests that the Poisson hurdle model is preferred to the ZIP specification. Lastly, the 

negative binomial hurdle model‟s overdispersion parameter was not different from zero, 

suggesting overdispersion was not an issue. Therefore, the Poisson-hurdle model was used to 

explain the adopt retesting decision of cotton producers. 

 

Precision Soil Sampling Adoption   

Characteristics associated with the likelihood of adopting soil sampling and the time 

period between soil tests are summarized in Table 2. Operators obtaining information from trade 

shows, the use of a consultant to apply inputs, the generation of a yield map using a yield 

monitor, and the use of electroconductivity devices were positively associated with soil sampling 

adoption. Farmers using information from trade shows were about two (= e
0.541

) times more 

likely to adopt PSS than producers who did not pursue information about PA technologies from 
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this source. The use of private consultants to apply inputs also increased the odds of a producer 

adopting PSS by a factor of 20 (= e
2.964

). These positive results could be because private 

consultants and companies attending trade shows may generate financial benefits from 

producers‟ adoption of PSS technologies. Promoting soil test information may be a key 

component of their marketing plans. The use of a yield monitor to generate a yield map and the 

use of electroconductivity devices were positively associated with the adoption decision, 

increasing the odds a cotton producer would adopt PSS by about six for the former (= e
1.772

) and 

11 (= e
2.393

) for the latter. These results suggest that producers making a yield map using a yield 

monitor may recognize the managerial benefits of soil sampling. Additionally, producers already 

using technologies that may supplement PSS information in nutrient management may be more 

accustomed with information gathering technologies and comfortable adopting PSS technology.  

Alternatively, the use of Greenseeker® technology was negatively correlated with soil 

test adoption, and was associated with a decrease in the odds a cotton producer adopted PSS by 

0.10 (= e
-2.290

). This result suggests cotton farmers who used precision agriculture technologies 

that provide information that complemented precision soil sampling data were less likely to use 

soil sampling technologies. 

 

Years Between Soil Testing 

The number of years between soil testing increased with land tenure (hectares 

owned/hectares operated), farmer experience, the use of electro conductivity devices, and 

Greenseeker® technology. Producers with more farming experience may be more familiar with 

field soil conditions and nutrient variability; a one year increase in experience for a producer 

would increase the years between testing by 2, while a one percent increase in land tenure would 
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increase years between testing by 0.82 years (Table 2). The positive correlation with the time 

between re-testing and these factors suggest that operators with more experience and a greater 

percentage of owned to operated land may understand soil and field variability to an extent that 

requires less soil testing with respect to fertility management. Interest in newer technologies was 

also positively correlated with longer periods between grid or zone soil testing. The use of 

electro conductivity and Greenseeker® technologies increased the time between soil testing by 

1.3 (= e
0.295

) and 2 (= e
0.692

) years respectively. Thus, there appears to be some degree of 

substitution between the information acquired from precision soil testing that is often considered 

an “entrance” technology (Walton et al., 2008), and the information generated from newer 

sensor-based technologies like Greenseeker® or electroconductivity. 

Farm size and adoption of a variable rate fertilizer management plan based on GPS-

referenced soil sample information were associated with more frequent soil testing. A 1 hectare 

increase in farm size decreased the time between soil tests by 0.35 years and the use of a variable 

rate plan by a producer decreased the length by 0.66 years (= e
-0.407

). This result suggests that 

farmers using a VRT plan for production management decisions may be inclined to test more 

frequently to update soil information for increased input application effectiveness. 

 

Conclusions 

The adoption of precision soil testing by cotton farmers in the Southern United States and 

the perceived usefulness of soil test information over time were analyzed using a Poisson-hurdle 

regression model. Under this model, a profit maximizing producer must have adopted soil testing 

to subsequently decide on the years between soil testing. In order to moderate or increase the 

leverage attributed to respondents in different size classes depending on the characteristics of the 
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entire population, survey post-stratification weights were estimated to align the survey sample 

with the number of cotton farmers enumerated by the USDA‟s 2007 Agricultural Census. The 

results suggest that operators obtaining information from trade shows, the use of a consultant to 

apply inputs, the generation of a yield map using a yield monitor, and the use of 

electroconductivity devices were positively associated with soil sampling adoption. 

Subsequently, of those farmers who did adopt soil testing, land tenure, farmer experience, the use 

of electrical-conductivity devices, and Greenseeker® technology increased the number of years 

between soil testing. These results suggest that producers already using technologies that 

supplement PSS information may be more likely to adopt PSS technology. Additionally, there 

appears to be some degree of substitution between the information acquired from precision soil 

testing and the information generated from newer sensor-based technologies, resulting in longer 

periods between soil testing.  

This research builds upon previous precision agriculture technology studies in regards to 

the factors affecting the adoption of precision grid or zone soil sampling, but it also provides 

insight on the perceptions of cotton producers about the length of time soil sampling is useful. 

The lack of literature regarding the length of time PSS is perceived useful in cotton production 

makes this a practical study for agriculture service providers, Extension services, and cotton 

producers. In regards to product and service marketing, understanding the factors contributing to 

the perceived usefulness of precision soil test information may provide guidance to industry and 

agribusiness firms. Based on the results from this study, agribusiness firms and trade-shows 

sponsors may be inclined to target farmers already using precision technologies that complement 

PSS. Furthermore, this information may help conservation program managers better understand 
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producer willingness to comply with prescribed nutrient management plans and may help 

Extension programs tailor outreach efforts about optimal timing between soil sampling. 
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Table 1. Variable Definitions, Hypothesized Signs, and Means in the Precision           

   Soil Sample Adoption and Perceived Years Useful Equations 

Variable Definition Hypothesized 

Sign 

Mean 

adopt years  

useful 

un-

weighted 

Weighted 

Farmer Characteristics:         

ACRES Average cotton acreage 

grown in 2007 and 2008 

+ – 561.157 

(0.032)
1
 

379.934 

 (0.044) 

LANDTEN Percentage of owned land 

to total land farmed 

+ + 0.343 

(0.011) 

0.368  

 (0.014) 

INCFARM Percentage of 2007 

taxable household income 

from farming  

+ – 0.743 

(0.009) 

0.694 

(0.012) 

FARMCOMMIT Years farming divided by 

farmer age 

– +   0.548 

(0.005) 

0.543 

(0.006) 

BS 1 if farmer had a B.S. 

degree
2
 

+ + 0.909 

(0.009) 

  0.898 

(0.011) 

OCROPS Percentage of non-cotton 

acres to total farmed acres 

+ – 0.208 

(0.009) 

0.216 

(0.012) 

YVAR Difference in average 

yields between the most 

productive 1/3  and the 

least productive 1/3 of a 

typical field 

+ – 5.455 

(0.089) 

5.390 

(0.103) 

Information Sources:      

INFOCONS 1 if used information from 

a crop consultant 

+ – 0.319 

(0.015) 

0.308 

(0.016) 

INFOEXTEN 1 if used information from 

Extension  

+/– +/– 0.399 

(0.015) 

  0.390 

(0.017) 

INFOOTH 1 if used information from 

other farmers 

+/– +/– 0.606 

(0.015) 

0.602  

(0.017) 

INFOSHOWS 1 if used information from 

trade shows 

+ – 0.343 

(0.015) 

0.336 

(0.017) 

INFOMEDIA 1 if used information from 

the media 

+ + 0.479 

(0.016) 

0.484 

(0.018) 

FARMSUPPLY Number of farm input 

suppliers in the region 

+ – 7.657 

(0.290) 

7.937 

(0.317) 
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APPCONS 1 if farmer used a 

consultant or dealer to 

apply inputs 

+ – 0.151 

(0.011) 

0.138 

(0.012) 

Information Technologies:      

IMAGE 1 if used aerial imagery + + 0.065 

(0.008) 

0.056 

(0.007) 

YMMAP 1 if used a yield monitor 

and generated a yield map  

+ + 0.050 

(0.007) 

  0.038 

(0.006) 

COM 1 if computer used for 

farm management 

+ + 0.600 

(0.015) 

0.552 

(0.018) 

VRTPLAN 1 if made a Variable Rate 

Fertilizer Management 

plan using the GPS-

referenced soil sample 

information 

+ + 0.213 

(0.013) 

0.192 

(0.013) 

HANDHELD 1 if used a handheld 

GPS/PDA 

+ + 0.034 

(0.006) 

0.034 

(0.006) 

ELECTRIC 1 if used electro 

conductivity  

+/– +/– 0.033 

(0.006) 

  0.032 

(0.006) 

GREENSEEK 1 if used Greenseeker® +/– +/– 0.006 

(0.002) 

0.005 

(0.002) 

Regional Characteristics:      

FARMDENS Number of farms in 

county divided by the total 

county land in farms 

(2007) 

+/– +/– -5.915 

(0.033) 

-5.932 

(0.033) 

HEARTLAND 1 if farm located in the 

Heartland 

+/– +/– -0.266 

(0.015) 

-0.264 

(0.019) 

PRAIRIE 1 if farm located in the 

Prairie Gateway  

+/– +/– 0.110 

(0.026) 

0.086 

(0.029) 

EASTUP 1 if farm located in the 

Eastern Uplands  

+/– +/– -0.253 

(0.016) 

-0.260  

(0.018) 

FRUITFUL 1 if farm located in the 

Fruitful Rim  

+/– +/– -0.212 

(0.018) 

-0.212 

(0.021) 

MISSPORT 1 if farm located in the 

Mississippi Portal  

+/– +/– -0.101 

(0.021) 

-0.108 

(0.025) 

 1Numbers in Parentheses are standard errors. 
2 

Variables defined as having a value of “1” have a value of zero if the condition does not hold. 
3
 USDA Farm Resource Region 
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Table 2. Logit and Hurdle Poisson Estimates for the Factors Influencing Adoption and 

Perceived Years of Usefulness of Precision Soil Sampling Technology 

 Logit
1
 Poisson

2
 

Independent Variable Coeff P-value Coeff P-value 

 Wtd
3
 Unwtd  Wtd Unwtd 

ACRES 0.154 .307 .142 -0.144 .022 .075 

LANDTEN 0.801 .828 .375 0.305 .094 .173 

INCFARM 0.511 .357 .147 -0.255 .255 .860 

FARMCOMMIT -0.381 .739 .301 0.748 .063 .530 

BS -0.031 .950 .909 0.115 .628 .935 

OCROPS 0.434 .348 .249 -0.139 .400 .380 

YVAR 0.072 .104 .052 -0.001 .958 .985 

Information Sources:    

INFOCONS 0.036 .914 .614 -0.006 .961 .761 

INFOEXTEN 0.328 .277 .186 0.189 .121 .163 

INFOOTH 0.119 .686 .605 0.066 .521 .391 

INFOSHOWS 0.541 .068 .015 -0.112 .358 .113 

INFOMEDIA 0.193 .489 .903 0.126 .344 .176 

FARMSUPPLY 0.024 .212 .259 -0.005 .717 .363 

APPCONS 2.964 .000 .000 -0.143 .250 .957 

Information Technologies:    

IMAGE 0.622 .214 .088 -0.153 .334 .590 

YMMAP 1.772 .001 .001 -0.039 .794 .929 

COM 0.528 .105 .244 -0.171 .221 .225 

VRTPLAN    -0.407 .052 .131 

HANDHELD 0.330 .512 .469 0.032 .818 .798 

ELECTRIC 2.393 .001 .000 0.295 .095 .089 

GREENSEEK -2.290 .009 .011 0.692 .030 .194 

Regional Characteristics:    

FARMDENS -0.098 .471 .353 -0.020 .713 .612 

HEARTLAND 0.910 .177 .025 0.180 .369 .570 

PRAIRIE -1.955 .000 .000 0.413 .166 .223 

EASTUP 0.477 .307 .453 -0.031 .911 .581 

FRUITFUL -0.977 .084 .075 -0.305 .052 .626 

MISSPORT 1.053 .001 .000 0.290 .009 .057 

R
2
 = 0.52    

AIC (Akaike Information Criterion) = 9.367 

Sample Size = 1,008 

Expanded cotton farm population = 9,951 
1
Logit regression models the probability that a producer adopts grid or zone soil  

  test technology. 
2
The Poisson regression models the years between soil tests. 

3
Post-stratification sampling weights.
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Figure 1. Weighted Frequency Distribution of Years Soil Test Information was Useful   
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II. Optimal Potassium Application Policies and Potassium Carryover Dynamics in Cotton 

Production: A Simulated Dynamic Programming Approach 
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Abstract 

 

Spatial and temporal information about soil dynamics can assist cotton producers with optimal 

management of potassium (K) fertilizer. Optimal K management promotes cotton plant health, 

may lead to lower input costs, and increases cotton lint yields. A dynamic programming model 

was developed to determine optimal K application rates and economic returns under different 

soil information scenarios based on cotton yield response estimates to K fertilizer from a multi-

year field trial. A Monte Carlo analysis was conducted to simulate the impact of stochastic input 

and lint prices and cotton yield on K management over a five-year time horizon. Soil test data 

could provide important information about K carryover, which may lead to more efficient 

fertilizer use and higher profit margins. 
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Introduction 

  

Understanding soil nutrient dynamics is important for the optimal management of 

potassium (K) for cotton production. Knowing how and when to apply K to maximize plant 

uptake efficiency is important for maintaining cotton plant health and increasing profits. In 

cotton production, inadequate application of K disrupts the pH balance in plant cells (Hake et al., 

1991), stresses cotton plants, delays fiber maturity, and reduces nutrient uptake (Pettigrew et al., 

1996). Potassium deficiency in cotton plants may even occur in soils thought to have adequate 

amounts of K (Cassmen et al., 1981). Thus, under or over-applying K may lead to lower profit 

margins (Pettigrew and Meredith, 1997). The capacity of different soils to retain and release K in 

subsequent growing seasons as influenced by weather and erosion makes understanding the soil 

K dynamics important for implementing the site-specific management of K.  

 Ascertaining when and where to apply K is not always evident. Producers face a diverse 

set of field conditions, market uncertainty, and weather conditions; all of which make managing 

inputs over multiple growing seasons difficult. Soil K carryover dynamics between growing 

seasons may also increase the challenge of optimal K management. But over a planning horizon, 

soil testing can provide information about spatial and temporal K nutrient availability. The value 

that soil testing adds to a K nutrient management plan is also reflected in increased returns when 

this information is used to determine fertilizer rates. Previous studies examining the returns from 

examining yield response variability, soil dynamics, and input placement and timing are 

numerous (e.g., Perrin, 1976; Adams et al., 1983; Schnitkey et al., 1996; Watkins et. al., 1998; 

Bongiovanni and Lowenberg-DeBoer, 2000; Bongiovanni and Lowenberg-DeBoer, 2001; 

Hurley et al., 2001; Lambert et al., 2003; Lambert et al., 2007; Maine et al., 2007; Park et al., 

2007). Yet findings about the profitability of site-specific management of phosphorous (P), 
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nitrogen (N), and K based on soil test information varies according to research conditions, the 

crops studied, and in the case of on-farm trials, the managerial capability of producers and 

farm/field heterogeneity. This is not surprising because of the site-specific nature of information 

generated by precision agriculture technologies. Perrin (1976) used corn yield response functions 

to estimate the value of soil test information in corn production in Brazil, determining a range of 

$6.16 to $30.92 per hectare increase in net returns when soil test information was used to 

determine fertilizer rates. Adams et al. (1983) also found increased returns from managing 

fertilizer using soil test information, concluding a $696 increase in returns per ha when soil test 

information was used to determine fertilizer rates for sugar beets. Hurley et al. (2001) found that 

basing N fertilization rates on soil nitrate tests increased producer profits by $6.42 per ha. In 

another study examining corn response to N application in Argentina, Anselin et al. (2004) found 

$7.65 per ha increased returns under variable rate N management as compared to uniform N 

application strategies. Lambert et al. (2003) estimated corn and soybean response to manure to 

examine the potential of site-specific manure management, finding higher returns under variable-

rate manure management with information about P, K, and lime. Furthermore, they found that 

the value of soil test information increased with site-specific manure application. Bongiovanni 

and Lowenberg-Deboer (2000) examined the profitability of variable rate application (VRA) of 

lime based on agronomic, economic, and site-specific information rules for corn and soybeans, 

finding an increase in profit of $7.24 to $19.55 per hectare compared to a whole field lime 

management strategy. Velandia et al. (2006) estimated cotton response to N and found increased 

net returns ranging from $4.29 to $5.45 per ha for variable rate N application compared to 

uniform rate application. Yang et al. (2001) found increases in profit from site-specific 

management of N and P over uniform management of these inputs for grain sorghum. But Liu et 
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al. (2006) estimated corn response to N and found that variable rate N application based on site-

specific information did not cover the costs associated with variable rate application. Swinton et 

al. (2002) also found that the site-specific management of P, K, and lime based on soil tests of P, 

K, and pH was not profitable compared to uniform whole field application for corn and soybean 

production. 

 Much of this previous research examined ex post changes in profitability after managing 

fertilizer inputs based on soil test information, but few studies have taken into account the 

temporal carryover effects of soil nutrients. Most of these studies have also used static, partial 

budgets to estimate the value added from soil test information. A dynamic programming (DP) 

approach is used in this research to estimate the value added from managing potassium carryover 

for continuous cotton production. Dynamic programming models allow optimal input levels to 

be determined in each growing period over a specified time horizon for a more accurate 

characterization of returns. That is, the decisions producers make about current input use have 

repercussions on input management in subsequent seasons depending on residual fertilizer 

carryover capacity of soils. The two key elements needed to optimally manage K over a time 

horizon are: (1) knowledge about how plants respond to K, and (2) the extent to which K is 

carried over as “residual” between seasons. The first often requires controlled field experiments, 

but well-planned on-farm trials may provide similar information (Bongiovanni and Lowenberg-

DeBoer, 2001; Griffin et al., 2006; Lambert et al., 2007). Combined with yield goals, producers 

may be able to ascertain how plants respond to different input levels. The second element may be 

discerned by soil testing over several production cycles. For example, the rate of change in soil 

nutrients over time that can be derived from soil test data may provide important information 

about nutrient carryover capacity of soils.  



44 
 

Dynamic programming models have been developed to analyze the effects of residual 

fertilizer carryover on crop yield (Kennedy et al., 1973; Gooden and Heylar, 1980; Stauber, Burt, 

and Linse, 1975). However, experimental or on-farm trials that collect yield response 

information and nutrient fertilizer dynamics are rare and expensive. Lambert et al. (2007) used 5 

years of data from an experiment evaluating variable rate application of N and P for a corn and 

soybean rotation to determine the economic returns to site-specific management of N and P in 

soils where P-carryover was significant. They found that the net present value from variable rate 

P and N management based on soil information was higher than managing those inputs in the 

absence of P carryover under a uniform management strategy. Schnitkey et al. (1996) derived 

similar conclusions for P and K on corn and soybean fields, taking into account nutrient 

carryover between growing seasons. Their results indicated that managing P and K soil dynamics 

based on soil test information was profitable over a 20-year horizon. In another study, 

Lowenberg-DeBoer and Reetz (2002) compared P and K management scenarios for a continuous 

corn and soybean rotation with soil nutrient residual dynamics similar to those in Schnitkey et al. 

(1996). They found a rapid build-up strategy of P and K to reach critical soil test levels increased 

producer profits more than a gradual application plan by $8.25 per ha. Jomini et al. (1991) found 

similar results with increases in profit for millet grown on fields when optimal levels of P and N 

fertilizer are applied based on soil testing. In a study of plantain response functions to K and 

organic soil matter and economic returns over a 30-year horizon, Tré and Lowenberg-DeBoer 

(2005) found increased returns ranging from 72% to 154% for mulch-based application 

technologies as compared to traditional fallow systems with K and organic matter carryover 

present. Yet, in a potato and barley study, Watkins et al. (1998) found that variable-rate N 

application costs resulted in decreased returns when compared to conventional application 
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methods because of the increased costs associated with variable rate application even when N 

carryover was significant.  

This study uses a DP method that modifies Kennedy‟s (1986) and Lambert et al.‟s (2007) 

analytical model to determine optimal K management strategies using data from a three-year 

cotton yield response trial in West Tennessee. By incorporating K carryover dynamics into 

nutrient management decisions, the economic benefits observed under alternative information 

scenarios can be compared to estimate the value soil test information adds in managing dynamic 

soil nutrient dynamics.  

This paper is organized into six sections. The first section outlines the conceptual models 

used to determine the optimal amount of potassium to apply using a dynamic programming 

approach; the cotton lint yield and soil K carryover response models which regulate total 

available K; and the models used to introduce uncertainty into input and output prices. The 

second section summarizes the econometric procedures used to estimate cotton lint yield 

response and residual K fertilizer. The regression methods used to estimate the input and output 

price expectation models are also summarized. The simulation model and the distributions used 

to make price and soil K carryover stochastic are discussed in the third section. The fourth 

section outlines the data used to parameterize the DP model. Results from the econometric 

estimation procedures and the net present value estimated under deterministic and stochastic 

frameworks are discussed in the fifth section. The final section concludes, providing insight into 

the value of site-specific information gathering technologies (e.g., soil testing) for input 

management.  
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Conceptual Models 

 

 The following section discusses the conceptual models used to determine optimal K 

application, residual K fertilizer effects on yield, and input and output prices. First, the decision 

rules for deriving the optimal amount of total available K fertilizer subject to soil K carryover are 

presented. Deriving optimal K fertilizer under alternative states of soil carryover nature provides 

a framework for estimating net present value when prices and yields are deterministic or 

stochastic. Second, the estimated yield response function used to characterize cotton plant 

response to K is described. Third, residual carryover can affect K availability in subsequent 

years, and the functional form used to model residual K available to plants in future periods is 

discussed. Fourth, a closed-form solution for determining the optimal amount of total K available 

to cotton plants under alternative K carryover scenarios is presented. Lastly, input and output 

price expectations and the functional forms used to model the lagged input and output price 

effects are described.   

 

Optimal Fertilizer Management with Residual K Carryover 

 

Soil K tests can provide producers information about how potassium may carry over as 

“residual fertilizer” in subsequent growing seasons. The value added from soil testing is 

determined by comparing economic returns under alternative K application strategies when two 

soil states of nature exist: (1) K fertilizer carries over as a residual nutrient between seasons, and 

(2) fertilizer K carryover is absent. Potassium fertilizer may be applied every season, less 

frequently, or at lower rates depending on the residual soil K carryover as well as how efficiently 

K is absorbed by cotton plants. When soil test information suggests that K levels are above 

biologically optimal thresholds, K can be “mined” out from the soil for some period. Once 
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optimal levels are achieved, remedial applications (“amendments”) of K may be required every 

season to maintain optimal production thresholds. 

Profit-maximizing producers will apply fertilizer such that the discounted marginal 

product value (MPV) of the fertilizer equals its marginal cost (MFC). Economic models for 

determining optimal fertilizer application when residual fertilizer carryover is present have been 

developed extensively (Kennedy et al., 1973; Kennedy, 1981; Kennedy, 1986; Jomini et al., 

1990; Schnitkey et al., 1996; Lowenberg-DeBoer and Reetz, 2002; Tré and Lowenberg-DeBoer, 

2005; Park et al., 2007; Lambert et al., 2007). The dynamic programming approach assumes the 

fertilizer management problem can be divided into discrete stages, where the optimal strategy at 

each stage can be calculated separately (Fisher and Lee, 1981). In the original model by Kennedy 

et al. (1973), K application in each growing season is determined separately even though each 

successive fertilizer application decision may be influenced by residual K from the previous 

season. Thus the decision making sequence can be reduced to a Markov process in which the 

distribution of K application in future periods,     
   , is only dependent on the levels in the 

present period,   
   . In period i + 1, the problem is “memoryless” to past fertilizer application 

outcomes other than in time period i. To optimally manage K, all the needed management 

information is embedded in the current production period. 

The fertilizer carryover model developed below assumes (1) there is only a single 

fertilizer input (K), (2) the input is applied at the beginning of each season, and (3) the producer 

controls the level of total available K fertilizer (residual + applied) by choosing how much 

fertilizer to apply each season, (4) soil tests provide accurate information about residual 

carryover of K, and (5) the producer maximizes the net present value (NPV) of cotton production 

(Kennedy, 1986). Profit in period i is: 
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(1)         
       

       
        

   
               , 

 
 
 

where   
    is potassium carryover (“residual”) fertilizer (kg/ha);   

    is applied K fertilizer 

(kg/ha);   
   and   

  are cotton lint ($/kg) and K fertilizer ($/kg) prices, respectively, in period i; 

     
       

     is the cotton lint response to total available K in period i; and ( ) is a discount 

factor of time preference 1/(1+ r), where r is a discount rate reflecting the producers‟ time 

preference. Fixed costs may include soil sampling costs (s). 

The producer maximizes net present value over i = 1,…,N periods subject to a potassium 

carryover function,           

        

 

(2)                       
  
      

   
      

        

 
s.t.   

      
 

    
          

       
     

 
  

    given 
 

i = 1,2,3….N, 
 
 

where          is a constant determining the proportion of residual fertilizer available to plants 

in the following season, and   is K in the soil not available to the plant. The initial K carryover 

amount (  
   ) is given (i.e., the farmer knows the amount of K in the soil from soil testing). In 

terms of the dynamic programming problem, information derived from soil testing is embedded 

in the K carryover parameter. The value added from soil K testing can be estimated by 

determining how much input prices are discounted between periods through the accumulation of 

potassium carryover “credits”. 
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The problem of determining the optimal amount of K to apply in each period can be 

solved using the following Bellman‟s recursive equation (Bellman, 1957),  

 

(3)                   
          

                      
       

 

s.t.   
      

 

with   
    given 

 

     
       

 

  
       

    +   
   , 

 
 

where      
     is the present value of net returns ($/ha) from using an optimal K fertilizer 

application strategy in each of the i periods, given soil K carryover (  
   ) in the beginning of 

each period i;    
    is the total amount of available K fertilizer (kg/ha), which is the sum of 

residual and applied fertilizer. The state variable is residual fertilizer remaining in the soil before 

cultivation. The decision variable is the amount of potassium to apply each growing period. Any 

K fertilizer remaining after the last period (N) has no value to the produce;      
       (a 

“terminal” condition). 

 Differentiating the expression in equation (3) with respect to the control variable,   
   , 

the first order condition for an interior maximum is, 

 

(4)     
   

   
    

   
     

          

     
   

     
   

   
       

with  
     

   

   
    = h. 
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Differentiating the expression in equation (3) with respect to K fertilizer carryover,   
   , 

the first order condition for profit maximization (assuming diminishing marginal and that second 

order conditions hold) is, 

 

(5)                                                        
   

   
    

   

   
    

   
           

     
   

     
   

   
   . 

 
 

 

Inserting equation 4 into equation 5, it can be shown that, 

 

(6)      
   

   
      

 , 

 

which states that potassium carryover should be valued as the price of potassium fertilizer in the 

current period. After substitution of equation (6) into equation (4), the condition defining optimal 

K application rates is, 

 

(7)                                                       
   

   

   
       

         
   

   
       

 . 

 
 

 

The first order condition (FOC) is solved to determine the optimal total available 

potassium to the cotton plant from residual and applied fertilizer K. The FOC states that the 

discounted value of the marginal product of K fertilizer must equal the marginal unit cost of K 

fertilizer to maximize net revenue. The marginal factor cost of K fertilizer is the price in period i 

less any savings from fertilizer K carryover accrued in the previous period. A producer 

maximizes net present value when the marginal product value of fertilizer (in terms of yield 
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price) is greater than the marginal costs of fertilizer discounted by the nutrient carryover rate. 

The optimal amount of K fertilizer is achieved when   
    =   

     no matter the value of   
   .  

The economically optimal K application rate generating the greatest economic return can 

be determined under alternative soil information scenarios over some time horizon and under 

stochastic prices. Using a simulation approach, the hypothesis that information about residual K 

carryover increases profit margins can be tested.  

 

Cotton Yield Response Modeling 

Choosing an appropriate yield response function is important for partial budget 

comparisons of different technologies or the adoption of management decision aids. There are 

numerous functional forms that have been used to estimate crop yield response to fertilizer and 

other inputs. Common functional forms include the Mitscherlich, quadratic, or Cobb-Douglas 

specifications (Hall, 1983; Ackello-Ogutu, Paris, and Williams, 1985; Frank, Beattie, and 

Embleton, 1990; Bullock and Bullock, 1994; Bongiovanni and Lowenberg-Deboer, 2000; 

Tumusiime et al., 2010). Yield response functions may also be based on the biological and 

physical constraints of plants, soils, statistical measures of fit, or ease of estimation (Heady and 

Dillon, 1961).  

A quadratic response plateau function was used to model cotton lint yield response to 

potassium. In general, the quadratic function is a (1) second-order approximation of any function 

(Hurley et al., 2001; Hurley et al., 2005), (2) allows for diminishing marginal returns, and (3) 

facilitates closed-form solution for determining economically optimal input levels. The third 

point is especially relevant with respect to solving Bellman‟s equation. As suggested by 

inspection of the raw yield data (Figure 3), total available K increases cotton lint yield to a 
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maximum, and then plateaus. The plateau model therefore appears to be appropriate, especially 

when total available K is considered. The quadratic response plateau function is,  

 

 

(8)                               
       

        
    

    
                 

      
    

  
      

  

   
                                              

      
    

  

 

 

where y is the cotton lint yield (kg/ha),   
    is the total amount of potassium fertilizer available 

to the cotton plant,   
     is the biologically optimal amount of K available to the plant and the 

level of K at which cotton response begins to plateau,   
   is a random disturbance term,    is the 

amount of cotton expected in the absence of K fertilizer,    is the plant response to a kilogram of 

total K fertilizer available (        , and    is a parameter reflecting diminishing marginal 

biological growth to K (        . The estimated response function is used in the producers‟ 

dynamic optimization problem (Eq. 3) to derive the NPV received under different information 

scenarios.  

 

Residual Carryover Modeling 

 

Potassium residual carryover was approximated using a linear function. The decision to 

use a linear carryover equation was based on (1) the examination of the raw K carryover data 

(Figure 4), and (2) the relatively sparse literature regarding nutrient carryover functions. The 

estimated linear carryover function is similar to carryover models used by Kennedy (1981), 

Segarra (1989), Tré and Lowenberg-Deboer (2005), and Park et al. (2007) where residual soil 

nutrient levels in the next period is linearly proportional to the total available soil nutrients 

available to the plant in the current production period. The K carryover model is;      
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(9)                                                   
          

        
   , 

 

 

where     
    is the amount (kg) of carryover in year i + 1, and     

    is a random disturbance 

representing fluctuations in carryover due to weather and other unforeseen events. 

 

Closed Form Solution for Economically Optimal K Rate 

The lint yield a producer can expect in any period is determined by the optimal level of 

total available K. When equations of motion are linear and the return function is concave and 

twice-differentiable, a closed form solution to Bellman‟s equation describing the optimal control 

of fertilizer over successive periods is tractable. Optimal total available K is calculated by 

inserting the response function from equation 8 into equation 7. When fertilizer K carryover is 

significant, the optimal total available amount of K is expressed as: 

 

(10)              
       

  
        

 

   
           , 

 

where   and    are the parameters from the cotton lint yield response function. The closed form 

solution is therefore based on the marginal effect of the first unit of K on plant growth, the 

diminishing effects over-application of K might have on growth, current period K and lint prices, 

a discount factor, and the expected price of K in the next period. In the absence of K carryover 

(i.e., when h = 0), the optimal K level corresponds with what one would expect the discounted 

profit maximizing level to be in the absence of any dynamics: 
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(11)                      
       

  
 

   
           . 

 

Given these terms, the profit a producer can expect in any period is determined by substituting 

these expressions into the objective function given the presence or absence of residual fertilizer 

carryover.  

 

Stochastic Price Expectations 

 

The optimal control of K fertilizer is a function of the next period K price. To reflect this 

expectation, prices were modeled as a random variable based on historical price records. The 

expected price of K in future periods is subsequently used to simulate expected profits based on 

Bellman‟s equation. Examination of potassium prices and cotton lint prices over time revealed an 

upward trend over a 21-year period, noting that lagged prices appeared to strongly explain future 

prices. Thus, the input and output prices in the current period were used to predict next period 

prices. To reflect how next period prices were related to prices in the previous period, parameters 

determining the evolution of input and output prices were estimated using a least squares 

regression. For example, cotton lint yield prices were regressed on the previous year‟s cotton lint 

price (Figure 5A). 

The plots of input and output prices suggest candidate function forms for cotton and K 

prices. Cotton lint yield price parameters were estimated using a linear regression equation. The 

linear regression model explaining cotton lint yield prices is: 

 
 

(12)         
          

        
 , 
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where   
  is the cotton lint price in year i,     

  is the price of cotton lint in year i + 1,    is the 

intercept term,   is a lagged price parameter, and      
 is a random disturbance with        

   

 .  

The lagged potassium price model was fitted using a log-linear function, as plots of the 

data suggested that K input price evolution was non-linear (Figure 5B). The functional form used 

to describe the relationship between current and next period prices is: 

 

(13)             
           

      
 , 

 
 

where   
  is the price for elemental potassium in year i,     

 is the price of elemental potassium 

in period i + 1, Z0 is an intercept term, Z1 is the lagged price parameter estimate, and     
  is a 

random disturbance term with        
    .  

 

 

ECONOMETRIC PROCEDURES 

Cotton Lint Yield and K Carryover Response  

 

Yield response and carryover were jointly estimated as a system of equations using non-

linear general methods of moments (GMM) (Hansen, 1982). The GMM estimator is robust to 

unspecified forms of heteroskedasticity and relaxes distributional assumptions about the error 

terms (Cameron and Trivedi, 2005). The system of equations is, 
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 (14)                

    
    
    

   

    
   

   

 
 
 
 
      

   

     
   

 
 

 
 

     

    
    

 

    
    

 
 
 

 
 

    

 
 

    
   

    
   

 
 
 
 
 

   

 
 
 
 
 
  
  
  
 
  
 
 
 
 

   

 
 
 
 
 
    
  

    
  

    
   

    
    

 
 
 
 

, 

 

where i = 2001, 2002, with 32 observations recorded in each period i. 

The GMM objective function is: 

 

(15)                    
 

 
              , 

       where           . 

 

The notation for systems of equations can be simplified as       , with the first round 

residuals defined as          and Z a set of exogenous instruments that includes fertilizer K 

applications and the initial fertilizer K carryover in year 2000 (Cameron and Trivedi, 2005). The 

function is iteratively minimized to increase efficiency. The weights (          allow for 

different moments to carry different weights, and thus the moments with larger variance are 

given smaller weights, while those with smaller variance are given larger weights. The iterated 

GMM estimation procedure was estimated using the PROC model procedure of SAS® 9.0. 

 The year 2000 is the base year for the yield model. Cotton lint yield for the year 2000 is a 

function of total available K in 2000, which is the sum of residual fertilizer K based on total 

available K in 1999 and K fertilizer applied in 2000. Because there is no data for the total 

amount of available K fertilizer in 1999 to determine residual K carryover in 2000, cotton lint 

yield in the year 2000 was not used to estimate the system of equations. 
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Price Expectation Regressions 

Ordinary least squares was used to estimate the cotton lint and potassium price models. 

The variances of the residuals associated with each model were used to simulate residual draws 

for the cotton lint yield and K prices and inserted into the price equations for years 2-5 (Figure 

2).  

 

Data Sources 

Cotton Crop Response Data 

 

Cotton yield response to K and K carryover data was from a three year (2000-2002) 

research trial in Tennessee at the Ames Plantation Research and Education Center in Fayette and 

Hardeman counties in West Tennessee, 60 miles east of Memphis and 10 miles north of the 

Tennessee-Mississippi line near Grand Junction, Tennessee. The first year of the trial began in 

Spring 2000 with the planting of cotton variety PM1218BG/RR on May 8
th

, the first harvest on 

September 14
th

, and the second harvest on October 10
th

. In 2001, cotton was planted on May 14
th

 

with the first harvest on October 3
rd

 and the second harvest on October 18
th

. In 2002, cotton was 

planted on May 16
th

, with the first harvest on September 19
th

, and the second harvest on October 

8
th

. Seed cotton was harvested using a 2-row John Deere spindler picker. The plot size for each 

treatment was 37.16 square meters with 40 rows. The soil in each plot was classified as Loring-

Henry silt loam and the topography was upland. K fertilizer rates were 0, 67.23, 134.44, and 

268.88 kg K2O/ha. The K2O fertilizer was applied before planting in each year of the experiment 

on March 3
rd

 in 2000, April 11
th

 in 2001, and May 8
th

 in 2002. Fertilizer treatments were 

replicated four times in a randomized complete block experimental design. Soil tests measured 

the residual fertilizer after each season (kg K/ha), the lint yield (kg/ha), and the total amount of K 
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fertilizer (kg K/ha) available before the next planting season after the second harvest of each 

year. Nitrogen fertilizer was applied at a constant rate of 89.61 kg/ha each season. Soil tests were 

not collected for nitrogen.   

 

 

Input and Output Prices and Soil Test Costs 
 

Average market prices (1989-2009) for prices paid to farmers for cotton lint yield were 

obtained from the National Agricultural Statistics Service (NASS, 2010). The annual K2O 

fertilizer cost ($/ha) for elemental K fertilizer was obtained from extracting the price of 

elemental K from KCl (0-0-60) fertilizer prices containing 27.21 kg K2O per 45.36 kg fertilizer 

(UT Extension Budgets, 1989-2009).  The cost of elemental potassium was estimated using the 

formula: 

 

(16)     
 

    
 

 
    

                   
              

      

 
          

           
             

         
. 

 
 

Nominal prices were converted to constant, real prices using the United States Bureau of 

Economic Analysis‟ (BEA) producers‟ price index (BEA, 2010). Information costs for soil tests 

were based on the 2007 Precision Farm Dealership Survey conducted by Akridge and Whipker 

(2007) in which soil sampling with GPS was $15.68/ha.  

 
 

Simulation Exercise 

 

A Monte Carlo experiment using expected cotton lint yields, soil K carryover, cotton lint 

prices, and K fertilizer prices was conducted to gain an understanding of how the optimization 

model performed when prices or yields were uncertain. The net returns a producer could expect 
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under different soil information scenarios depended on whether or not the producer identifies K 

carryover using soil tests and subsequently uses that information to apply K fertilizer.  

A flow-chart depicting the simulation steps, corresponding variables, and stochastic 

parameters describes the dynamic programming model used to determine NPV over four 

information scenarios (Figure 2). Input and output prices affect the optimal amount of potassium 

to apply each planting season and are also modeled recursively using equation 3 to estimate 

discounted net returns for each period. Input and output prices in period i affect prices in period i 

+1, and fertilizer K not used in period i is returned as a residual and is available to plants in 

period i +1. The magnitude of soil K carryover therefore influences the optimal amount of K 

fertilizer a producer needs to apply in each period. Stochastic parameters represented by boxes 

A, 2A, B, 2B, C, and D, and the random draws for each respective box are based on the 

distributions described in Table 4. From this procedure, the order and degree of stochastic 

dominance from the four management scenarios was determined by examining the empirical 

distributions of the simulated NPVs (Clemen and Reilly, 2004). 

 

 

Distributions Used in the Simulation 
 

Simulating Stochastic Cotton Lint and K Fertilizer Prices 

Over a planning horizon, the real price of cotton lint, the real price of K fertilizer, the 

amount of cotton lint yield harvested, and the amount of soil K carryover are stochastic. To 

reflect this uncertainty, distributions based on known expected means and variances were used to 

render these variables stochastic. Explanations of the stochastic parameters and their 

corresponding distributions used are summarized in Table 4. 
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Potassium and cotton lint prices were simulated using a random walk procedure based on 

the price regression parameters     . For the initial cotton lint price in simulated year 1, each lint 

price was chosen from a historical distribution (1989-2009) with uniform probability. Thus, each 

of the 21 cotton lint prices from the 21-year data period had an equal probability of selection as 

the initial price in year one of the simulated 5-year planning horizon. Cotton lint prices in years 

two though five were generated using the parameters estimated in the price regression of 

equation 12. Residuals from the cotton lint regression were randomly generated from a normal 

distribution according to its expected variance, which made the cotton lint price stochastic. The 

residual, (    
 ) was inserted into the lint price model in years 2-5 to incorporate uncertainty 

about output prices over the planning horizon. An example of how the random walk was 

simulated using cotton lint prices follows: 

 
Historical lint price sequence:      

      
        

 
              

              
Initial Price:   

  = initial uniform random draw of one price from the historical sequence 

 
 

Simulated Price, Period 1:   
            

      
     

         
   

 
 

Simulated Price, Period 2:   
            

      
     

         
   

. 

.  

. 
 

Simulated Price, Period 4:   
            

      
     

         
  , 

 

 

where     
         

   represents a draw from the normal distribution and   
  is the residual 

variance from the linear cotton lint price model (eq. 12).  
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 A similar approach was used to simulate potassium prices. A potassium price for the 

initial year was selected from the historical price distribution with uniform probability. Residuals 

from the potassium price regression were randomly generated from a normal distribution 

according to its expected variance, which made the potassium price stochastic. A lognormal 

distribution was used to randomly generate residuals to be used in the K price equations for years 

2-5 because of the functional form used to estimate the price trend. The residual,      
 ), was 

inserted into the potassium price model in years 2-5 to incorporate uncertainty about input prices 

over the planning horizon. The random walk for K price was simulated as: 

 

Historical K price sequence:      
       

        
 

                

              
Initial Price:   

  = initial uniform random draw of one price from historical sequence  

 
 

Simulated Price, Period 1:      
             

      
     

                
   

 
 

Simulated Price, Period 2:       
             

      
     

                 
   

. 

.  

. 
 

Simulated Price, Period 4:       
             

      
     

                 
  , 

 
 

where     
                 

   represents the draw of the residual from a lognormal 

distribution and   
  is the residual variance from the log-linear potassium price regression model 

(eq. 13). 

Input and output prices also exhibited upward trends in price over the 21 year period 

model and appeared to be correlated. To reflect this dependence, a Pearson‟s correlation 
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coefficient was used to correlate the initial draws of the input (  
 ) and output (  

 ) prices, 

thereby reflecting the historical correspondence between lint and K price trends.  

 

Simulating Stochastic Cotton Yield Response and Soil K Carryover 

Lint yield and soil K carryover residuals were incorporated into the yield response model 

to account for fluctuations in cotton lint yield and residual fertilizer carryover due to weather or 

other random shocks. Residuals from the respective regressions were bootstrapped, assuming a 

uniform, equal probability of selection. Explanations of the procedures and distributions used to 

model the stochastic parameters are summarized in Table 5. 

 

Hypotheses Tested and Experimental Design 

Four scenarios were compared to evaluate the optimal application of K fertilizer in the 

presence or absence of knowledge about soil K carryover (Table 6). The cases examined are 

designed to reproduce the fertilizer carryover scenarios presented in Kennedy (1986). The four 

information scenarios are: 

 

(SCENARIO 1) K fertilizer is applied knowing K carryover absent – K carryover is truly 

absent: In scenario one (S1), the producer has complete information about cotton lint yield 

response to potassium. The producer purchases soil test information and applies potassium at 

economically optimal rates. The producer is charged s for the soil tests, but soil K carryover is 

not detected. The producer applies K fertilizer at an economically optimal rate (EORK).  
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(SCENARIO 2) K applied believing K carryover present – K carryover truly absent: In the 

second scenario (S2), the producer has complete information about cotton lint yield response to 

potassium. The producer does not purchase soil test information but the producer applies 

potassium to adjust fertilizer K as if residual soil K was significant. In fact the producer should 

apply potassium at an economically optimal rate as if there were no K carryover.  

 

(SCENARIO 3) K applied believing NO K carryover present – K carryover actually 

present: In the third scenario (S3), the producer has complete information about cotton lint yield 

response to potassium. The producer does not purchase soil test information but applies 

potassium at the economically optimal rate as if fertilizer K carryover does not exist when in fact 

there is significant carryover potential. The producer applies potassium at an economically 

optimal rate, but should in fact adjust K rates to reflect residual K available after each growing 

season. 

 

(SCENARIO 4) K applied knowing K carryover present – K carryover actually present: In 

the fourth scenario (S4), the producer has complete information about cotton lint yield response 

to potassium. The producer purchases soil test information and applies potassium at the 

economically optimal rate. Carryover is significant, the producer knows this with certainty, and 

adjusts potassium to reflect residual K availability at the beginning of each planting season. The 

producer pays s for the soil carryover information.  

 

Each scenario was examined over a 5-year time horizon under deterministic and 

stochastic conditions. In the deterministic scenario, there is no uncertainty regarding lint yield, K 
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carryover, or input and output prices. Prices are constant and yield and carryover residuals are 

certain. The 2000 prices for cotton lint and potassium were used for input and output prices. 

Profitability in this case is ex post; the producer knows exactly the yield response of cotton to 

potassium inputs and can determine the optimal amount of potassium to apply. In non-

experimental situations, a producer may not have access to such information, but after the fact 

determinations may provide insight about applying inputs under varying soil conditions given 

certainty about crop response.  

In the stochastic version of the model, the analysis is ex ante. The NPV outcomes are 

determined alongside the realizations of the stochastic parameters. Ex ante determinations allow 

“beforehand” value approximations under differing soil conditions and in efforts to real-world 

situations. 

For both the deterministic and stochastic cases, the value of information about K 

carryover was calculated as the difference in economic returns generated in each respective state 

of nature. Thus, the NPV generated under Scenario 4 is compared to Scenario 3 because both 

application strategies are implemented when K carryover is significant. When K carryover is 

absent, the loss in realized profits from using soil information to implement the correct K 

application management strategy can be calculated as the difference in NPVs generated under 

Scenarios 1 and 2. The difference in economic benefits generated in these scenarios under 

provides an ex ante estimate of the value of soil test information. It is hypothesized that Scenario 

4 will generate higher economic returns than Scenario 3, and Scenario 1 will generate higher 

returns than Scenario 2. The cumulative distributions of the net present values under the four 

information scenarios were determined based on the 500 simulations. 
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Results 

Cotton Lint and Potassium Price Regressions 

 

The estimated cotton lint price lag parameter was significant at the 1% level. The cotton 

lint price model explained 96% of the variation in historical price variation (Figure 5A). The 

residual variance of the cotton lint price model was   
   .003. The parameter describing how 

the previous period lint price influenced the next period price was 0.979. This implies that 98% 

percent of the variation in lint price in the next period can be attributed to the current cotton lint 

price. The next period lint price is greatly influenced by the current period lint price. 

The log linear potassium price model (equation 14) explained 86% of the variation in 

historical potassium prices. The residual variance of the potassium model was   
  .919 (Figure 

5B). The parameter describing how the previous period potassium influences the next period 

price was 4.121. The high measures of fit values associated with the price models suggest a 

strong correlation between lagged and current prices for lint and potassium. The Pearson‟s 

correlation coefficient was r = 0.65. 

 

Potassium Carryover Model 

The K carryover equation explained about 79% of the variation in residual K carryover. 

The carryover parameter h measures the marginal contribution of total available K in period i to 

the next period K levels. The carryover coefficient was h = 0.72 (t-test = 27.97, p-value < .05); 

72% of total available K in period i carried over to the next period as residual and is available to 

the plant the following season. This value is between Ackello-Ogutu et al.‟s (1985) estimated K 

carryover parameter of 77% and Tré and Lowenberg-DeBoer‟s (2005) estimated carryover 

parameter of 52%. 
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Cotton Yield Response 

The cotton lint yield response models (equation 8) explained 88% of the variation in 

cotton lint yield in 2001 and 84% of the variation in 2002. The coefficients had the appropriate 

expected signs, with    being positive (estimate = 5.014, t-test = 5.87, p-value < .05). This 

positive value indicates a positive linear response of cotton lint yield to potassium fertilizer and 

that a one kilogram increase in total available K fertilizer will increase lint yields by nearly 5.01 

kilograms. The quadratic term,   , representing diminishing marginal returns, was negative 

(estimate = -0.005, t-test = -3.18, p-value  < .05) (Table 4). The plateau point for the yield 

response model was 1530.44 kg/ha. At this point, the marginal value of another pound of K 

fertilizer is zero; any increase in K would not increase cotton lint yield. 

 
 
 

Simulation Results: Expected NPVs  

 

Deterministic Results 

 Table 7 reports the expected net present value (NPV) for K management under different 

information scenarios. Scenario 4 resulted in the greatest returns to a producer with returns of 

$10,556 per ha. This was almost $475 per ha more than under Scenario 3, which resulted in a 

NPV of $10,080 per ha. When carryover was not present, Scenario 1 resulted in higher returns 

than for Scenario 2. The NPV under S1 was $10,064 per ha while only $7,208 for S2.  

In determining the gain in revenue from using soil K carryover information when residual 

K carryover was substantial but ignored or unknown, net revenue increased by nearly 4.5% when 

a producer uses soil information to apply K (Table 7). When fertilizer K carryover was absent, 

the loss in realized profits from applying K as if residual K carryover was significant (S2) 
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compared to identifying the absence of residual K fertilizer and applying K appropriately (S1) 

was over $2,800 per ha (or 28%).  

 

Stochastic Results 

NPVs for the stochastic case presented in Table 7 are similar to the deterministic case. 

The NPV was highest when residual K carryover was significant and fertilizer was adjusted 

accordingly (S4) at $10,578 per ha, followed by Scenario 3 at $8970 per ha. In S3, K was 

optimally applied but residual K was unacknowledged when in fact it was present. The expected 

NPV under Scenario 3 was higher than Scenario 1, in which K was applied optimally but there 

was no K carryover ($8811 per ha). The difference between S3 and S1 may be attributable to the 

boost in cotton lint yield from residual K and the corresponding cost savings in applied K. 

Scenario 2 resulted in the lowest expected NPV for a producer at $7316 per ha. Under Scenarios 

1, 3, and 4, a sufficient amount of K was applied to attain the economically optimal lint yield, but 

Scenario 2 suggests K was under-applied K and cotton lint yields were not optimal. This caused 

returns to be lower in S2 than the other scenarios.    

The value of K carryover information was estimated by the differences in the expected 

NPVs between management practices under similar states of nature (i.e., when fertilizer K 

carryover was present or nonexistent). When residual K carryover was substantial but ignored or 

unknown, net revenue decreased over $1,600 per ha (or 15%) (Table 7). When fertilizer K 

carryover was absent, the loss in realized profits from applying K as if residual K carryover was 

significant (S2) compared to a identifying the absence of residual K fertilizer and apply K 

appropriately (S1) was nearly $1,500 per ha (or 17%).  
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The empirical distributions of the NPVs for each of the 500 simulations under each 

scenario are summarized in Figure 6. For S4, nearly all of the Monte Carlo iterations generated 

net present values above $3,000, while 45% of the iterations in S2 generated a NPV above 

$3,000. The simulated net present value distributions of Scenarios 1 and 3 were nearly identical. 

In terms of first-order stochastic dominance for scenarios 1-4,                    

                 . The conclusion is clear because the tails of the distributions were not 

overlapping. 

 

Conclusions 

 Potassium carryover and cotton lint yield data was collected from experimental research 

plots over 3 years. A quadratic response plateau function was used to estimate cotton lint yield 

response to total available K, including residual K from previous seasons. Using a dynamic 

programming framework, the hypothesis that using soil test information about residual K would 

increase profits was compared to other cases where K soil test data was nonexistent or ignored. 

When the producer had full information about yield and K and residual K fertilizer was 

significant, the NPV over a 5-year planning horizon was highest when application rates were 

adjusted to reflect soil carryover potential. Hence, a producer using soil test information when 

residual K fertilizer is significant results in higher economic returns than when soil information 

was ignored. When carryover was absent, returns were $1,495 per ha (or 15 %) higher when the 

producer had complete soil test information compared to when carryover was incorrectly 

accounted for in application decisions. When carryover was significant, returns were $1,609 per 

ha (or 17%) higher when the producer had complete soil test information compared to when 

carryover was not correctly accounted for in application decisions 



69 
 

These results suggest in general that proper identification of soil nutrient properties and 

fertilizer carryover may result in substantially higher expected profits over a multi-period 

planning horizon. Monitoring the cycle of potassium flow by soil testing over several years could 

also provide valuable information about potassium carryover potential, which in turn could lower 

input costs and increase profit over an intermediate planning horizon in cotton production. 

While these results suggest that cotton producers should identify nutrient variability to 

determine optimal K fertilizer policies, the applicability of these results may be limited. Soil 

conditions are unique to each field, and different soil conditions may preclude soil testing. 

Furthermore, the managerial capacity of each producer and the way in which soil information is 

applied to nutrient management may also influence profit. Finally, only 3 years of yield response 

and soil carryover data were available. While these types of longitudinal trials are expensive, 

longer trials would provide more information about yield response stability over time. This 

information could provide a means to testing the statistical robustness of these results. 
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Table 3. Yield Response, K Carryover, and K Input and Lint Yield Price Equations 

Equation Variable Description 

      

Potassium Price   
 

             Dep. Variable: K price, current period 

     
       Ind. Variable: K price, next period 

 Z0 Intercept coefficient  

 Z1 Slope coefficient 

     
  Residual 

   

Cotton Price   
          Dep. Variable: Cotton price, current period 

     
        Ind. Variable: Cotton price, next period 

 W0 Intercept coefficient 

 W1 Slope coefficient 

     
  Residual 

   

Cotton Lint Yield   
      

      
    Total K available, i = 2001,2002 

   
    

 Total K available squared 

 β0 Intercept 

 β1 Linear response coefficient 

 β2 Quadratic response coefficient 

   
   Residual 

   

K Carryover  
  

      
      

    
Total K available, i = 2000, 2001, 

2002 

    Intercept 

 h Carryover coefficient 

     
    Residual 

Note:   
   

 = Fertilizer K Carried Over in period i 

            
   = K Fertilizer Applied in period i 

          Dep. = Dependent  

          Ind. = Independent 
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Table 4.  Quadratic Yield Response Plateau Parameter Estimates, Carryover Equation 

Estimates, and Model Fit Statistics 

       

 

Lint Yield:      
       

        
    

    
                 

      
    

  
      

  

   
                                              

      
    

  

 

Year         Adjusted R
2
  

2001     0.88  

2002     0.84  

Parameter     Estimate  

β0     133.504  

β1     5.014 *** 

β2     -0.005 *** 

Maximum yield response (kg/ha)  1530.44  

       

 Potassium Carryover:      
          

        
      

Year    Adjusted R
2
  

2001     0.79  

2002     0.78  

Parameter     Estimate  

      8.810  

h (carryover coefficient)     0.724 *** 

       

 Cotton Lint Price:     
          

        
    

Parameter  Estimate  

W0     0.102  

W1     0.979 *** 

Adjusted R
2
     0.96  

  
      0.003  

       

 Potassium Price:         
          

      
    

Parameter  Estimate  

Z0     -2.467 * 

Z1     4.121 *** 

Adjusted R
2
     0.86  

  
      0.919  

***,**,* represent significance at the 1%, 5%, and 10% level. 
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Table 5.  Identification and Explanations of Stochastic Parameters used in the Dynamic 

Programming Simulation 

Variable Description Distribution Comment 

 Random Draw A  

  
  Potassium Price in 

First Period of 

Simulation 

Discrete Uniform   

corr (   
    

   
Year 1 K price drawn 

from empirical 

distribution of K prices, 

1989-2009, correlated 

with lint yield price 

    
          

   K Price in Periods  

2-5 

 K prices in years 2-5 

based on linear regression 

model  

Random Generator 2A and 

    
 

 Residual of K Price Log normal(0,  
 ) 

Residual generated from 

the log normal distribution 

 Random Draw B  

  
  Cotton Lint Yield 

Price in First Period 

of Simulation 

Discrete Uniform   

corr (   
    

   
Year 1 cotton lint price 

drawn from empirical 

distribution of cotton 

prices, 1989 – 2009, 

correlated with K price 

    
          

   Cotton Lint Yield 

Price in Periods 2-5 

 Cotton lint prices in years 

2-5 based on exponential 

price model  

Random Generator 2B and 

    
 

 
Residual of Cotton 

Lint Yield Price 
N(0,  

 ) 
Residual generated from 

the normal distribution 

 Random Draw C  

 

  
   

 

Lint Yield Residual  

 

Discrete uniform 

bootstrap 

 

Yield residual drawn from 

a discrete uniform 

distribution and added to 

lint yield equation in each 

simulated year  

 Random Draw D  

 

    
    

 

K Carryover 

Residual 

 

Discrete uniform 

bootstrap 

 

Carryover residual drawn 

from discrete uniform 

distribution and added to 

carryover equation in each 

simulated year 

Note: See Figure 2 for supplemental information 
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Table 6. Information Management Scenarios, Descriptions of Soil States of Nature, and Producer 

Behavior 

  

Producer 

Knows Lint 

Yield 

Response 

Producer 

Purchases 

Soil Test 

Information 

K Carryover 

Present 

Producer 

Believes K 

Carryover 

Present 

Producer 

Applies K in 

Conjunction 

with Soil Test 

Results 

Scenario 1 √ √     √ 

Scenario 2 √    √    

Scenario 3 √    √    

Scenario 4 √ √ √ √ √ 
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Table 7. Comparison of NPV for Economically Optimal Input K Management Strategies with 

Single-Period Carryover and No Carryover States of Nature 

   Deterministic    

S1: EORK with no soil K carryover 
 

S3: EORK, K carryover exists, but ignored 

Period            C.O. Profit             C.O. Profit 

 (kg/ha) (kg/ha) (kg/ha) ($/ha)  (kg/ha) (kg/ha) (kg/ha) ($/ha) 

          

1 562.15 562.15 0 2213.86  578.14 562.15 211.07 2217.52 

2 562.15 562.15 0 2108.44  578.14 562.15 507.91 2111.92 

3 562.15 562.15 0 2008.04  578.14 562.15 699.50 2011.35 

4 562.15 562.15 0 1912.42  578.14 562.15 823.16 1915.58 

5 562.15 562.15 0 1821.35  578.14 562.15 902.98 1824.36 

   NPV 10064.13    NPV 10080.75 

          

S2: EORK adjusted as if K soil carryover exists, 

but K carryover does in fact not exist  

S4: EORK adjusted for K carryover when K 

carryover is significant 

1 578.14 578.14 0 2212.24  562.14 351.07 211.07 2283.52 

2 578.14 215.30 0 1382.01  578.14 206.47 371.67 2223.71 

3 578.14 215.30 0 1316.20  578.14 196.14 381.99 2120.90 

4 578.14 215.30 0 1253.52  578.14 196.14 381.99 2019.91 

5 578.14 180.15 0 1060.18  578.14 196.14 381.99 1923.72 

   NPV 7208.49    NPV 10556.10 

          

   Stochastic    

NPV for S1  NPV for S3 

 NPV    8811.68   1479.2  NPV    8970.64   1461.42 

NPV for S2  NPV for S4 

  
NPV    7316.48   1189.68  NPV 10579.88   1522.26 

Note:  C.O stands for carryover 

 Tables 2 and 3 refer to this simulation 

 EORK = Economically Optimal Potassium Rate 
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Process Depicting One 5-Year Iteration 

 Year 1           Year 2        Year 3         Year 4          Year 5 

                

 

Year i 

 

 

Figure 2. Flow Chart of Dynamic Programming Model with Stochastic Parameters 
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     = 511.63 kg/ha 
  = 1416.16 kg/ha 

Figure 3. Total Potassium Available and Cotton Quadratic Plateau Yield Response Curves  

      for Ames Plantation TN, 2000-2002 
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Figure 4. Carryover Dynamics (kg/ha) to Total K (kg/ha) (2001, 2002) 
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Figure 5A. Cotton Lint Yield Lagged Price Model 

 

 

 
 

Figure 5B. Potassium Lagged Price Model  
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Notes:  S1 = E(NPV) ($ /ha) = 8811.67   1479.23 (std. deviation) 

S2 = E(NPV) = 7316.49   1189.68 

S3 = E(NPV) = 8970.64   1461.42 

S4 = E(NPV) = 10583.82   1522.26 

 

Figure 6. Cumulative Distributions of Net Present Value Totals under Alternative Management   

          Scenarios and Soil Conditions, Average   
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IV. Summary and Conclusions  
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This these focused on the adoption and usefulness of precision soil sampling in cotton 

production and the value soil sampling information provides in determining optimal potassium 

application under alternative information scenarios. In examining the adoption and re-testing 

decision of cotton producers in regards to precision soil sampling information, the use of a 

consultant to apply inputs, the generation of a yield map using a yield monitor, the use of 

electroconductivity devices, and operators obtaining information from trade shows were 

positively associated with soil sampling adoption. Subsequently, of those farmers who did adopt 

soil testing, land tenure, farmer experience, the use of electricalconductivity devices, and 

Greenseeker® technology increased the number of years between soil testing. These results 

suggest that producers already using technologies which complement PSS may be more apt and 

likely to adopt PSS technology. Additionally, there appears to be some degree of substitution 

between the information acquired from precision soil testing and the information generated from 

other sensor-based technologies, resulting in longer periods between soil testing.  

In the second study, the hypothesis that using soil test information about residual K 

would increase profits was compared to other cases where K soil test data was nonexistent or 

ignored. When the producer had full information about cotton yield response to K and K 

carryover was significant, the NPV over a 5-year planning horizon was highest when application 

rates were adjusted to reflect carryover potential. Hence, a producer using soil test information 

when residual K fertilizer is significant would enjoy higher economic returns than when this 

information was ignored. When K carryover was absent, returns were 15 % higher when the 

producer had complete soil test information compared to when carryover was incorrectly 

accounted for in application decisions.  
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These results suggest in general that proper identification of soil nutrient properties and 

soil K carryover may result in substantially higher expected profits over a multi-period planning 

horizon. Monitoring the cycle of potassium flow by soil testing over several years could provide 

valuable information about potassium carryover potential, which in turn could lower input costs 

and increase profit over an intermediate planning horizon in cotton production. 
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