
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative
Exchange

Doctoral Dissertations Graduate School

11-2010

Mechanisms of Antimicrobial Peptide Resistance
in Campylobacter
Ky Van Hoang
The University of Tennessee, vhoang1@utk.edu

This Dissertation is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in Doctoral Dissertations by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more
information, please contact trace@utk.edu.

Recommended Citation
Hoang, Ky Van, "Mechanisms of Antimicrobial Peptide Resistance in Campylobacter. " PhD diss., University of Tennessee, 2010.
http://trace.tennessee.edu/utk_graddiss/887

http://trace.tennessee.edu
http://trace.tennessee.edu
http://trace.tennessee.edu/utk_graddiss
http://trace.tennessee.edu/utk-grad
mailto:trace@utk.edu


To the Graduate Council:

I am submitting herewith a dissertation written by Ky Van Hoang entitled "Mechanisms of Antimicrobial
Peptide Resistance in Campylobacter." I have examined the final electronic copy of this dissertation for
form and content and recommend that it be accepted in partial fulfillment of the requirements for the
degree of Doctor of Philosophy, with a major in Animal Science.

Jun Lin, Major Professor

We have read this dissertation and recommend its acceptance:

Kelly R. Robbins; Arnold M. Saxton; Gina M. Pighetti; Chunlei Su

Accepted for the Council:
Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)



To the Graduate Council: 

I am submitting herewith a dissertation written by Ky Van Hoang entitled 

“Mechanisms of Antimicrobial Peptide Resistance in Campylobacter”. I have 

examined the final electronic copy of this dissertation for form and content and 

recommend that it be accepted in partial fulfillment of the requirements for the 

degree of Doctor of Philosophy, with a major in Animal Science. 

    

    Jun Lin, Major Professor 

We have read this dissertation 

and recommend its acceptance: 

 

Kelly R. Robbins 

 

Arnold M. Saxton 

 

Gina M. Pighetti 

 

Chunlei Su  

  Accepted for the Council: 

      Carolyn R. Hodges 

Vice Provost and Dean of the Graduate School 

 

(Original signatures are on file with official student records.) 

 



 

 ii 

  

 

MECHANISMS OF ANTIMICROBIAL PEPTIDE 
RESISTANCE IN CAMPYLOBACTER 

 

 

 

 

 

 

 

A Dissertation Presented for the 
Doctor of Philosophy 

Degree 
The University of Tennessee, Knoxville 

 

 

 

 

 

 

 

 

Ky Van Hoang 
December 2010 



 

 iii 

 

 

 

 

 

 

 

 

 

 

Copyright © 2010 by 

Ky Van Hoang 

All rights reserved. 

 

 

 

 

 

 

  



 

 iv 

 

DEDICATION 

 

 

 

To 

my father and mother 

Thuc Van Hoang and Hoi Thi Nguyen, 

Who have made my dream come true; 

 

 

 

 

And also to  

my brothers and sisters, 

Who make my life meaningful. 



 

 v 

ACKNOWLEDGEMENTS 

I am grateful to the Department of Animal Science, The University of Tennessee 

for offering graduate assistantship. I would like to express sincere appreciation to my 

major professor, Dr. Jun Lin, the best mentor and professor that any graduate student can 

have, for his extreme patience, professional guidance, financial support in dissertation 

research. Without his assistance, I would never have obtained my scientific goals from 

this project. 

I would like to express  many thanks to my committee members; Dr. Kelly 

Robbins, one of my best friends, for his endless support and comments on my projects; to 

Drs. Arnold Saxton, Gina M. Pighetti, and Chunlei Su for data analysis and instructive 

comments in my learning process and critical review to this dissertation, and without 

their assistance, this dissertation would not be completed;  to Andree A. Hunkapiller for  

helping  in any aspects of my lab work; to my wonderful colleagues Dr. Fuzhou Xu, Dr. 

Ximin Zeng, Yingying Hong, and Wei Zhou for contributing to an interactive scientific 

environment and active discussions; to the personnel in Drs. Oliver, and Pighetti’s 

laboratories for coordinating and sharing research facilities; to the staffs in Johnson 

Animal Research and Teaching Unit for their invaluable assistance in maintenance and 

management of animal facility for my chicken experiments.  

Last, but not least, I thank and honor my parents who had worked extremely hard 

for my better education; my brothers, sisters, and my girlfriend for their unconditioned 

support, encouragement, patience, and love. 

 



 

 vi 

ABSTRACT 

Campylobacter is the major bacterial cause of human gastroenteritis in the United 

States and other developed countries. Poultry are considered a main source of human 

Campylobacter infections. Thus, reduction of Campylobacter load in poultry is 

significant in food safety and public health. However, no effective measure is 

commercially available to prevent Campylobacter colonization in poultry to date. 

Antimicrobial peptides (AMPs) are short and bactericidal peptides widely present in 

intestine to limit bacterial infections. Recently, AMPs have been increasingly recognized 

as a novel class of antibiotics (peptide antibiotics) to control foodborne pathogens. 

Notably, several potent anti-Campylobacter bacteriocins, a group of AMPs produced by 

commensal bacteria, dramatically reduced C. jejuni colonization in chickens and are 

being directed toward on-farm control of this pathogen to protect public health. As an 

important strategy to evade killing by potential peptide antibiotics and by host innate 

defense, AMP resistance mechanisms in C. jejuni are critical to understand, but are still 

unknown. In this dissertation, molecular basis of Campylobacter resistance to polymyxin 

B, the anti-Campylobacter bacteriocins (BCNs), and a chicken host defense AMP 

(fowlicidin-1) was comprehensively examined using both in vitro and in vivo systems. 

Although polymyxin B has been successfully used as a model peptide to study AMP 

resistance in other Gram-negative bacteria, functional genomics examination in this study 

suggested that polymyxin B is not a good surrogate to study Campylobacter resistance to 

physiologically relevant AMPs. Campylobacter only developed low-level BCN 

resistance with low frequency in vitro and in vivo; the acquired BCN resistance was not 
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stable in Campylobacter. Genomic examination of two BCN resistant mutants using 

DNA microarray and random transposon mutagenesis revealed that the multidrug efflux 

pump CmeABC contributes to both intrinsic and acquired resistance of Campylobacter to 

the BCNs. Random transposon mutagenesis and targeted site-directed mutagenesis 

identified four genes (cbrR, tig, cjaB, and cj1583c) involved in Campylobacter resistance 

to fowlicidin-1. These genes were also required for optimal colonization of 

Campylobacter in chickens. Together, the findings from this dissertation revealed 

uniqueness and complexity of AMP resistance in Campylobacter and will enable us to 

develop more sustainable peptide antibiotics and novel intervention strategies to prevent 

and control Campylobacter infections in humans and animal reservoirs. 

Key words: Campylobacter, antimicrobial peptide resistance, polymyxin B, bacteriocins, 

fowlicidins 

 

 

  



 

 viii 

TABLE OF CONTENTS 

INTRODUCTION ......................................................................................................xiii 
CHAPTER I .................................................................................................................. 1 
LITERATURE REVIEW ............................................................................................. 1 

AVIAN ANTIMICROBIAL PEPTIDES ........................................................................................... 7 
BACTERIOCINS: STRUCTURE AND CLASSIFICATION .......................................................... 9 
GENETIC ORGANIZATION OF BACTERIOCIN SYNTHESIS ................................................ 13 
REGULATION OF BACTERIOCIN SYNTHESIS........................................................................ 15 
APPLICATION OF BACTERIOCINS ........................................................................................... 16 
THE ROLE OF ANTIMICROBIAL PEPTIDES IN INNATE IMMUNITY AND 
GASTROINTESTINAL INFECTION ............................................................................................ 19 
ANTIMICROBIAL PEPTIDE RESISTANCE IN GRAM-NEGATIVE BACTERIA ................... 22 
APPENDIX ...................................................................................................................................... 28 

CHAPTER II ............................................................................................................... 30 
MECHANISMS OF POLYMYXIN B RESISTANCE IN ......................................... 30 
CAMPYLOBACTER JEJUNI ...................................................................................... 30 

ABSTRACT ..................................................................................................................................... 31 
INTRODUCTION ............................................................................................................................ 32 
MATERIALS AND METHODS...................................................................................................... 34 
RESULTS ......................................................................................................................................... 40 
DISCUSSION ................................................................................................................................... 42 
APPENDIX ...................................................................................................................................... 46 

CHAPTER III ............................................................................................................. 54 
PREVALENCE, DEVELOPMENT, AND MOLECULAR MECHANISMS OF 
BACTERIOCIN RESISTANCE AMONG CAMPYLOBACTER SPP ...................... 54 

ABSTRACT ..................................................................................................................................... 55 
INTRODUCTION ............................................................................................................................ 56 
MATERIALS AND METHODS...................................................................................................... 58 
RESULTS ......................................................................................................................................... 64 
DISCUSSION ................................................................................................................................... 68 
APPENDIX ...................................................................................................................................... 74 

CHAPTER IV .............................................................................................................. 83 
DEVELOPMENT AND STABILITY OF BACTERIOCIN RESISTANCE IN 
CAMPYLOBACTER .................................................................................................... 83 

ABSTRACT ..................................................................................................................................... 84 
INTRODUCTION ............................................................................................................................ 86 
MATERIALS AND METHODS...................................................................................................... 88 
RESULTS ......................................................................................................................................... 91 
DISCUSSION ................................................................................................................................... 93 
APPENDIX ...................................................................................................................................... 98 

CHAPTER V ............................................................................................................. 106 
IDENTIFICATION AND CHARACTERIZATION OF GENES REQUIRED FOR 
CAMPYLOBACTER RESISTANCE TO FOWLICIDIN-1, A CHICKEN HOST 
DEFENSE PEPTIDE ................................................................................................ 106 

ABSTRACT ................................................................................................................................... 107 
INTRODUCTION .......................................................................................................................... 108 
MATERIALS AND METHODS.................................................................................................... 110 
RESULTS ....................................................................................................................................... 115 
DISCUSSION ................................................................................................................................. 119 



 

 ix 

APPENDIX .................................................................................................................................... 125 
CHAPTER VI ............................................................................................................ 133 
CONCLUSIONS ....................................................................................................... 133 
LIST OF REFERENCES .......................................................................................... 137 
VITA .......................................................................................................................... 152 

 

  



 

 x 

LIST OF TABLES 

 TABLE                     PAGE 

 

Table 1. Nomenclature of chicken β-defensins …………………………………………29 

Table 2. Major bacterial strains and plasmids used in Chapter II study………………...47 

Table 3. Key primers used in Chapter II study……………………………………...…..48 

Table 4. Susceptibilities of C. jejuni JL148, isogenic galU mutant 46B, and 

complemented construct JL230 to different AMPs……………………………………...49 

Table 5. LOS required for polymyxin B resistance in Campylobacter…………………50 

Table 6. Examination of putative two-component regulatory and signal transduction 

systems of C. jejuni 11168……………………………………………………………….51 

Table 7. Transcriptome profiling of polymyxin B resistant mutant JL216……………...52 

Table 8. Major bacterial strains and plasmids used in Chapter III study……...………...75 

Table 9. Key oligonucleotide primers used in Chapter III study……...………………...76 

Table 10. Frequency of emergence of BCN resistant Campylobacter in vitro……….…77 

Table 11. Horizontal gene transfer of BCN resistance in Campylobacter spp………….78 

Table 12. Transcriptom profiling of BCNr JL341 identified by DNA 

microarray………………………………………………………………………………..79 

Table 13. CmeABC contributes to both intrinsic and acquired BCN resistance in C. 

jejuni NCTC 11168………………………………………………………………………80 

Table  14.  Identification of transposon mutants with increased sensitivity to BCN……81 

Table 15. Major bacterial strains used in Chapter IV study…….….…………………..99 



 

 xi 

Table 16. E-760 MICs of the in vivo-selected E-760r C. jejuni isolates and their isogenic 

cmeB mutants…………………………………………………………………………...100 

Table 17. Percentage of chickens colonized with Campylobacter spp………………...101 

Table 18. Major bacterial strains and plasmids used in Chapter V study………….......126 

Table 19. Key primers used for PCR in Chapter V study……………...………………127 

Table 20. Mutants with increased sensitivity to F-1…………………………………...128 

Table 21. Susceptibilities of diverse Campylobacter spp. to F-1………………………129 



 

 xii 

LIST OF FIGURES 

FIGURE                                PAGE 

 

Figure 1. GalU required for chicken colonization………………………………………53 

Figure 2. Prevalence of Campylobacter spp isolates resistance to BCNs………………82 

Figure 3. Shedding levels of Campylobacter colonization in chicken given bacteriocin 

 E-760…………………………………………………………………………………...102 

Figure 4. Percentage of chicken colonized with E-760r mutants following E-760 

treatment………………………………………………………………………………..103 

Figure 5. In vitro instability of bacteriocin E-760 resistance in the absence of selection 

pressure…………………………………………………………………………………104 

Figure 6. Stability of BCN resistance in vivo…………………………………………..105 

Figure 7. Genomic context of cjab, tig, cbrR, and cj1583c. …………………………..130 

Figure 8. Role of cbrR, tig, cjaB and sapB in F-1 resistance in C. jejuni..…………….131 

Figure 9. Tig, CjaB, and SapB are required for 81-176 colonization in chickens. ……132 

 

 

 



 

 xiii 

INTRODUCTION 

Campylobacter has emerged as the leading bacterial cause of human 

gastroenteritis in the United States and other industrialized countries (Ruiz-Palacios 

2007). This pathogenic organism is also associated with Guillain-Bare syndrome, an 

acute flaccid paralysis that may lead to respiratory muscle compromise and death. In the 

United States, the estimated cases of campylobacteriosis are more than 2 million, which 

have resulted in economical and medical costs of 1.5 to 8 billion US dollars each year 

(Buzby et al. 1997). Poultry and their products are the major sources for human 

Campylobacter infections (Kassenborg et al. 2004). In parallel to its increased 

prevalence, Campylobacter has become increasingly resistant to clinical antibiotics, 

posing a serious threat to public health (Allos 2001).  Therefore, development of effective 

intervention strategies is urgently needed to prevent and control Campylobacter 

infections in humans and animal reservoirs.  

Endogenous antimicrobial peptides (AMPs) belong to the most ancient and 

efficient components of host defense. Defensins and cathelicidins are two major groups 

of host AMPs that limit bacterial infections at the gastrointestinal mucosal surface (Bulet 

et al. 2004; Wehkamp et al. 2007). In addition to their significant role in host innate 

defense, AMPs including chicken cathelicidin fowlicidin-1 (F-1) have been increasingly 

recognized as a novel class of antibiotics (peptide antibiotics) to control pathogens (Xiao 

et al. 2006; Bommineni et al. 2007). Given the wide prevalence and successful 

colonization of C. jejuni in intestinal tract, C. jejuni should have acquired mechanisms to 
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resist AMPs widely present in the host. However, as an important strategy to evade 

killing by innate immunity and by potential peptide antibiotics AMP resistance 

mechanisms are still largely unknown in Campylobacter.  Availability of this information 

will provide insights into the delicate host-pathogen interactions and reveal novel 

intervention targets to control Campylobacter infections in humans and animal reservoirs. 

Some commensal bacteria also produce defense peptides, called bacteriocins 

(BCNs), to inhibit growth of other bacteria and gain survival advantage in specific niche 

in intestine (Riley et al. 2002). The natural and low-toxic BCNs have been proposed as 

promising candidates for novel antimicrobials (Cotter et al. 2005). Notably, several anti-

Campylobacter BCNs have been characterized (Stern et al. 2005; Svetoch et al. 2005; 

Stern et al. 2006). These BCNs have displayed potent killing effect against 

Campylobacter and dramatically reduced C. jejuni colonization in the intestine. 

Therefore, these natural anti-Campylobacter BCNs are being directed toward on-farm 

control of Campylobacter (Lin 2009). However, several critical issues of BCN 

applications (e.g. resistance development and mechanism) need to be addressed for future 

regulatory approval and public acceptability of this intervention measure. 

Polymyxin B (PM), a peptide antibiotic, has been used as a model peptide to 

study AMP resistance in many Gram-negative bacteria (Ernst et al. 2001; Finlay et al. 

2004). Gram-negative bacterial pathogens utilize multiple mechanisms to resist killing by 

PMs and other AMPs (Groisman et al. 1997; Ernst et al. 1999; Guina et al. 2000; Ernst et 

al. 2001; Groisman 2001; Lee et al. 2004; Moon et al. 2009). Inactivation of the genes 

responsible for PM resistance usually results in increased susceptibility of bacteria to a 
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variety of innate AMPs, leading to the reduced virulence of the mutants in animal model 

system (Ernst et al. 2001). Thus, investigation of PM resistance should be highly relevant 

to resistance to physiologically relevant AMPs and pathogenesis of Campylobacter. 

The main objective of this project is to examine AMP resistance in 

Campylobacter using both in vitro and in vivo systems. The following specific objectives 

were persued in this dissertation research: 

1) To identify and characterize genes involved in C. jejuni resistance to 

polymyxin B.  

2) To determine the prevalence, development, and molecular mechanisms of BCN 

resistance in Campylobacter. 

3) To determine the in vivo development and stability of BCN resistance in 

Campylobacter using chicken model system. 

4)   To systemically identify genes required for Campylobacter resistance to 

fowlicidin-1, a chicken host defense peptide.
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BIOCHEMICAL PROPERTIES AND STRUCTURES  

Antimicrobial peptides (AMPs), short peptides with length ranging from 15 to 50 

amino acid residues, are produced virtually by all classes of lives from prokaryotes to 

human and play an important role in innate immunity due to their potent antimicrobial 

activities against microorganisms (Bulet et al. 2004; De Smet et al. 2005).  Based on the 

sequence and structural analysis, more than 900 AMPs have been predicted and 

characterized to date. AMPs exert killing effects against many microorganisms including 

bacteria, viruses, and fungi. Recently, some AMPs (e.g. defensin, lactoferin, cecropin, 

magainin and melitin) were also found to display anticancer function (Hoskin et al. 

2008). 

AMPs are cationic and amphipathic molecules (Yeaman et al. 2003). Cationic 

characteristic is an important feature of AMPs, which could initiate electrostatic 

interaction of AMPs with negatively charged phospholipid membrane of bacteria and 

many other microorganisms (Shai 1999; Yeaman et al. 2003; Toke 2005). Most AMPs 

have high content of positively charged amino acids such as arginine and lysine rather 

than negatively charged amino acids such as aspartic and glutamic acids. Thus, the 

overall charge of AMPs is usually cationic, ranging from +2 to +9 at physiological pH 

(Yeaman et al. 2003; Bulet et al. 2004; Otvos 2005). Hydrophobicity of antimicrobial 

peptides is determined by the percentage of hydrophobic residues in  peptides (Yeaman et 

al. 2003), which facilitates the interaction of AMPs with hydrophobic regions of 

microbial cell membrane. Increasing hydrophobicity significantly increases the ability of 

AMPs to bind and permeate bacterial membrane (Yeaman et al. 2003). Together, the 
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cationic and amphipathic properties of AMPs are critical for killing microorganisms. 

However,  the amphipathicity of AMPs could cause toxicity to host cells whose 

membrane is composed of neutral phospholipids (Yeaman et al. 2003). Based on the 

sequence and structure analysis, AMPs have been classified into four groups (Oren et al. 

1998; Weinberg et al. 1998):   

(1) Linear α-helical AMPs. This group contains AMPs with simple linear, helical 

structure lacking disulfide bonds. They can be virtually found in many classes of living 

organisms including virus, bacteria, insects, fish, and human (Oren et al. 1998; Tossi et 

al. 2000). For example, cecropins, ceratotoxins, and metilins, which are produced by 

moths, flies, and bees, respectively, all belong to this group (Saito et al. 2005; Brown et 

al. 2008). Despite great differences on the origins, length, charge distribution, and 

hydrophobicity, the AMPs in this group contain positively charged regions and prone to 

adopt alpha helical conformation. Notably, many such AMPs only become alpha helical 

when they  interact with amphipathic phospholipids of cell membrane (Yeaman et al. 

2003).  

(2) Linear α-helical peptides without cystein and with high portion of certain 

amino acid residues such as proline, arginine and tryptophan (Dathe et al. 1999; 

Yeaman et al. 2003). These AMPs with high content of proline, arginine, or triptophan 

have distinctive cyclic structure that typically form extended conformation in aqueous 

solution and more compact in hydrophobic solvents (McCafferty et al. 1996). Many 

proline-rich AMPs have been identified such as apidaecin from honey bee, pyrrocidin 
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from insect, drocins from flies, bac-5 and bac-7 from bovine, and buforin II from frog 

(Bulet et al. 2004). 

(3)  β-sheet AMPs: This group of AMPs is characterized by the β-hairpin 

structure containing disulfide linkages (Weinberg et al. 1998; Reddy et al. 2004). Beta-

sheet AMPs can be isolated from a large numbers of different plants, animals and from 

various tissues such as trachea, intestine, tongue, plasma, and skin (Weinberg et al. 1998; 

Thomma et al. 2002; Higgs et al. 2007). Defensins, the representative of this group found 

in mammals, have three subfamilies sharing common genetic origin including α-

defensins, β-defensins, and ө-defensins. All of these mammalian defensins are small 

molecules (18–45 residues) that are cysteine and arginine-rich, and have a predominantly 

β-sheet structure that is stabilized by three intramolecular disulfide bonds (Sugiarto et al. 

2004).   

 (4) Cysteine-rich peptides. This group of AMPs contains several cysteine 

residues near C-terminal and N-terminal facilitating intramolecular disulfide bonds 

(Weinberg et al. 1998). For example, human neutrophil HNP-1, -2, and -3 from human 

granules (Ganz et al. 1985), drosomocin from drosophila, bacternectin from bovine 

neutrophill, brevinins and esculetin from frog skin (Ganz et al. 1985; Weinberg et al. 

1998) have three to four disulfide bonds making up complex structure containing alpha 

and anti-parallel beta sheets (Reddy et al. 2004). 

  MODES OF ACTION  
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 AMPs have very diverse sequence composition, conformation structures, and 

biophysical characteristics. The modes of action of AMPs are not fully understood. 

However, it has been widely accepted that AMPs exert antimicrobial activities through 

their interactions with the target membrane and interfering with the intracellular 

components of the microorganisms (Park et al. 1998; Shai 1999; Reddy et al. 2004; Otvos 

2005; Brown et al. 2006; Meade et al. 2009). 

Bacterial membrane targets. Fundamental differences between the mammalian 

cell membrane and bacterial cell membrane are the constituent compositions and 

architectures of the cell membrane. The normal mammalian cell membrane lipid bilayer 

is composed of neutrally charged lipid such as phosphatidylcholine (PC), 

phosphatidylethanolamine (PE), and sphingo myline (SM).  However, the lipid bilayers 

of bacterial cell membrane consist of positively charged components such as 

phosphatidylglycerol (PG), phosphatidylserine (PS), and cardiolipin (Yeaman et al. 

2003). The surface peptidoglycan is also negatively charged with the presence of techoic 

or terichuronic acids. In addition, Gram-negative bacteria have outer membrane 

composed of lipopolysaccharides (LPS) with negatively charged constituents such as 

phosphate group. These features make bacterial cell membrane have higher overall 

negative charge than normal mammalian cell membrane. Therefore, the negative charge 

together with the amphipathic feature of bacterial cell membrane facilitates the direct 

interaction between AMPs and bacterial envelope. 

AMPs interact with bacterial cell membrane via electrostatic and/or hydrophobic 

interactions. Briefly, cationic AMPs contact with negatively charged phosphate lipid 
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group of membrane via electrostatic force. Following this process is the interaction of 

hydrophobic domains of AMPs with hydrophobic groups of lipid chains in membrane. 

These interactions facilitate the AMP structure transit to favorable conformation, leading 

to the membrane pore formation, following by permeation, and transfer of AMPs into the 

cells. Three models of bacterial cell membrane pore formation have been proposed 

including barrel-stave mechanism, carpet-like mechanism, and toroidal pore mechanism 

(Oren et al. 1998; Park et al. 1998; Shai 1999; Yeaman et al. 2003; Bulet et al. 2004; 

Sengupta et al. 2008). Although AMPs commonly interact with bacterial cell membrane 

without requirement of AMP specific receptor, recent research demonstrated that some 

AMPs interact with bacterial cell membrane through specific receptors. For example, 

some AMPs, such as nisin, could target on lipid II, the precursor required for membrane 

peptidoglycan synthesis during cell division, and cause cell death (Hasper et al. 2004). 

Intracellular targets. The membrane perturbation of AMPs has been widely 

examined and is a major mechanism of AMP actions. However, there is increasing 

evidence to prove that AMPs have intracellular targets (Kragol et al. 2001; Xiong et al. 

2002; Yeaman et al. 2003; Otvos 2005; Pujals et al. 2008; Cho et al. 2009). Some AMPs 

could inhibit DNA replication. For instance, buforin II directly binds to DNA (Cho et al. 

2009). Thrombin-induced palette protein tPMP-1, human neutrophil defensin HNP-1, and 

bacterial peptide microcin B17 have been reported to interfere with DNA gyrase, an 

essential  enzyme for  relaxing the DNA scaffold during DNA replication (Xiong et al. 

1999; Heddle et al. 2001; Otvos 2005; Cho et al. 2009). Demaseptin, a chiramic peptide, 

could inhibit RNA synthesis (Balaban et al. 2004). Several AMPs also interfere with 
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protein translation and functions. For example, tPMP-1 binds to both 30S and 50S 

ribosomal subunits while HNP-1 only binds to 50S subunit (Xiong et al. 1999); proline-

rich peptides pyrrhocoricin, drocin, and apidaecin could interact with bacterial heat shock 

protein DnaK, an important protein responsible for protein folding (Kragol et al. 2001). 

Human histatins have high affinity to fungi mitochondrion and inhibit respiration process 

(Helmerhorst et al. 1999). However, the mechanisms of translocation of AMPs from 

surface to cytoplasm are not fully understood. It is important to note that a single AMP 

may have multiple surface as well as intracellular targets. 

AVIAN ANTIMICROBIAL PEPTIDES  

Recently, a full panel of avian AMPs have been identified and characterized from 

chicken, turkey, penguin, and mallard duck (Sugiarto et al. 2004; Lynn et al. 2007). 

Based on their sequences and structures, these AMPs fall into two groups, β- sheet  and 

α-helical known as β-defensins and fowlicidins respectively (van Dijk et al. 2005; Lynn 

et al. 2007). 

  β-defensins are cystein-rich with a triple-stranded β-sheet structure connected by 

a loop of  β-hairpin and are evolutionary conserved in humans and various animals 

(Sugiarto et al. 2004). Avian β-defensins (AvBDs), produced by heterophils and 

epithelial cells also called ‘gallinacins’ in chicken, include 14 homologous peptides 

encoded by cluster of genes located on chromosome 3 (Xiao et al. 2004; Lynn et al. 

2007). Avian heterophil β-defensins include Gal -1, Gal-1α, Gal-2 isolated from chicken; 

THP-1, THP-2 isolated from turkey; Osp-1 isolated from ostrich (Sugiarto et al. 2004; 
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Lynn et al. 2007). Avian non-heterophil β-defensins are produced by epithelial cells at 

different locations in the body. Chicken Gal-3 and turkey GVP-1 both containing 39 

amino acid residues and are produced by tracheal epithelial cells (Zhao et al. 2001). 

Penguin sphenicin was isolated from stomach content of penguin (Thouzeau et al. 2003). 

Gal-3 was also expressed in large intestine, air sac esophagus, skin, bursa  of fabricius, 

and kidney (Sugiarto et al. 2004). Different avian β-defensins and nomenclatures are 

summarized in Table 1. 

Fowlicidin family consists of four members including CTHL-1, CTHL-2, CTHL-

3 and CTHL-B1 encoded by cluster of genes located on chromosome 2 (van Dijk et al. 

2005; Xiao et al. 2006). Phylogenetic analysis demonstrated that CTHL-1, CTHL-2, and 

CTHL-3 are expressed by heteotrophil while CTHLB1 is expressed by mucosal epithelial 

M cells (van Dijk et al. 2005; Xiao et al. 2006). 

Avian AMPs could be constitutively expressed under normal  physiological 

conditions to resist microbial infections (Meade et al. 2009). Some chicken AMPs are 

expressed at different levels at different locations during early period of embryo 

development. Avian β-defensins 9, 10 were highly expressed at day 10 and day 12 in 

embryo abdomen while β- defensin 14 was highly expressed in the head of embryo 

(Meade et al. 2009). Avian defensins were found to be expressed in liver, intestine, and 

reproductive tracts (Silphaduang et al. 2006; Li et al. 2007; van Dijk et al. 2007). The 

expression of avian AMPs increases upon microbial infection. The β-defensin 1, 2, 4, 6 

and fowlicidins were highly expressed in chicken infected with Salmonella enterica 

serova Typhimurium (Akbari et al. 2008). 
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AMPs play an important role in innate and specific immune response. The 

antimicrobial activities are more important in avian than mammals because avian 

heterophils lack superoxide ion and myeloperoxidase (Penniall et al. 1975; Sugiarto et al. 

2004). Avian AMPs have a wide range of antimicrobial activities against Gram-negative, 

Gram-positive bacteria, and fungi (Sugiarto et al. 2004). Chicken heterophil β- defensin 

Gal-1, Gal-1α, and Gal-2 displayed antimicrobial activities against E. coli and Listeria 

monocytogenes; turkey defensins have broader antimicrobial spectrum  against various 

pathogens including Mycoplasma and fungi (Sugiarto et al. 2004). Antimicrobial 

activities of fowlicidins have been well studied. CTHL-1, and 2 display potent and broad 

antimicrobial activities against both Gram-negative and Gram-positive bacteria including 

those with antibiotic resistance (Xiao et al. 2006). These fowlicidins also have ability to 

neutralize bacterial LPS, and consequently reduce inflammation response (Xiao et al. 

2006). However, at high concentration, these fowlicidins exert cytotoxicity toward 

mammalian erythocytes and epithelial cells (Xiao et al. 2006). 

BACTERIOCINS: STRUCTURE AND CLASSIFICATION 

Development and spread of antibiotic resistance in bacterial pathogens have been 

the driving force for scientists to seek antibiotic alternatives. Great attention has been 

focused on bacteriophages, probiotics, and antimicrobial peptides including bacteriocins 

(Asaduzzaman et al. 2009; Lin et al. 2009). Bacteriocins (BCNs) are ribosomally 

synthesized bacterial proteins or peptides with narrow or broad antimicrobial activity 

spectrum against other bacteria. BCNs are produced by both Gram-negative and Gram-
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positive bacteria and up to 99% of bacteria may make at least one BCN for their 

microbial defense system (Klaenhammer 1988; Riley et al. 2002). 

 BCNs have a large degree of structural and biochemical diversity. Although a 

large numbers of bacteriocins have been identified and characterized, new BCNs are still 

being discovered and documented. Based on the physiochemical properties, BCNs have 

been classified into the following classes: 

  Class I bacteriocin (also named ‘lantibiotics’). Lantibiotics are ribosomally 

synthesized peptides containing unusual amino acid lanthionine produced by Gram-

positive bacteria  (Willey et al. 2007). To date, about 50 lantibiotics with average size of 

19-38 amino acid residues have been identified and characterized. To synthesize 

lantibiotics, the prepeptides of lantibiotic undergo extensive posttranslational 

modifications (e.g., dehydration of Ser and Thr), followed by the intramolecular addition 

of Cys residue onto the modified unsaturated amino acid residues (Willey et al. 2007; 

Smith et al. 2008). More than 15 different posttranslational modifications have been 

found in lantibiotics. The different posttranslational modifications result in structurally 

diverse peptides derived  from the same original pre-peptide sequences (Willey et al. 

2007).   

 Class II bacteriocins. Class II BCNs are the heat stable peptides with molecular 

weight less than 10 kDa, and do not contain lanthionine as observed in Class I BCNs. 

They have not undergone posttranslational modifications (Cotter et al. 2005). Based on 
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the structure, antimicrobial activities, and amino acid composition, class II BCNs have 

been divided into following three groups. 

Class IIa bacteriocins. More than 25 different class IIa BCNs with size ranging 

from 37 to 48 amino acid residues have been characterized (Drider et al. 2006). The most 

important characteristic of class IIa BCNs is that cysteine residues are usually located at 

N-terminal and C-terminal that form disulfide-bridge and stabilize their structure. The 

BCNs with higher numbers of disulfide bridges seem to have greater antimicrobial 

activities in comparison with those having  less disulfide bonds (Eijsink et al. 1998). 

Class IIa BCN consists of an N-terminal β-sheet-like domain that is stabilized by the 

conserved disulfide bridge and a C-terminal domain consisting of one or two α-helices of 

which the central α-helix is usually hydrophilic and the C-terminal  α-helix is 

hydrophobic/amphipathic (Fimland et al. 2005). Most of BCNs in this group have 

extended C-terminal tail structure containing an additional sulfide bridge to stabilize the 

3-D structure. N-terminal β-sheet-like domain contains the conserved YGNGVXaaC β-

turn motif. This conformation gives N-terminal of class II bacteriocins amphiphilic 

characteristics (Fimland et al. 2005). It has been suggested that YGNGVXaaC β-turn 

motif is a recognition sequence for membrane receptor which allows correct positioning 

of the BCN in the membrane surface (Chen et al. 1997). Previous studies have supported 

that the changes in YGNGVXaaC motif could lead  to the change of the N-terminal β-

sheet-like domain, ultimately affecting the antibacterial activities of class IIa BCNs 

(Quadri et al. 1997). Furthermore, most positively charged residues are located in the N-

terminal of the peptides. Thus, they are of importance for the initiation of electrostatic 
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interaction with the cell membrane (Chen et al. 1997). The central hydrophilic or slightly 

amphipathic α-helix is believed to have oblique orientation creating 30-600 with cell 

interface when class IIa bacteriocin interacts with bacterial membrane. During the 

interaction, central hydrophilic α- helix interacts with hydrophilic part of the cell 

membrane and spans onto membrane but does not inserts. This interaction facilitates the 

insertion of the C-terminal α- helix into the cell membrane (Bhugaloo-Vial et al. 1996). 

The C-terminal hydrophobic/amphiphilic α-helix also plays a very important role in class 

IIa bactriocin modes of action. It is believed that C-terminal hydrophobic/amphiphilic α-

helix is a putative transmembrane helix and inserts into bacterial cell membrane with the 

help of upstream oblique α-helix to form “barrel-stave” (Bhugaloo-Vial et al. 1996). 

Class IIb bacteriocins are the BCNs containing two peptides that form a 

bacteriocin. To date, about 15 two-peptide bacteriocins have been identified and 

characterized (Nissen-Meyer et al. 2010). A peptide (15-30 residues) from a two-peptide 

bacteriocin displays high antimicrobial activity only when it is combined with a 

complementary peptide. It has been proposed that the bacteriocins form a membrane-

penetrating helix-helix structure involving helix-helix-interacting GxxxG-motifs that are 

present in all characterized two peptide bacteriocins. The membrane and two-peptide 

bacteriocin interaction results in membrane pore formation that renders the membrane of 

sensitive bacteria permeable to a specific group of ions (Nissen-Meyer et al. 2010). 

Class IIc bacteriocins consist of BCNs whose N- and C-terminals are covalently 

linked, forming cyclic structure. Most BCNs of class IIc BCNs contain D-amino acids 

and the mechanisms of action of this bacteriocin group are not been well understood. 
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However, there is evidence that the bacteriocins exert killing bacteria via increased 

potassium ion efflux  (Kawai et al. 2004). 

 Class III bacteriocins. This group of BCNs also named ‘bacteriolysins’ (Cotter 

et al. 2005) are large and heat-labile AMPs with different domains responsible for 

different functions such as translocation, receptor binding, and killing activity (Cotter et 

al. 2005). Less than 10 class III BCNs have been identified and characterized including 

those from non-lactic acid bacteria (Cotter et al. 2005). The mode of action of this group 

of BCNs is different from class I and class II BCNs. They display antimicrobial activities 

toward sensitive cells by catalyzing cell wall hydrolysis (Cotter et al. 2005). For this 

group of BCNs, N-terminal domain is a catalytic domain homologous to endopeptidase 

while C-terminal domain is responsible for recognizing the targets (Valdes-Stauber et al. 

1994; Lai et al. 2002; Johnsen et al. 2005). 

GENETIC ORGANIZATION OF BACTERIOCIN SYNTHESIS 

The genes involved in BCN synthesis are generally found in clusters which can be 

located on bacterial chromosomes or on plasmids (Peschel et al. 2006; Willey et al. 2007; 

Asaduzzaman et al. 2009).  The  class I BCN producers have a panel of genes involved in 

BCN synthesis, which typically consist of genes encoding pre-peptide, posttranslational 

modification enzymes, transporters, accessory proteins, immunity proteins, and regulator. 

Class II and III BCN producers, however, do not have the enzymes required for 

posttranslational modification. 
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The structural gene encoding pre-peptide consists of N-terminal leader sequence 

and the BCN peptide sequence. The leader sequence contains two glycine residues which 

are believed to serve as signal recognition motif for the maturation and membrane 

translocation of the peptide across membrane. BCN transport system includes two 

distinct proteins: an ABC transporter consisting of 2-3 subunits located on the cell 

membrane, and an accessory protein. ABC translocator protein has conserved ATP-

binding domain at C-terminal and hydrophobic integral membrane N-terminal domain 

which was shown to cleave off the leader peptide sequence at double glycine motif. C-

terminal cytosolic domain contains the ATP-binding cassette which, upon binding to 

peptide, triggers ATP hydrolysis, consequently changing the ABC conformation leading 

to pre-peptide removal and translocation across the cytoplasmic membrane (Havarstein et 

al. 1995). It is suggested that the recognition between the N-terminal proteolytic domain 

of ABC transporter and the immature BCNs occurs by the interactions between 

hydrophobic residues on the amphiphilic α-helix pre-sequence and hydrophobic residues 

on or near the catalytic site in the N-terminal proteolytic domain of the ABC transporter 

protein (Aucher et al. 2005). Accessory protein bearing a hydrophobic N-terminal region 

and a large hydrophilic C-terminal section is postulated to be involved in processing 

membrane translocation and helping cleaving off peptide leader sequence (Havarstein et 

al. 1995).  

The BCN-producers use two distinct mechanisms to protect themselves from 

killing by the BCNs produced by themselves, production of immunity protein and 

specific ABC transporter. The ABC membrane efflux transporters are encoded by genes 
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adjacent to BCN synthesis genes. Different class bacteriocin producers use different 

protective strategies. Class I bacteriocin producers use both immunity protein and ABC 

type transporter, meanwhile class IIa and IIb producers use only immunity proteins, and 

class IIc producers rely only on ABC type transporter (Cotter et al. 2005; Stein et al. 

2005). Immunity proteins  are highly charged cytosolic proteins associated with cell 

membrane (Dayem et al. 1996). Immunity proteins interact with specific membrane 

proteins to confer resistance to cognate BCN products (Ennahar et al. 2000; Vincent et al. 

2009). Immunity proteins display high specificity towards their BCNs and exert 

protection only against their cognate BCNs, or under rare situations, against one or two 

other closely related BCNs (Fimland et al. 2002). 

REGULATION OF BACTERIOCIN SYNTHESIS 

Bacteriocin synthesis has long been proven to be regulated by quorum-sensing 

mechanism which includes production of autoinducer and the corresponding two-

component regulatory systems (Quadri 2002; Sturme et al. 2002). In particular, the 

regulation of class II and III BCN synthesis by quorum sensing has been extensively 

studied (Quadri 2002; Riley et al. 2002; Stein et al. 2002). The regulatory system is 

composed of three gene products, also termed three–component regulatory system which 

consists of an autoinducer peptide-pheromone (AIP), a transmembrane histidine kinase 

(pheromone receptor), and a cytoplasmic response regulator (Drider et al. 2006). Similar 

to  the BCN structural genes, the genes encoding for autoinducers have two parts: the 

leader sequence and inductive sequence (Ennahar et al. 2000). The processing of 
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immature inductive peptide including cleavage of leader sequence and membrane 

translocation is similar to the process of BCN maturation and export (Ennahar et al. 

2000). Once outside the cell, induction peptides act as autoinducers for quorum sensing 

to regulate BCN synthesis. In addition to depending on cell density, production of class II 

and III BCNs is affected by temperature, ionic strength, and pH (Leroy et al. 1999; 

Fimland et al. 2000). Class I BCN producers do not have specific autoinducer genes in 

BCN synthesis cluster. Interestingly, some class I BCNs also could function as an 

autoinducer in addition to antibacterial activity. For example, Nisin A has unique 

sequences at N- and C-terminal that serve as quorum sensing signal to interact with its 

corresponding two-component regulatory systems (Miller et al. 2001; Quadri 2002; 

Sturme et al. 2002). However, some evidence suggests that class I bacteriocin producers 

also have other autoinducer genes separating from bacteriocin synthesis cluster genes 

(Sturme et al. 2002). 

APPLICATION OF BACTERIOCINS 

BCNs have been widely used in food processing and preservation (Cotter et al. 

2005; Drider et al. 2006). Recently, BCNs have been increasingly recognized as novel 

antibiotic alternatives to clinical antibiotics to control pathogens (Ennahar et al. 2000; 

Drider et al. 2006). Following are brief reviews for the application of BCNs in different 

areas. 

For decades, BCNs have been used in food processing and preservation. Most 

BCNs are produced by food-grade microorganisms such as lactic acid bacteria (LAB). In 
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addition, most BCNs are heat and pH stable, low toxicity to eukaryotic cells and resistant 

to digestive protease (Cotter et al. 2005; Drider et al. 2006). Thus, application of BCNs in 

food processing and preservation have benefits such as extended shelf life of foods, 

reducing risks of foodborne pathogen transmission and reducing chemical use as 

preservatives (Settanni et al. 2008). Bacteriocins have been applied in food to either 

control the microbial succession during fermentation or inhibiting the uncontrolled 

growth of bacterial spoilage during storage of both animal and vegetable products 

(Aymerich et al. 2002; Settanni et al. 2008). For example, nisin A and Z have been 

accepted worldwide as powerful and safe food additives in controlling food spoilage in 

almost 50 countries for over 40 years (Asaduzzaman et al. 2009). Inoculation of a 

leucocin, a BCN produced by Leuconostoc gelidum, to meat can preserve vacuum-packed 

meat up to 8 weeks by inhibiting the growth of Lactobacillus sakei which spoils meat and 

generates distinct sulfur odors (Leisner et al. 1996). 

Food-borne pathogens are still major problem throughout the world. The leading 

human pathogens associated with foods include Campylobacter spp, Salmonella spp, E. 

coli spp, and Listeria spp. One potential advantage of BCNs or their producer organisms 

is their ability to inhibit the growth or kill foodborne pathogens (Drider et al. 2006). On-

farm control of food borne pathogens is a major concern in the food chain due to the high 

probability of pathogens originating from farms. For example, human 

campylobacateriosis is mostly due the consumption of contaminated poultry meat in 

which Campylobacter colonize commensally. Reduction of Campylobacter spp on farms 

would significantly reduce Campylobacter in meat, and thus reduce human 
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Campylobacter infections (Lin et al. 2009). Several anti-Campylobacter BCNs were 

successfully isolated and characterized from chicken commensal bacteria, which include 

OR-7 from Lactobacillus salivarius (Stern et al. 2006), E-760 and E50-52 from 

Enterococcus faecium (Line et al. 2008; Svetoch et al. 2008), and SRCAM from 

Paenibacillus polymyxa (Stern et al. 2005). Animal studies have demonstrated that these 

BCNs dramatically reduced C. jejuni colonization in chicken intestine and these 

bacteriocins are being developed toward on-farm control of Campylobacter to protect 

public health (Stern et al. 2005; Cole et al. 2006; Svetoch et al. 2008; Lin et al. 2009). 

BCNs and BCN-producers have been also used to control food borne pathogens 

during food processing. For example, supplementation of class IIa bacteriocin producing 

LAB to fresh and processed meat resulted in  temperature-dependent inhibition of the 

growth of Listeria monocytogenesis and Listeria innocua  (Hugas et al. 1998). Addition 

of purified piscicolin 126 and enterocin CCM4231 to cheese and soy milk during 

processing inhibits the growth of L. monocytogenesis (Wan et al. 1997; Laukova et al. 

1999). Also addition of piscicolin 126 to ham paste resulted in reduction of L. 

monocytogenesis below detectable levels (Jack et al. 1996). Recently, a number of BCNs 

isolated from different bacterial strains display antimicrobial activity against L. 

monocytogenesis and could be used to control this food borne pathogen in food products 

(Drider et al. 2006). BCNs can be used in combination with other methods which will 

increase the antimicrobial activity and efficiency of BCNs. These methods include 

chemical substances, pulse electric field, heat treatment, hydrostatic pressure, modified 

atmosphere packaging, and irradiation (Galvez et al. 2007) 
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The rapid development and spread of multi-drug resistance to traditional 

antibiotics are the driving force for seeking alternative methods for infection treatment 

and prevention (Davies 1997). In addition, the biggest limitation of conventional 

antibiotics is their broad spectrum of activities which kill not only targeted bacteria but 

also untargeted microorganisms in various environmental and host niches. Thus, frequent 

use of those antibiotics results in intense selection pressure on sensitive microorganisms 

in the ecosystem (Walker et al. 2001). The current attempt to solve this problem, perhaps, 

is to develop new antibiotics that have narrow spectrum of activity, least likely to 

facilitate resistance, and can combat multi-drug resistant bacteria. Given its narrow 

killing spectrum and diverse modes of action, BCN is a novel and effective alternative to 

conventional antibiotics. The use of BCNs in human and veterinary medicine is still in 

the preclinical stages (Breukink et al. 2006). In vivo trials with animal models have 

demonstrated the success of bacteriocins in treating infections caused by S. pneumonia, 

and multi drug resistant Staphylococcus aureus (Goldstein et al. 1998; Kruszewska et al. 

2004). Nisin, lacticin 3147, mersacin, and actagardine have been demonstrated to be 

effective against bacterial mastitis, oral decay, enterococcal infection, and septic ulcer 

(DelvesBroughton et al. 1996; Goldstein et al. 1998; Galvin et al. 1999). 

THE ROLE OF ANTIMICROBIAL PEPTIDES IN INNATE IMMUNITY AND 

GASTROINTESTINAL INFECTION 

Antimicrobial peptides (AMPs) are a major component of host innate immunity 

systems (Mallow et al. 1996; Bals et al. 2003; Bevins 2005; De Smet et al. 2005; 
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Hasenstein et al. 2006). Defensins and cathelicidins (α-helical AMPs) are two major 

families of AMPs in humans and animals (Wehkamp et al. 2007). Defensins are broadly 

present in mammalian epithelial cells and phagocytes with concentrations as high as 

millimolar levels. Cathelicidins are present in the granules of phagocytes and mucosal 

epithelial cells (Wehkamp, J., J. Schauber, and E. F. Stange. 2007. In the human 

intestinal tract both defensins and cathelicidins are important AMPs expressed by the 

gastrointestinal epithelium and protect host against pathogens (Wehkamp 2007). α-

defensins and β-defensins exert potent killing effect against various pathogens such as  E. 

coli, Staphylococcus aureus, Salmonella enteritica typhimurium, Pseudomonas 

aeruginosa, Listeria monocytogenes ,and fungus Candida albicans (Porter et al. 1997; 

Ghosh et al. 2002). The widespread expression of defensins in the GI tract suggests their 

important role in the maintenance of a stable microbial population in the intestine. This 

could, on the one hand, prevent invasion of host tissues by luminal flora and ingested 

pathogenic bacteria, and on the other hand, maintain relative sterility in certain areas of 

GI tract (Cunliffe et al. 2004). Mice lacking defensins were found to be sensitive to lethal 

infection with S. enteritica serovar Typhimurium, but transgenic mice that expressed 

human defensins could resist oral infection with S. enteritica serovar Typhimurium at 

dose lethal to nontransgenic animal control (Salzman et al. 2003). Moreover, in wild type 

mice the antimicrobial activity was largely neutralized by defensin-specific antibodies, 

indicating that defensins were responsible for most of the activity. Taken together, these 

experiments provided important evidence for the protective role of defensins in the early 

stage of infection. Several studies also demonstrated that defensins take part in adaptive 
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immunity by acting as chemo-attractants for dendritic cells (DCs), monocytes, and T cells 

(Durr et al. 2002). 

Cathelicidins are widely expressed in various tissues including myeloid cells, 

mucosal surface of skin, respiratory epithelia, GI tract, reproductive tract, eccrine and 

salivary glands (Zanetti 2005). Cathelicidins display antimicrobial activities against many 

microorganisms including Gram-negative bacteria  such as P. aeruginosa, S. 

typhimurium, E. coli and Gram-positive bacteria such as S. aureus and S. epidermidis 

(Smeianov et al. 2000). Cathelicidins-deficient mice developed much larger areas of 

subcutaneous infection with Group A Streptococcus than heterozygous or wild type mice 

(Nizet et al. 2001). Other effects of cathelicidin (LL-37) to the innate immune response is 

the ability to bind and neutralize the biological activities of LPS, a septic shock 

component of gram negative bacteria (Larrick et al. 1995). Recruitment of immune cells 

to the site of infection is one process in the innate and adaptive defense. Cathelicidins are 

chemotactic for neutrophils, monocytes, mast cells, and T-cells. In addition, they induce 

degranulation of mast cells, alter transcriptional responses in macrophage, stimulate 

wound vascularization and re-epithelialization of the healing skin, and antitumor 

activities (Okumura et al. 2004; Zanetti 2004). 

Other host AMPs such as histatins and lysozyme that are produced by mammalian 

parotid glands also play an important role in innate immunity. Histatins have 

antimicrobial activity against pathogenic fungi such as Candida albicans, Cryptococcus 

neoformans, and Aspergillus fumigatus (Helmerhorst et al. 1999). Histatins can bind to a 

receptor and enter the cell, leading to cell cycle arrest, efflux of ATP out of the cell, and 
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release of the reactive oxygen radicals (Kavanagh et al. 2004). Lysozyme displays 

bactericidal activity by hydrolyzing β1-4 glycosidic bonds between N-acetyl glucosamine 

and N-acetyl muramic acid of Gram-positive bacterial cell wall and subsequently causes 

cell death. Lysozyme is active against Enterococcus faecalis and Staphylococcus aureus 

(Dommett et al. 2005). Moreover, lysozyme is also able to enhance the phagocytic 

activity of both polymorphonuclear leukocytes and macrophages and bind to free LPS 

and lipoteichoic acid of Gram-negative and Gram-positive bacteria respectively 

(Kokoshis et al. 1978; Ginsburg 2002). PLA2, cytokine CCL20 expressed in GI tract, has 

strong antimicrobial activity against a variety of microorganisms such as Salmonella, E. 

coli, Listeria, and C. albicans (Beers et al. 2002; Yang et al. 2003). Taken together, 

AMPs play indispensible roles in innate immunity in gastrointestinal tracts. 

ANTIMICROBIAL PEPTIDE RESISTANCE IN GRAM-NEGATIVE BACTERIA 

Bacterial pathogens have co-evolved with host innate defense and developed 

means to curtail the effects of endogenous AMPs such as defensins, cathelicidins and 

bacteriocins (Riley et al. 2002; Peschel et al. 2006). The best studied AMP resistance 

mechanisms in Gram-negative bacteria involve 1) electrostatic repulsion of AMPs by 

modification of cell surface, 2) proteolytic cleavage of AMPs, and 3) active extrusion of 

AMPs by drug efflux pumps (Guo et al. 1998; Yeaman et al. 2003; Campos et al. 2004). 

Other mechanisms, such as capsule production, changes in the composition of lipid fatty 

acids in membrane and maintenance of appropriate membrane potential have also been 

implicated in AMP resistance (Campos et al. 2004). Gram-negative bacteria capable of 
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surviving exposure to AMPs utilize two distinct strategies: constitutive resistance and 

inducible resistance (Guo et al. 1998; Yeaman et al. 2003; Yount et al. 2005). These two 

strategies are briefly reviewed below. 

Constitutive mechanisms of resistance are defined as intrinsic or inherent 

properties of bacteria that confer basal level of AMP resistance and are constitutively 

expressed. In general, there are five mechanisms contributing to constitutive resistance to 

AMPs:  1) Inherent cell wall composition or architecture. Most AMPs interact with 

bacterial cell wall which is composed of glycocalyx or phospholipids. Thus, bacteria 

possessing unusual glycocalyx or phospholipid composition inherently may lack 

electrostatic affinity or even repel cationic AMPs, leading to significant intrinsic AMP 

resistance (Yount et al. 2005). 2) Influence of transmembrane potential. Transmembrane 

potential is electrochemical gradient between inner and outer bilayers of the cytoplasmic 

membrane, resulting from differing degrees and rates of proton flux across the 

membrane. This significant difference in membrane electrochemistry has been postulated 

to be crucial in defining selective toxicity of AMPs through self-promoted uptake 

mechanism (Hancock 1997). Transmembrane potential or proton motive force of 

energized membrane facilitates the interaction with antimicrobial peptides. Thus, 

reduction in transmembrane potential may help bacteria resistance to AMPs (Yeaman et 

al. 1998). 3) Electrostatic shielding. Capsule,  glycocalyx or biofilm of certain bacteria 

containing an anionic complex of carbon hydrate and phosphate including anionic acid 

alginate plays very important role in adherence of bacteria to the target cells and helping 

them to avoid opsonic phagocytes (Campos et al. 2004; Bishop et al. 2008). In vitro study 
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showed that the cationic peptides are more antagonized by polyanion alginate (Friedrich 

et al. 1999). Capsule of some bacterial pathogens such as P. aeruginosa, E. coli, 

Klebsiella has been demonstrated to have electronegative alginate which is thought to 

sequester cationic antimicrobial peptides, consequently preclude peptide access to the 

bacterial membrane (Chan et al. 2004). 4) Multidrug efflux pumps. There three major 

families  of multidrug efflux pumps have been characterized in Gram-negative bacteria, 

which include the Major Facilator Superfamily (MFS), the ATP-binding cassette (ABC) 

superfamily, and the Resistance Nodulation Division (RND) family (Piddock 2006). The 

constitutively expressed efflux pumps have been demonstrated to play a role in resistance 

to AMPs such as protamine and human β-defensins (Lin et al. 2002; Moskowitz et al. 

2004; Eswarappa et al. 2008). 5) Niche-specific resistance. In certain anatomical and 

physiological niches, bacteria can resist killing by AMPs due to the  expression of 

specific components in specific niches (Yeaman et al. 2003). Some bacteria have 

potential to exploit specific anatomical settings as a means of circumventing the effect of 

antimicrobial peptides. For instance, opportunistic Gram-negative bacterium P. 

aruginosa preferentially colonizes tissues such as respiratory airway, the mucosal surface 

having abnormal osmotic or ionic strength. The lipid A structures in cystic fibrosis 

(airways) clinical isolates that are more resistant to antimicrobial peptides are distinct 

from those seen in acute clinical infections and isolates from environments (Ernst et al. 

1999). This phenomenon suggests that the anatomical and physiological niches facilitate 

AMP resistance. 
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With respect to inducible AMP resistance mechanism that is triggered by 

environmental signals, modifications of LPS in outer membrane via two-component 

regulatory systems (e.g. PhoP/PhoQ) have been identified as major mechanisms to APMs 

in Gram-negative bacteria (Guo et al. 1998; Yount et al. 2005). The negatively charged 

LPS involves the electrostatic interaction of cell surface with cationic AMPs in Gram-

negative bacteria. Thus, Gram-negative bacteria can add covalent modification to LPS 

and consequently reduce the negative charge and/or membrane fluidity of LPS and 

protect themselves from attacks by AMPs.  AMP resistance mediated by LPS 

modifications has been well studied in Salmonella typhimurium (Gunn et al. 1996; Guo et 

al. 1998; Guina et al. 2000) and in other bacteria including Escherichia coli (Trent et al. 

2001; Yan et al. 2007; Herrera et al. 2010), Pseudomonas aeruginosa (Dorrer et al. 

1977; Ernst et al. 1999), Proteus mirabilis (McCoy et al. 2001; Wang et al. 2008), 

Bordetella bronchiseptica (Banemann et al. 1998; West et al. 2000). In Salmonella, two-

component regulatory systems including PhoP/PhoQ and PmrA/PmrB contributed 

significantly to LPS modifications and AMP resistance by modulating the  transcription 

of genes involved in the modification of lipid A, the bioactive component of LPS (Gunn 

et al. 1996; Gunn et al. 1998). In response to low extracellular Mg2+ or Ca2+, PhoP/PhoQ 

directly activated pagP and ugtL genes for LPS modification (Guina et al. 2000). PagP is 

an outer membrane protein essential for addition of palmitate to Salmonella lipid A, 

leading to the enhanced resistance of S. typhimurium to α-helical AMPs (Guina et al. 

2000). UgtL is an inner membrane protein that promotes the formation of 

monophosphorylated lipid A in the LPS and contributes resistance to polymyxin B (PM) 

and α-helical AMP magainin (Shi et al. 2004). By mediating activation of the second 
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two-component system PmrA/PmrB under low  Mg2+ conditions, PhoP/PhoQ also 

indirectly activated genes required for modification of lipid A with aminoarabinose 

(Gunn et al. 1998; Guina et al. 2000) and phosphoethanolamine (Gunn 2001). 

Specifically, the pbgP operon and ugd genes were essential for both the biosynthesis and 

incorporation of aminoarabinose into lipid A and are required for PM resistance (Lee et 

al. 2004). The pmrC gene encoding a putative aminotransferase mediated 

phosphoethanolamine modification of lipid A and confers PM resistance in S. 

typhimurium (Lee et al. 2004). 

In addition to LPS modification, Gram-negative bacteria also have other inducible 

mechanisms to resist AMPs via two-component or other regulatory systems. Direct 

degradation of AMPs by proteases is important for α-helical AMP resistance in some 

bacteria.  Salmonella outer membrane endopeptidase PgtE inactivated a panel of α-helical 

but not β-sheet AMPs and inactivation of PgtE resulted in increase in vitro sensitivity of 

Salmonella to many α-helical AMPs (Guina et al. 2000). PgtE homologies were found in 

outer membrane of E. coli (OmpT), and Yersnia (Pla) (Sugimura et al. 1988; Sodeinde et 

al. 1992), suggesting that this is a common AMP resistance mechanism in bacteria. 

Expression of E. coli OmpT increased survival of E. coli growth in the presence of 

protamine. OmpT degraded protamine at the extracellular facet of the outer membrane 

(Yeaman et al. 2003). Strains with deletion of this gene became hyper susceptible to 

protamine. Some Gram-negative bacteria can also secrete peptidase to inactivate AMPs. 

Secreted metallopeptidases ZmpA and AmpB were found in Burkholderia cenocepacia. 

These enzymes were shown to cleave human cathelicidin LL-37 and β-defensin-1, 
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respectively (Kooi et al. 2009). In addition to AMP enzymatic degradation, there also 

have been  numbers of studies on the role of efflux pumps in inducible AMP resistance. 

In Neisseria gonorroeae, efflux pump MtrCDE expression was increased in the presence 

of protegrin-1 and human cathelicidin LL -37 (Shafer et al. 1998). Similarly, the efflux 

pump RosA/RosB in Yersinia was found to be induced in the presence of AMPs such as 

polymyxin B (Bengoechea et al. 2000). Collectively, resistance to AMPs in bacteria is 

mediated by membrane potential, modification of bacterial membrane, production of 

enzymatic activities, and efflux pumps. 
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Table 1. Nomenclature of chicken β-defensins 

No. New gene/protein 
name 

RefSeq definition Lynn/Higgs et al. 
definition 

Xiao et al. 
definition 

1 Avian beta-defensin 
1 (AvBD1) 

Gallinacin 1 
(GAL1) 

Gallinacin 1 (GAL1) Gallinacin 1 
(GAL1) 

2 Avian beta-defensin 
2 (AvBD2) 

Gallinacin 2 
(GAL2) 

Gallinacin 2 (GAL2) Gallinacin 2 
(GAL2) 

3 Avian beta-defensin 
3 (AvBD3) 

Beta-defensin 
prepropeptide 
(GAL3) 

Gallinacin 3 (GAL3) Gallinacin 3 
(GAL3) 

4 Avian beta-defensin 
4 (AvBD4) 

GAL4 (GAL4) Gallinacin 7 
prepropeptide (GAL7) 

Beta-
defensin 4 
(AvBD4) 

5 Avian beta-defensin 
5 (AvBD5) 

GAL5 (GAL5) Gallinacin 9 
prepropeptide (GAL9) 

Beta-
defensin 5 
(AvBD5) 

6 Avian beta-defensin 
6 (AvBD6) 

GAL6 (GAL6) Gallinacin 4 
prepropeptide (GAL4) 

Beta-
defensin 6 
(AvBD6) 

7 Avian beta-defensin 
7 (AvBD7) 

GAL7 (GAL7) Gallinacin 5 
prepropeptide (GAL5) 

Beta-
defensin 7 
(AvBD7) 

8 Avian beta-defensin 
8 (AvBD8) 

GAL8 (GAL8) Gallinacin 12 
prepropeptide (GAL12) 

Beta-
defensin 8 
(AvBD8) 

9 Avian beta-defensin 
9 (AvBD9) 

GAL9 (GAL9) Gallinacin 6 
prepropeptide (GAL6) 

Beta-
defensin 9 
(AvBD9) 

10 Avian beta-defensin 
10 (AvBD10) 

GAL10 (GAL10) Gallinacin 8 
prepropeptide (GAL8) 

Beta-
defensin 10 
(AvBD10) 

11 Avian beta-defensin 
11(AvBD11) 

GAL11(GAL11)  Beta-
defensin 
11(AvBD11) 

12 Avian beta-defensin 
12(AvBD12) 

Beta-defensin 12 
(GAL12) 

Gallinacin 10 
prepropeptide (GAL10 

Beta-
defensin 
12(AvBD12) 

13 Avian beta-defensin 
13(AvBD13) 

Beta-defensin 13 
(GAL13) 

Gallinacin 11 
prepropeptide (GAL11) 

Beta-
defensin 
13(AvBD13) 

14 Avian beta-defensin 
14(AvBD14) 

Gallinacin 14 
(GAL14) 

 Beta-
defensin 
14(AvBD14) 
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ABSTRACT 

Antimicrobial peptides (AMPs) function as critical innate barriers limiting 

bacterial infections at the gastrointestinal mucosal surface. Recently, AMPs also became 

recognized as a novel class of antibiotics to control pathogens. As an important strategy 

to evade killing by host innate immunity and by novel peptide antibiotics, the 

mechanisms of AMP resistance in C. jejuni are critical to understand, but are still 

unknown. In this study, Polymyxin B (PM), a peptide antibiotic, was used as a model 

peptide to study mechanisms of AMP resistance in Campylobacter. Using bioinformatic 

and microarrays in conjunction with molecular approaches, we observed that several 

lipooligosaccharide (LOS) synthesis genes (galU, waaC, waaF, neuB, and cgtA) were 

involved in PM resistance in Campylobacter. Inactivation of GalU also resulted in 

significantly reduced colonization ability of C. jejuni in chickens. Examination of the 

sequences encoding various two-component regulatory systems in two PM resistant 

mutants did not identify any mutations, which is different from what has been observed 

in other Gram-negative bacteria. Transcriptome analysis of PM resistant mutant using 

microarray showed that Cj0811, which is likely involved in lipid A synthesis, contributed 

to PM resistance. However, the identified genes were not involved in resistance of 

Campylobacter to physiologically relevant AMPs such as chicken host AMPs and anti-

Campylobacter bacteriocins (BCNs). Therefore, PM may not be an ideal surrogate to 

study Campylobacter resistance to physiologically relevant AMPs. Natural AMPs should 

be directly used to identify Campylobacter genes contributing to AMP resistance. 
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INTRODUCTION 

Campylobacter has emerged as the leading bacterial cause of human 

gastroenteritis in the United States and other industrialized countries (Ruiz-Palacios 

2007). This pathogenic organism is also associated with Guillain-Bare syndrome, an 

acute flaccid paralysis that may lead to respiratory muscle compromise and death. In the 

United States, the estimated cases of campylobacteriosis are more than 2 million. Total  

economical and medical costs were estimated 1.5 to 8 billion US dollars each year 

(Buzby et al. 1997). Poultry and their products are the major sources for human 

Campylobacter infections (Kassenborg et al. 2004). In parallel to its increased 

prevalence, Campylobacter has become increasingly resistant to clinical antibiotics, 

posing a serious threat to public health (Allos 2001).  Therefore, development of effective 

intervention strategies is urgently needed to prevent and control Campylobacter 

infections in humans and animal reservoirs.  

Antimicrobial peptides (AMPs) are a major component of  host defense and 

function as critical innate barriers limiting microbial infections at the gastrointestinal 

mucosal surface in animals (Yeaman et al. 2003; De Smet et al. 2005; Brown et al. 2006). 

Recently, AMPs also became recognized as a novel class of antibiotics (peptide 

antibiotics) and have been proposed as future anti-infective products to control zoonotic 

pathogens in the avian intestinal tract. Notably, some chicken commensal bacteria-

produced AMPs, also called “bacteriocins” (BCNs), dramatically reduced C. jejuni 

colonization in chickens and turkeys and are being directed toward on-farm control of 

this pathogen (Stern et al. 2005; Svetoch et al. 2005; Stern et al. 2006).  As an important 
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strategy to evade killing by avian innate immunity and by novel peptide antibiotics, the 

mechanisms of AMP resistance are still unknown in C. jejuni. Availability of this 

information is not only critical to reveal novel virulence determinants contributing to in 

vivo survival of C. jejuni but also is important to better depict the modes of AMP action 

and facilitate the development of potent peptide antibiotics to reduce C. jejuni load in 

poultry. The recent completion of several C. jejuni whole genome sequences allows us to 

comprehensively identify genetic loci required for AMP resistance using functional 

genomic approaches. 

Polymyxin B (PM), an AMP produced by bacterium Paenibacillus polymyxa, has 

been widely and successfully used for studying AMP resistance in bacteria including 

different enteric pathogens (Ernst et al. 2001; Finlay et al. 2004). Although PM bears 

little structural resemblance to the host defense AMPs, inactivation of the genes 

responsible for PM resistance usually resulted in increased susceptibility of bacteria to a 

variety of innate AMPs, leading to reduce virulence of the mutants in animal model 

system (Ernst et al. 2001). Therefore, studying mechanisms of PM resistance in 

Campylobacter may reveal novel virulent determinants required for in vivo adaptation of 

Campylobacter. Furthermore, PM is easily available compared to most natural AMPs and 

is ideal for large-scale functional genomics studies. Thus, investigation of PM resistance 

likely reveals genes important for Campylobacter resistance to physiologically relevant 

AMPs. 

In our recent study, using random transposon mutagenesis, we identified several 

genetic loci contributing to PM resistance including GalU, an enzyme involved in LOS 
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synthesis (Lin et al. 2009). In this study, we continue to evaluate the role of galU in AMP 

resistance and in vivo colonization of Campylobacter in chickens. The contribution of 

other LOS synthesis genes (waaC, waaF, neuB, and cgtA) to AMP resistance was also 

determined. In addition, several molecular approaches including microarray and sequence 

comparison were used to further determine the mechanisms of Campylobacter resistance 

to PM and other AMPs. 

MATERIALS AND METHODS 

Major bacterial strains and growth conditions. Bacterial strains and plasmids 

used in this study are listed in Table 2. Campylobacter strains were routinely grown in 

Mueller-Hinton (MH) broth (Difco) or on MH agar at 420C under microaerobic 

conditions, which was generated by CampyGen Plus (Oxoid) gas pack in an enclosed jar. 

When needed antibiotics kanamycin (Kan) or chloramphenicol (Cm) were added into 

MH broth or agar to desired concentrations. E. coli strains were grown at 370C in Luria-

Bertani (LB) medium with shaking and supplemented with 30 μg/ml of Kan or 20 μg/ml 

of Cm. 

in vitro selection of PMr mutants. The PMr mutants were obtained by single or 

stepwise in vitro selection methods. Briefly, to obtain the PMr mutant JL216 (MIC = 64 

µg/ml), an overnight culture of C. jejuni 81-176 grown on MH agar plates was harvested 

and approximately 1012 cells were spread on MH agar plate containing 128 µg/ml of PM. 

The plates were incubated for two days under microaerophilic conditions at 420C. The 

resistant mutants were collected and confirmed by MIC test with PM. The spontaneous 
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PMr mutant JL148 (MIC = 64 µg/ml) was obtained from stepwise selection. Briefly, 

approximately 1012 CFU of C. jejuni 81-176 were spread on MH agar containing 32 

µg/ml of PM. The resistant mutants selected after 2 days of incubation were subsequently 

used for additional rounds of selection on plates containing increasing concentrations of 

PM. One PMr mutant named JL148 (MIC = 64 µg/ml) was obtained from the third step of 

selection using plates with 128 µg/ml of PM. 

PCR, qRT-PCR and sequence comparison. Key primers used in this study for 

PCR and sequencing are listed in Table 3. PCR was performed in a 50 μl mixture 

containing each deoxynucleosite triphosphate at a concentration of 200 nM, each primer 

at a concentration of 200 nM, 2.0 nM MgCl2, 50 ng of C. jejuni genomic DNA, and 2.5 U 

of Platinum Taq DNA polymerase (Invitrogen). PCR products were purified by 

QIAquick PCR Purification Kit (Qiagen), when needed, for cloning or sequencing 

analysis. Real-time quantitative PCR was performed as described previously (Guo et al. 

2008) using gene specific primers (data not shown). Primers for real time qRT-PCR were 

designed using Primer3 online interface (http://frodo.wi.mit.edu/cgi-

bin/primer3/primer3_www.cgi). Each primer was subsequently analyzed with MFold 

(http://www.bioinfo.rpi.edu/applications/mfold/old/rna/) to avoid secondary RNA 

structures and hairpin loops. 16S RNA primers were set for internal control. The qRT-

PCR was performed as described previously (Lin et al. 2005). The relative expression of 

different genes in wild type and PM resistant mutant was normalized with 16S RNA gene 

amplified from the corresponding sample. Differential expression was determined by 

http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi�
http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi�
http://www.bioinfo.rpi.edu/applications/mfold/old/rna/�
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threshold cycle (CT) method (Guo et al. 2008) and two independent experiments with 

triplicates conducted for each independent experiment for each sample.  

Antibiotic susceptibility test. The susceptibilities of C. jejuni strains to PM and 

other antimicrobials were determined by standard microtiter broth dilution method with 

an inoculum of 106 bacterial cells/ml as described previously (Lin et al. 2002). Minimum 

inhibitory concentrations (MICs) were determined by the lowest concentration of a 

specific antimicrobial showing complete inhibition of bacterial growth after two days of 

incubation at 420C. The tested AMPs were purchased from Sigma (St. Louis, MO; PM, 

magainin, cecropin A) or kindly provided by Dr. Norman Stern (USDA; bacteriocin OR-

7 and E-760). 

DNA isolation and natural transformation. Chromosomal DNA was isolated 

from Campylobacter using the Wizard Genomic Purification Kit (Promega) according to 

the manufacturer’s instructions. Biphasic natural transformation method was performed 

as described previously (Davis et al. 2008). Briefly, C. jejuni cultures grown overnight on 

MH agar plates were collected and re-suspended in MH broth to OD600 of 0.5. Bacterial 

suspensions (0.5ml) were transferred to sterilized tubes and incubated at 42oC under 

microaerophilic conditions for three hours. One μg DNA of donor strain which carries the 

chloramphenicol resistant gene (cm) or kanamyxin resistance gene (kan) marker was 

added to culture. After five hour incubation, bacterial cultures were spread on MH agar 

containing Cm or Kan to select transformants. The transformants were confirmed by PCR 

using specific primers. 



 

 37 

            Whole genome microarray analysis. We used microarrays to compare the 

transcriptome of wild-type C. jejuni 81-176 with that of PM resistant mutant JL216 

(Table 2). The microarray glass slides (C. jejuni OciChipTM) were purchased from 

Ocimum Biosolutions (Indiana). The bacterial RNA isolation, cDNA synthesis and 

labeling, microarray hybridization, and data collection and analysis were detailed in 

previous publication (Guo et al. 2008). Briefly, RNAprotectTM Bacteria Reagent (Qiagen) 

was immediately added to mid-log phase C. jejuni culture (OD of approximately 0.12) to 

keep the bacterial transcriptome intact. Total RNA was then extracted and purified using 

RNeasy Mini Kit (Qiagen). Twelve μg of total RNA was reverse transcribed and 

fluorescently labeled with Cy3 or Cy5 (Amersham) using SuperScript Indirect cDNA 

labeling System (Invitrogen). Equal volumes of Cy3 and Cy5-labeled cDNA were mixed, 

dried under vacuum and then suspended in 120 μl of hybridization buffer (Ocimum 

Biosolutions). A second microarray slide was hybridized with dye swap to generate 

technical replicates. The experiment was replicated five times using RNA from five 

independent experiments. Hybridization slides were scanned at 650 nm for Cy5 and 550 

nm for Cy3 using Axon GenePix 4000 Scanner at 10-μm resolution. The fluorescent 

signal intensities were collected using GenePix Pro4 software and the data was 

normalized with removal of outliers and loess smoothing of ratio-intensities plots for 

each array. The data was then analyzed using mixed linear models for each gene, 

accounting for array variation, dye swap bias, treatment effects. P-value was adjusted by 

a False Discovery Rate of 5%. R-package (version 0.5.12 2003) was used for data 

normalization and statistical analysis. For this study, we chose a P value of < 0.05 and a 
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change  ≥  2.0-fold as the cutoff for significant differential expression between C. jejuni 

81-176 and PM resistant mutant JL216. 

         Construction of isogenic Cj1506c and Cj0811 mutants. A 1.3-kb fragment was 

amplified from JL28 genomic DNA using primers Cj1506c-R and Cj1506c-F (Table 3). 

The PCR product was purified and ligated into TOPO TA cloning® vector, resulting in 

pCj1506c. A 0.8-kb fragment of chloramphenicol resistant cassette (cm) with an XbaI 

restriction site was amplified from plasmid pUOA18 (Wang et al. 1990) using primers 

CmXbaI-R and CmXbaI-F (Table 3). The PCR product, which was digested with XbaI 

was ligated into pCj1506c, which was also digested with XbaI prior to ligation. The 

ligation mix was transformed into E. coli DH5α, and one transformant bearing construct 

pcmCj1506c was selected on LB agar containing 20 μg/ml of Cm. The construct 

pcmCj1506c containing chloramphenicol resistant cassette was introduced into JL28 by 

biphasic natural transformation method. One transformant was selected on MH plus 6 

μg/ml of Cm and confirmed by PCR. 

           The same strategy was used to generate a Cj0811 isogenic mutant of C. jejuni 

JL216. Briefly, an approximately 1.2-kb fragment of Cj0811 along with 200-bp of its 

upstream and downstream regions was amplified using genomic DNA of JL216 and 

primers Cj0811-F and Cj0811-R (Table 3). The PCR product was purified and ligated 

into a TOPO TA cloning® vector (Invitrogen) resulting in plasmid pCj0811. The 

chloramphenicol resistant cassette (cm) with introduced PflmI restriction sites at two ends 

was amplified from pUOA18 (Wang et al. 1990). The PflmI digested cm cassette was 

inserted into pCj0811 which was digested by PflmI prior to ligation. One mutant 
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construct designated as pcmCj0811 was obtained and used for natural transformation 

using JL216 as the recipient strain. One transformant (JL417) bearing cm inserted in 

Cj0811 was selected on MH agar plate containing 6 μg/ml of Cm and confirmed by PCR 

using primers Cj0811-F and Cj0811-R. 

          Chicken experiment. One day old chickens (a kind gift from Hubbard Hatchery, 

Pikeville, TN) were randomly assigned into four groups (5 chickens per group). All birds 

were placed in sanitized wire cages with unlimited access to feed and water. All 

antibiotic-free feed was prepared by the feed mill at the Johnson Animal Research and 

Teaching Unit, University of TN. Prior to inoculation with C. jejuni strains, all birds were 

confirmed to be free of Campylobacter by culture of cloacal swabs and plated on MH 

agar containing selective supplements that inhibit majority of intestinal microflora. At 

day four of age, chickens in each  group were inoculated with one of following 4 

individual Campylobacter strains via oral gavage with inoculums of 107 CFU per chick: 

wild type C. jejuni 81-176, PMr mutant JL280,  isogenic galU mutants JL281 or  JL282 

(Table 2). Fecal samples were collected at 7 and 11 days post inoculation (DPI) and 

plated on MH agar containing selective supplements. Campylobacter colonies were 

enumerated after two days of incubation under microaerophilic conditions at 420C. The 

detection limit of plating method was approximately 100 CFU/gram feces. The 

significant difference in Campylobacter colonization levels (log10 transformed CFU/g of 

feces) at each sampling point between groups was calculated using Student’s t test. A P-

value of <0.01 was considered significant. 
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RESULTS 

The gene galU is responsible for PM and other AMP resistance in C. jejuni. 

In our previous study, galU was observed to be responsible for PM resistance in PMr 

mutant JL148. In this study, we further tested sensitivity of galU mutant to AMPs from 

various sources. As shown in Table 4, inactivation of the galU also led to increased 

sensitivity to other AMPs such as colistin, magainin, cecropin-A, and bacitracin. 

Complementation of galU (JL230) fully restored resistance levels back to its parent strain 

JL148. Although galU was found contributing to several AMPs, it was not responsible 

for resistance to chicken AMPs such as fowlicidin-1 and -2, and bacteriocins OR-7 and 

E-760.  

LOS required for PM resistance in Campylobacter. We further examined if 

other LOS synthesis genes are involved in PM resistance, including neuB, ctgA, waaC, 

and waaF. As shown in Table 5, inactivation of these genes in PM resistant strain JL216 

resulted in increased susceptibility to PM (8 to 32-fold reductions in MIC).  

GalU is essential for colonization of Campylobacter in chickens.  Because 

mutation in galU resulted in significant truncation of LOS of C. jejuni and led to 

increased susceptibility to various AMPs (Lin, 2009), GalU may play an important role in 

the in vivo colonization of C. jejuni by mediating AMP resistance. To test this hypothesis, 

strains wild type C. jejuni JL242, derivative spontaneous PMr mutant JL280 and their 

corresponding isogenic galU mutants were inoculated into four chicken groups.  As 

shown in Fig 1, wild-type C. jejuni JL242 colonized in 80% of the chickens at day 7 post 
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inoculation, and by day 11 post inoculation, all of the chickens were colonized by JL242 

with a shedding level of about 105 CFU/gram feces. In contrast, C. jejuni was not 

detected throughout the study in any of cloacal swabs collected from the chickens 

inoculated with JL280 or galU mutants JL281 and JL282. 

Sequence comparison of signal transduction systems between wild type and 

PM resistant mutants. Many studies have demonstrated that Gram-negative bacteria can 

govern inducible antimicrobial peptide (AMP) resistance via surface modifications that 

are controlled by two-component regulatory systems (Groisman et al. 1997; Ernst et al. 

2001; Groisman 2001; Cheng et al. 2010; Fernandez et al. 2010). Point mutations 

occurring in such two-component systems (e.g. PhoP/PhoQ, PmrA/PmrB) could result in 

acquired resistance to PM and other AMPs. We hypothesized that the mutants (JL216 and 

JL148) with acquired PM resistance may have mutations in two-component regulatory 

systems; identification of such two-component system(s) is critical to study the 

regulatory mechanisms of AMP resistance in Campylobacter.  According to the C. jejuni 

NCTC 11168 genome sequence (Parkhill et al. 2000), twelve putative two-component 

regulators and seven two component sensors (histidine kinase) exist. In this study, nine 

regulators, five histidine kinases, and six signal transduction systems (Table 6) were PCR 

amplified from wild-type 81-176 and its two PM resistant mutants JL148 and JL216 

using specific primers (Table 3). The PCR fragments were sequenced and compared 

using DNAStar. No sequence difference was found in these regulatory genes between 

wild-type 81-176 and its PM resistant derivatives. 
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Transcriptional profiling of PM resistant mutant JL216. A microarray 

experiment was performed to compare the transcriptome of PM resistant mutant JL216 

with that of its parent strain C. jejuni 81-176. The microarray result in conjunction with 

qRT-PCR revealed that the gene (Cj0811) encoding putative tetraacyldisaccharide 4`-

kinase LpxK, which is likely involved in  lipid A synthesis, was up-regulated (2 fold) and 

two other genes down-regulated Cj0403c (4-fold) and Cj1506c (16-fold) (Table 7). The 

Cj1506c and Cj0811 isogenic mutants were constructed by site-targeted mutagenesis. 

Only isogenic Cj0811 mutant showed increased sensitivity to PM (2-fold) and 

inactivation of Cj1506c did not affect MIC of PM compared with its parent strain (data 

not shown). 

DISCUSSION 

Modifications of LPS in conferring resistance to PM and other AMPs have been 

found in many Gram-negative bacteria such as Salmonella, Klebsiella, Proteus miralitis, 

and E. coli (Guo et al. 1998; Gunn et al. 2000; Campos et al. 2004; Moon et al. 2009; 

Cheng et al. 2010). Unlike other Gram-negative bacteria, Campylobacter only has LOS 

(not LPS) and capsule polysaccharide (CPS) on the surface (Karlyshev et al. 2005). The 

LOS comprises two main components: the hydrophobic lipid A anchor and an 

oligosaccharide consisting of a conserved inner core and a hyper variable outer core 

(Golec 2007). LOS plays multiple roles in pathogenesis of Campylobacter including 

acting as endotoxin, adherence factor, and a factor that maintains stability of the outer 

membrane and protects the cells from environmental stress (Kanipes et al. 2008; Jeon et 

al. 2009). The enzymes responsible for LOS production in Campylobacter include GalU, 
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WaaC, WaaF, WaaM, WaaV (inner core), LgtF, AgtA, and GalT (outer core) (Kanipes et 

al. 2008; Naito et al. 2010). In our study, we demonstrated that LOS production in C. 

jejuni is required for PM resistance.  

Lipid A core modifications including addition or alteration of fatty acid chains, or 

addition of polar groups such as phosphoethanolamine, 4-amino-4-deoxy-L-arabinose, 

and/or palmitate can confer resistance to AMPs including PM in many Gram-negative 

bacteria (Wang et al. 2010). In our study, inactivation of the gene Cj0811 which encodes 

putative tetraacyldisaccharide 4`-kinase (LpxK) responsible for addition of fatty acid 

chains to a disaccharide backbone resulted in slightly increased susceptibility to PM and 

magainin. However, there were no MIC difference caused by Cj0811 with respect to 

chicken cathelicidins (F-1 and F-2), or bacteriocins (OR-7 and E-760) (data not shown). 

Recently, it has been reported that addition of a polar group phosphoethanolamine at the 

1 or 4-position in the disaccharide backbone of lipid A resulted in increased resistance of 

C. jejuni to PM (Cullen et al. 2010). Wosten et al (2010) reported that alteration of the 

disaccharide backbone in Campylobacter lead to mildly increased sensitivity to PM and 

other AMPs including chicken cathelicidin-1 and colistin (van Mourik et al. 2010).  

The gene galU is critical for production of uridine diphosphate (UDP)-glucose, a 

sugar precursor  required for polysaccharide formation and LOS outer core synthesis in 

Campylobacter and other Gram-negative bacteria (Weickert et al. 1993). This study 

demonstrated that defects in the outer core of LOS due to GalU mutation significantly in 

vivo colonization of Campylobacter in chickens. It is not surprising that the in vitro-

selected  PM resistant mutant JL280 also reduced colonization levels in chickens because 
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the mutation(s) which occurred in JL280 may exert pleiotropic effects on the phenotype 

of C. jejuni in addition to PM resistance, consequently leading to an overall negative 

impact on the colonization ability of the mutant. Similar findings also were observed in 

that both an AMP-sensitive PhoP-null mutant and an AMP-resistant mutant with a 

mutation in the two-component regulatory system PhoP/PhoQ were avirulent in a mouse 

model and displayed pleiotropic mutant phenotypes (Gunn et al. 1996; Groisman 2001). 

Our result was also consistent with the recent report that inactivation of genes 

contributing to synthesis of either inner core (WaaF) or outer core (LgtF) of LOS 

abolished Campylobacter in vivo colonization using a chicken model system (Naito et al. 

2010). 

Mutations occurring in two-component regulatory systems could result in 

acquired resistance to PM as well as AMPs in other bacteria (Roland et al. 1993; Gunn et 

al. 1996; Guo et al. 1998). Sequence analysis of multiple two-component regulatory 

systems in PM resistant mutants did not reveal any mutations when compared to its wild-

type PM-sensitive parent strain, suggesting that Campylobacter may use different 

mechanisms to acquire AMP resistance. These sequence analyses were also consistent 

with the microarray data comparing the transcriptome of wild type C. jejuni 81-176 and 

its derivative PMr mutant JL216. If the mutation occurred in the two-component 

regulatory systems, many genes would have been found differentially expressed. In fact, 

very small numbers of genes (three genes) were found differently expressed between wild 

type and PM resistant mutant from microarray data analysis. Comparative genomics 

revealed small differences between C. jejuni 11168 and 81-176 (Pearson et al. 2003), and 
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because of the unavailability of microarray glass slides designed specifically for  C. jejuni 

81-176, we could not rule out the possibility that using C. jejuni 11168-based microarray 

glass slides for hybridization of C. jejuni 81-176 may fail to identify the genes that are 

not present in C. jejuni 11168. 

 Despite discovery of genes involved in PM resistance in this study, these genes 

are not required for Campylobacter resistance to physiologically relevant AMPs (e.g. 

chicken host AMP fowlicidins) and to the anti-Campylobacter BCNs. It is likely that 

resistance to PM in Campylobacter is unique, possibly mediated by mutations in the 

specific targets of PM. The results from this study suggested that PM is not an ideal 

surrogate for studying Campylobacter resistance to physiologically relevant AMPs such 

as bacteriocins and fowlicidins. More studies are needed to reveal both common and 

unique mechanisms of Campylobacter resistance to natural AMPs such as bacteriocins 

and fowlicidins, which are described in following chapters in this dissertation. 
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Table 2. Major bacterial strains and plasmids used in this study (Chapter II) 
 
Strains or 
plasmids Description Sources or references 

Strains 

  
JL28 81-176 human isolate with low motility  (Black et al. 1988) 
JL148 81-176 derivative PM resistant mutant obtained 

by stepwise selection in vitro, MIC = 64 μg/ml 
(Lin et al. 2009) 

46B1 JL148 derivative,  galU::kan (Lin et al. 2009) 
JL230 46B1 /pGalU (Lin et al. 2009) 
JL216 81-176 derivative, PM resistant mutant obtained 

by single step selection in vitro, MIC = 64 μg/ml 
This study 

JL320 81-176 derivative, waaC::cm (Kanipes et al. 2006) 
JL321 81-176 derivative, waaF::cm (Kanipes et al. 2004) 
JL322 81-176 derivative, ctgA::cm (Guerry et al. 2002) 
JL323 81-176 derivative, neuB::cm (Guerry et al. 2002) 
JL328 JL216 derivative, neuB::cm This study 
JL329 JL216 derivative, cgtA::cm This study 
JL330 JL216 derivative, waaC::cm This study 
JL331 JL216 derivative, waaF::cm This study 
JL317 JL216 derivative, galU::kan This study 
JL388 81-176 derivative, Cj1506c::cm This study 
JL242 81-176 human isolate, highly motile (Black et al. 1988) 
JL281 JL242 derivative, galU::kan This study 
JL280 JL242 derivative spontaneous PMr mutant This study 
JL282 JL280 derivative,  galU::kan (Lin et al. 2009) 
JL417 JL216 derivative,  Cj0811::cm This study 

Plasmids   

pGEM-T 

 

PCR cloning vector, Ampr Promega 
pCj1506c pGEM-T Easy containing 1.3-kb gene fragment 

Cj1506c of JL28 
This study 

pcmCj1506c pCj1506c with cm cassette inserted in Cj1506c This study 
pCj0811 pGEM-T Easy containing 1.2-kb gene fragment 

Cj0811 of JL216 
This study 

pcmCj0811 pCj0811 with cm cassette inserted in Cj0811 This study 
E.coli    

DH5α F– 80lacZ M15 (lacZYA-argF)U169 recA1 
endA1 hsdR17 (rk

–, mk
+) phoA supE44 thi-1 

gyrA96 relA1 – 

Invitrogen 
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Table 3. Key primers used in this study (Chapter II) 

Primers Sequence (3’-5’)a Target genes 
Cj1222c-R TGCCAGATATGAGAGGTATG Cj1222c 
Cj1222c-F AAGAGGCAGGGGATATTGCT  
Cj1223c-R TTTTGATACCATAATGCAAAAA Cj1223c 
Cj1223c-F TTGATAAGAATTTTGATACAATGAT  
Cj1226c-R AAAACAAATTTACCCCATCTTCA Cj1226c (CprR) 
Cj1226c-F GGGTGGAGTGGTAAGTCGTG  
Cj1227c-R CACTAACCCCAGCAAAAATAAAA Cj1227c (CprS) 
Cj1227c-F TGCGACTTTGCTTGTGCTTA  
Cj1261-R TCCCTTCTATTTTTAAAAGAACGGATAA Cj1261c (RacR) 
Cj1261-F AAAGACTACATAAAAATTTACAAGGAC

 
 

Cj1262-R GTGCGAGTTTCATACCATCG Cj1262c (RacS) 
Cj1262-F CATCGGTCGCTTAAGGGTAA  
Cj0246c-R AAAACCTTTCCGGTTGAAGC Cj0246c 
Cj0246c-F TTTGCAAAAATTGCAGAGG  
Cj1189c-R CAAGATGAGAGAGCTCAAGGTG Cj1189c 
Cj1189c-F AAGCCTTGTTGCTGTTCTGC  
Cj1191c-R TTTTGTAATTCAGTTTGCTTTTTG Cj1191c 
Cj1191c-F TGACACCTAAAACACCGATAACA  
Cj1492c-R TGGCGTTATTGTTTGTTACGG Cj1492c 
Cj1492c-F CCCTCATCTCCATTTTGAGC  
Cj0951c-R GTACTAGCACAACCCGCAAA Cj0951c 
Cj0951c-F GTACTAGCACAACCCGCAAA  
Cj1491c-R TGTTTTATATTTTAAGGCTAAATCAGT Cj1491c 
Cj1491c-F ATGGAAAAGACGGGGCTTG  
Cj0889c-R CCCTCGTTTGCGCTAAAAT Cj0889c 
Cj0889c-F AAGTGTTAGGGGTATTGGCTCTAAA  
Cj0890c-R AACCCAAAAATCAAAGCCAAT Cj0890c 
Cj0890c-F GAGGCGTGTGTATTTGTCCA  
Cj0643-R GCAATGCGTATCAACAATCC Cj0643 (CbrR) 
Cj0643-F AAAAATTTCCTTTCTTTTGAAAAC  
Cj1608-R GCAAGTGCCTAGCAAACCTT Cj1608 
Cj1608-F AAGCCACAACAACGGAAAAA  
Cj0355c-R CCGAAGGTGCAAAATTGTTA Cj0355c 
Cj0355c-F TTTTCTTAATAAGGATAGAAACAAATGA

 
 

Cj1262-R TGAAAAGGTGATAAAGCAAGC Cj1262 
Cj1262-F CATCGGTCGATTAAAGGTAA  
Cj0793-R CGTTTTGGGGTGAAAAGAAA Cj0793 
Cj0793-F TGTGAACAGAATTTGCTTTTACTTG  
Cj0448c-R GCTTCATGTAAAAGATGAACTTAGC Cj0448c 
Cj0448c-F GCCTTTGCTTGATTTTGCTT  
Cj1506c-R GGCTGAGGACAAGATAGATTGC Cj1506c  
Cj1506c-F GCAAAAAGACATAGAAGA  
CmXbaI-R TTTTCTAGATGATCGGCGGTGTTCCTTT cmr cassette 
CmXbaI-F TTTTCTAGAGCGCCCTTTAGTTCCTAAT

 
 

Cj0811-R GCGAATTGCTTTTAGGTTATGG LpxK 
Cj0811-R GCTGTTTTAGGGACGGAAGA  
CmPflmI-R TTTCCATTTTTTGGGCGCCCTTTAGTTC

 
cmr cassette 

CmPflmI-F TTTCCATTTTTTGGTGCTCGGCGGTGTT
 

 
 

abold and underlined sequences are enzyme restriction sites 



 

 49 

Table 4. Susceptibilities of C. jejuni JL148, isogenic galU mutant 46B, and 
complemented construct JL230 to different AMPs 
 
Antimicrobial 
peptides 

MIC (µg/ml) 
JL148 46B1 JL230 

Polymyxin B 64 4 64 
Colistin 64 2 64 
Magainin 32 16 32 
Cecropin A 4 2 4 
Bacitracin 1,024 512 1,024 
Fowlicidin-1 4 4 NDa 

Fowlicidin-2 8 8 ND 
OR-7 1 1 ND 
E-760 1 1 ND 
 
aND: Not determined 
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Table 5. LOS required for PM resistance in Campylobacter 

Strains Isogenic mutants Function of inactivated genes MIC 
(µg/ml) 

    
JL216 N/A N/A 64 
JL328 JL216 derivative, neuB::cm N-acetylneuraminic acid synthetase 

 
2 

JL329 JL216 derivative, cgtA::cm Beta-1,4-N-cetylgalactosaminyltransferase 
 

8 

JL330 JL216 derivative, waaC::cm Lipopolysaccharide heptosyltransferase I 
 

8 

JL331 JL216 derivative, waaF::cm ADP-heptose--LPS heptosyltransferase II 
 

8 

JL317 JL216 derivative, galU::kan UTP-glucose-1-phosphate uridylyltransferase 
 

4 

 

N/A, Not applicable 
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Table 6. Putative two-component regulatory and signal transduction systems of C. jejuni 
11168 used for sequence comparison 
 
Gene name Putative functions 
Cj1222c Two-component sensor histidine kinase (DccS) 
Cj1223c Two-component regulator (DccR) 
Cj1226c Putative two-component sensor histidine kinase (CprR) 
Cj1227c Putative two-component regulator (CprR) 
Cj1262 Two-component sensor histidine kinase (RacS) 
Cj1261 Two-component regulator (RacR) 
Cj1492c Two-component sensor histidine kinase 
Cj1491c Putative two-component regulator 
Cj0889c Putative sensory transduction histidine kinase 
Cj0643 Two-component regulator (CbrR) 
Cj1608 Putative two-component regulator 
Cj0355c Putative two-component regulator 
Cj1191c PAS domain containing signal-transduction sensor protein 
Cj0448c Putative MCP-type signal transduction protein 
Cj1506c Putative MCP-type signal transduction protein 
Cj0246c Putative MCP-domain signal transduction protein 
Cj1189c Bipartate energy taxis response protein CetB 
Cj0951c Putative MCP-domain signal transduction protein 
Cj0793 Signal transduction histidine kinase 
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Table 7. Transcriptome profiling of PM resistant mutant JL216 
 
Gene 
ID 

Function description Fold change 
(microarray) 

Fold change 
(qRT-PCR) 

P-value 

     
Cj0811 LpxK; putative tetraacyldisaccharide 4`-kinase 1.84 2.1 0.02 
Cj0403c Hypothetical protein - 2.0 - 4 5.10E-06 
Cj1506c Putative MCP-type signal transduction protein - 4.3 -16 6.60E-06 

 



 

 53 

 

Figure 1. GalU is required for chicken colonization. Colonization of C. jejuni JL242, its 
derivative PMr mutant JL280, and their isogenic galU mutants JL281 and JL282 
respectively in chickens. The shedding levels of Campylobacter in chicken colonized by 
C. jejuni at 7 and 11 days postinoculation (DPI). Each data point represents the mean 
shedding level of Campylobacter of colonized in chickens (10 chickens) of each group. 
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CHAPTER III 

PREVALENCE, DEVELOPMENT, AND MOLECULAR MECHANISMS OF 

BACTERIOCIN RESISTANCE AMONG CAMPYLOBACTER SPP 
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ABSTRACT 

Bacteriocins (BCNs) are antimicrobial peptides produced by bacteria with narrow 

or broad spectrum of antimicrobial activity.  Recently, several unique anti-

Campylobacter BCNs have been identified in commensal bacteria isolated from chicken 

intestine. These BCNs dramatically reduced C. jejuni colonization in poultry and are 

being directed toward on-farm control of Campylobacter.  However, no information 

exists concerning prevalence, development, and mechanisms of BCN resistance in 

Campylobacter.  In this study, susceptibilities of 137 C. jejuni and 20 C. coli isolates to 

the anti-Campylobacter BCNs OR-7 and E-760 were examined. Only one C. coli strain 

displayed resistance to the BCNs (MIC = 64 μg/ml) while others were susceptible with 

MIC ranging from 0.25 to 4 μg/ml. BCN resistant (BCNr) C. coli mutants also were 

obtained by in vitro selection but all of them displayed low-level resistance to the BCNs 

(MIC = 8 to 16 μg/ml). The acquired BCN resistance in C. coli could be transferred at 

intra- and inter-species levels in Campylobacter by biphasic natural transformation. 

Genomic examination of the BCNr mutants using DNA microarray and random 

transposon mutagenesis revealed that the multidrug efflux pump CmeABC contributes to 

both intrinsic and acquired resistance to the BCNs. Together, this study represents the 

first report and a major step forward in understanding BCN resistance in Campylobacter, 

which will facilitate the development of effective BCN-based strategies to reduce 

Campylobacter load in poultry.  
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INTRODUCTION 

Campylobacter species including C. jejuni and C. coli are the most common 

bacterial causes of human gastroenteritis in the United States (Ruiz-Palacios 2007). 

Human Campylobacter illnesses are caused primarily by C. jejuni (~90%) and 

secondarily by C. coli (~10%). This group of pathogenic organisms causes watery 

diarrhea and/or hemorrhagic colitis in humans and is associated with Guillain-Barre 

syndrome, an acute flaccid paralysis that may lead to respiratory muscle compromise and 

death (Nachamkin et al. 1998). There are more than two million estimated cases of 

human campylobacteriosis in the United States each year, and the annual medical and 

productivity costs resulting from Campylobacter infection are estimated at 1.5 to 8.0 

billion dollars (Buzby et al. 1997). Poultry, particularly chickens, are considered a major 

source of human campylobacteriosis (Kassenborg et al. 2004). Thus, on-farm control of 

Campylobacter in poultry would reduce risk of human exposure to this pathogen and 

have a significant impact on food safety and public health (Lin 2009). In particular, at the 

same time that prevalence of infection is increasing, Campylobacter has become 

increasingly resistant to antibiotics, including fluoroquinolones and macrolides, the major 

drugs of choice for treating human campylobacteriosis (Luo et al. 2005), which raises an 

urgent need for novel strategies to prevent and control Campylobacter colonization in 

poultry (Lin 2009).  
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To date, three general strategies have been proposed to control Campylobacter in 

poultry on the farm, including 1) reduction of environmental exposure (biosecurity 

measures); 2) an increase in poultry’s host resistance to reduce Campylobacter carriage in 

the gut (e.g. competitive exclusion, vaccination, and host genetic selection); and 3) the 

use of antimicrobial alternatives to reduce and even eliminate Campylobacter from 

colonized chickens (e.g. bacteriophage therapy (Lin 2009)). Effective implementation of 

biosecurity measures relies on a better understanding of risk factors and sources of 

Campylobacter for poultry (van Gerwe et al. 2009). Except for biosecurity measures, the 

other two general intervention approaches are currently not commercially available and 

are still under development. Notably, recent breakthroughs in the discovery and 

characterization of potent anti-Campylobacter bacteriocins (BCNs) may lead to an 

effective measure for on-farm control of Campylobacter in poultry (Lin 2009). BCNs are 

short antimicrobial peptides (AMPs) produced and exported by most bacterial species 

examined to date for the apparent purpose of destroying their competitors (Riley et al. 

2002). Many BCN-producing bacteria (e.g. lactic acid bacteria) are commensals in the 

intestine. Therefore, the intestinal BCN-producing bacteria may achieve competitive 

advantage and function as an innate barrier against pathogens in the host. The natural 

BCNs have been proposed as promising candidates for novel antimicrobials (Cotter et al. 

2005). Several anti-Campylobacter BCNs produced by chicken commensal bacteria, such 

as OR-7 from Lactobacillus salivarius (Stern et al. 2006), E-760 and E50-52 from 

Enterococcus faecium (Svetoch et al. 2008), and SRCAM from Paenibacillus polymyxa 

(Svetoch et al. 2005), have displayed potent killing effect in vitro. Oral administration of 

these BCNs dramatically reduced C. jejuni colonization in poultry intestine (5-8 log10 
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CFU/gram feces reductions). Thus, these natural anti-Campylobacter BCNs have been 

proposed as effective alternatives to therapeutic antibiotics and are being developed for 

on-farm control of Campylobacter (Lin 2009). 

 Although the above anti-Campylobacter BCNs have been demonstrated to be very 

effective in reducing C. jejuni colonization in poultry, several critical issues (e.g. 

production and resistance development) need to be addressed for future regulatory 

approval and public acceptability of this intervention measure. In this study, we examined 

prevalence, development, and molecular mechanisms of BCN resistance in 

Campylobacter using molecular and genomic approaches. Our findings strongly suggest 

that there is less resistance development for the anti-Campylobacter BCNs, such as OR-7 

and E-760 compared to traditional antibiotics. In addition, microarray and random 

transposon mutagenesis studies indicated that the multidrug efflux pump CmeABC 

contributes to both intrinsic and acquired resistance of Campylobacter to the BCNs. 

MATERIALS AND METHODS 

Bacteria strains, plasmids, and growth conditions. The major bacterial strains 

and plasmids used in this study are listed in Table 8.  Among the 157 strains used for the 

prevalence survey in this study, 137 isolates are C. jejuni while 20 isolates are C. coli. 

These Campylobacter strains were isolated from different hosts including human (15), 

bovine (5), chicken (111), turkey (1), pigs (4), as well as from the environment including 

mouse traps (5), bird droppings (5), and lagoons (1).  All of these strains were collected 

from 16 geographically diverse areas in the United States. These C. jejuni and C. coli 
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strains were routinely cultured in Mueller-Hinton (MH) broth (Difco) or on MH agar at 

420C under microaerophilic conditions, which was generated by CampyGen Plus (Oxoid) 

gas pack in an enclosed jar. When needed, MH media were supplemented with 

kanamycin (Kan), chloramphenicol (Cm), or BCNs at desired concentration. E. coli cells 

were grown at 370C in Luria-Bertani (LB) medium with shaking and supplemented with 

30 μg/ml of Kan or 20 μg/ml of Cm. 

Bacteriocins. The BCNs OR-7 and E-760 were purified from L. salivarius NRRL 

B-30514 and E. faecium NRRL B-30745, respectively, as described in recent publications 

(Stern et al. 2006; Line et al. 2008).  These BCNs were dissolved in sterile H2O and 

stored at -200C prior to use.  

BCN susceptibility test. The susceptibilities of C. jejuni and C. coli isolates to 

BCNs OR-7 and E-760 were determined by standard microtiter broth dilution method 

with an inoculum of 106 bacterial cells/ml as described previously (Lin et al. 2002). 

Minimum inhibitory concentrations (MICs) were determined by the lowest concentration 

of specific BCN showing complete inhibition of bacterial growth after two days of 

incubation at 42 0C. 

in vitro selection of BCNr C. jejuni and C. coli. BCN OR-7 was used as a 

selective agent for generating spontaneous BCNr mutants in vitro. Briefly, C. jejuni and 

C. coli strains were grown in BCN-free MH broth to late log phase. The cultures were 

centrifuged and the pellets were suspended in MH broth to a final concentration of 

approximately 1010 cells/ml. The cell suspensions were plated in duplicate on MH agar 
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plates containing 4, 8, or 16 μg/ml of OR-7. After two days of incubation, the BCNr 

colonies were enumerated and the frequency of emergence of BCN resistance was 

calculated, which is the ratio of CFU on BCN containing plates to CFU on BCN-free MH 

agar plates. The single-step in vitro-selected BCNr mutants were randomly selected and 

used for MIC test together with the corresponding parent strain. The experiment was 

repeated twice with triplicate measurements in in independent experiment. 

DNA isolation and natural transformation. Chromosomal DNA was isolated 

from Campylobacter using the Wizard Genomic Purification Kit (Promega) according to 

the manufacturer’s instructions. Natural transformation (biphasic method) was performed 

as described previously (Davis et al. 2008). The natural transformation efficiency was 

expressed as transformants per μg DNA per recipient CFU.  

Whole genome microarray analysis.  We used microarrays to compare the 

transcriptome of wild-type C. jejuni NCTC 11168 with its BCNr derivative JL341 (OR-7 

MIC = 8 μg/ml) (Table 8). The microarray glass slides (C. jejuni OciChipTM) were 

purchased from Ocimum Biosolutions (Indiana). The bacterial RNA isolation, cDNA 

synthesis and labeling, microarray hybridization, and data collection and analysis were 

detailed in our previous publication (Guo et al. 2008). The hybridization experiments 

were repeated five times (biological replicate, n = 5) by using total RNA isolated from 

five independent experiments. In this study, we chose a P value of < 0.05 and a change ≥ 

2.0-fold as the cutoff value for significant differential expression between C. jejuni 

NCTC11168 and its derivative BCNr mutant JL341. 
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           in vivo random transposon mutagenesis. The BCNr C. jejuni JL358, a 81-176 

derivative (Table 8), was subjected to in vivo transposon mutagenesis using EZ::Tn5™ 

<KAN-2> Transposome (Epicentre) as detailed in our previous publication (Lin 2009). 

Briefly, one microlitter of EZ::Tn5™<KAN-2> Transposome was used to electroporate 

C. jejuni JL358 competent cells. The Kanr transformants were individually picked and 

inoculated in 96-well microplates.  Following 2 days of incubation, cultures of mutants 

were replicated into microtiter plates containing 4 μg/ml of OR-7 (4-fold reduction of 

MIC of parent strain). Those mutants that could not grow in OR-7-containing medium 

were selected from initial plates and subjected to second screening to confirm increased 

sensitivities of the mutants to OR-7. To confirm specific genetic associated with the 

transposome insertion and the increased susceptibility of each mutant to BCN, 

backcrossing of the transposon mutations into the parent strain was performed using 

natural transformation (Davis et al. 2008). The MICs of BCN for the backcrossed 

mutants were determined together with parent strain C. jejuni JL358. Specific transposon 

insertion site of each mutant was determined by direct sequencing of the genomic DNA 

(Lin et al. 2009). Sequence analysis was performed using DNAStar software package. 

        PCR and Real-time qRT-PCR. Key PCR primers used in this study were listed in 

Table 9. PCR was performed in a 50 μl mixture containing each deoxynucleotide 

triphosphate at a concentration of 200 nM, each primer at a concentration of 200 nM, 2.0 

nM MgCl2, 50ng of C. jejuni genomic DNA, and 2.5 U of Platinum Taq DNA 

polymerase (Invitrogen). Real-time quantitative RT-PCR was performed as described 

previously (Guo et al. 2008) using gene specific primers.  
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        Isogenic mutants construction and complementation in trans. To construct 

isogenic Cj0035c (a putative efflux pump gene) mutant of JL341, genomic DNA of 

Cj0035c isogenic mutant of 81-176 (Ge et al. 2005) (Table 8) was extracted and used for 

natural transformation with JL341 as a host strain, creating mutant JL377 with insertional 

inactivation in Cj0035c. 

 Isogenic Cj1125c and Cj1687 mutants of JL341 were constructed by insertional 

mutagenesis as described in a previous publication (Lin et al. 2005). Briefly, to construct 

Cj1125c isogenic mutant of JL341, an approximately 1.7-kb fragment was PCR 

amplified from genomic DNA of JL341 using primer pairs of Cj1125cF and Cj1125cR 

(Table 9). The PCR product was cloned into pGEM T-easy vector (Promega), resulting in 

construct pCj1125c. The chloramphenicol (cm) resistance gene cassette was PCR 

amplified from plasmid pUOA18 (Wang et al. 1990) using  pfu polymerase (Stratagene) 

and primers CmAfeI-F and CmAfeI-R (Table 9). The resulting blunt-ended PCR product 

was purified and ligated into pCj1125c vector, which was digested with SwaI prior to 

ligation, to generate mutant construct pcmCj1125c. The construct pcmCj1125c, which 

serves as a suicide vector, was introduced into JL341 by natural transformation (Van 

Vliet et al. 1998). One transformant designated as JL416 was selected on MH agar plate 

containing 5 μg/mL of chloramphenicol and the insertion of Cm-resistant cassette was 

confirmed by PCR using the specific primers Cj1125cF and Cj1125cR (Table 9). 

Similarly, to construct the isogenic Cj1687 mutant of JL341, primers Cj1687-F and 

Cj1687-R (Table 9) were used to amplify a 2.0-kb fragment from genomic DNA of 

JL341 using Taq polymerase. The PCR product was cloned into a pGEM T-easy vector, 
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resulting in the pCj1687 plasmid. The plasmid was then digested by SwaI and ligated to 

the PCR product of the Cm-resistant gene cassette as described above, generating 

plasmid pcmCj1687. The pcmCj1687 served as a suicide vector to generate an isogenic 

Cj1687 mutant in the JL341 background as described above. The Cj1687 mutation in 

JL372 was confirmed by PCR using the specific primers Cj1687-F and Cj1687-R (Table 

9). A similar site-directed approach was used to create isogenic Cj0630c (DNA 

polymerase III, delta subunit) and Cj1116c (a putative membrane bound zinc 

metallopeptidase) mutants of JL341. 

           To complement perR mutation in K15A2, an 81-176 derivative obtained by 

random transposon mutagenesis, the complete perR gene together with its 200 -bp 

upstream and 100 -bp downstream regions was amplified using PerRF and PerRR 

primers (Table 9) in conjunction with  Pfu polymerase (Stratagene). The blunt -ended 

PCR product was purified and ligated to the SmaI–digested shuttle vector pRY111 (Yao 

et al. 1993). The ligation mixture was then introduced into E.coli DH5α, creating 

construct JL402. The pPerR plasmid from JL402 was transferred into K15A2 by 

triparental conjugation using DH5α/pRK2013 as a helper strain (Akiba et al. 2006). The 

complemented strain JL412 was tested for BCN susceptibility together with other related 

strains. To complement the cmeB mutation in JL360 (JL341 background),  the plasmid 

pCME bearing cmeABC operon (Lin et al. 2003) was extracted and transferred into JL360 

by natural transformation, creating complemented strain JL424. 
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RESULTS 

          Prevalence of BCN resistance in C. jejuni and C. coli isolates from various 

source. Total of 137 C. jejuni and 20 C. coli isolates were subjected to susceptibility test 

for BCN OR-7 and E-760. As shown in Fig 2, all C. jejuni isolates were susceptible to 

both OR-7 and E-760 with MICs ranging from 0.25 to 1.0 μg/ml. C. coli appeared to 

display higher intrinsic BCN resistance than C. jejuni with majority of C. coli showing 

MIC ≥ 1 μg/ml. Only one C. coli human isolate, designated as JL106, was resistant to 

both OR-7 and E-760 with MIC of 64 μg/ml. 

          Frequency of emergence of BCNr resistant Campylobacter in vitro. Three C. 

jejuni strains (NCTC 11168, 81-176, S3B) and two C. coli isolates (JL20, JL25) that 

displayed the same MIC of BCN OR-7 (0.5 μg/ml) were chosen for examination of 

frequency of in vitro emergence of BCN resistance. As shown in Table 10, BCNr mutants 

were not obtained using C. jejuni strains under the tested selection pressures.  In contrast, 

C. coli strains displayed higher frequencies of emergence of BCN resistance (1.5x10-8 to 

8.7x10-7) in the presence of different concentrations of OR-7 by a single-step selection; 

the MICs of selected BCNr mutants ranged from 8 to 32 μg/ml.  

The acquired BCN resistance could be transferred at intra- and inter-species 

levels in Campylobacter. C. jejuni and C. coli are well-known for the exceptional ability 

to acquire exogenous DNA by natural transformation, which is considered a major 

mechanism mediating horizontal transfer of antibiotic resistance in Campylobacter. Thus, 

we examined if natural transformation contributes to horizontal transfer of BCN 
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resistance in Campylobacter. Genomic DNA of C. coli JL106 (clinical isolate, MIC = 64  

μg/ml) and JL349 (obtained from above one-step selection in vitro, MIC = 32 μg/ml) 

were extracted and transferred into several C. jejuni and C. coli strains by natural 

transformation. As shown in Table 11, the acquired BCN resistance in C. coli JL349 

could be transformed to C. coli isolates such as JL20 and JL25 with transformation 

frequency about 4x10-7 CFU/μg DNA/recipient cell. Interestingly, the BCN resistance of 

JL106 and JL349 also could be easily transferred into different species such as C. jejuni 

81-176 and NCTC 11168 with transformation with frequency of 10-8 CFU/μg 

DNA/recipient cell. The MICs of BCN for the selected BCNr transformants were up to16 

μg/ml (Table 11).  

Transcriptional profiling of BCNr mutant JL341. DNA microarray analysis 

was performed to compare the transcriptome of the BCNr mutant JL341 to that of its 

parent strain NCTC 11168. The microarray analysis revealed that 9 genes were up-

regulated and 10 genes were down-regulated in BCNr mutant JL341 (Table 12). Since up-

regulation of some genes such as those involved in LPS modification and peptide 

degradation is a common mechanism used by enteric pathogens to confer resistance to 

AMPs (Yeaman et al. 2003), the up-regulated genes from this microarray analysis are of 

particular concern, which include those encoding multidrug efflux pump CmeABC, 

putative drug efflux pump Cj1687 and Cj0035c belonging to a major facilitator super 

family, putative membrane bound zinc metallopeptidase Cj1125c, galactosyltransferase 

PglA, and a putative DNA polymerase III Cj0630c (Table 12).  Up-regulation of these 

genes was also confirmed by qRT-PCR using specific primers as described previously 
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(Guo et al. 2008) (data not shown). The overexpression of CmeABC in JL341 was further 

confirmed by a β-galactosidase promoter fusion assay and immunoblotting using specific 

blotting antibodies against CmeB and CmeC as described in our previous publication 

(Lin et al. 2002) (data not shown). 

 The isogenic cmeB, Cj0035c, Cj1125c, and Cj1687 mutants of JL341 were 

obtained using natural transformation or site-directed mutagenesis.  However, our 

extensive efforts to construct isogenic Cj0630c (DNA polymerase III) and Cj1116c 

(membrane Zn metallopeptidase) mutants of JL341 were unsuccessful, probably due to 

the essential role of these gene products in Campylobacter growth. Except for the cmeB 

mutant, none of the generated isogenic mutants (Cj0035c, Cj1125c, and Cj1687) 

displayed increased susceptibilities to OR-7. Inactivation of cmeB in JL341 led to 4-fold 

MIC reduction for BCN OR-7 (Table 13). Complementation of the cmeB mutant with 

pCME plasmid fully restored MIC back to the level of the parent strain (Table 13). To 

test if CmeABC contributes to intrinsic resistance of C. jejuni NCTC 11168 to BCN, the 

isogenic cmeB mutant was compared to wild-type strain for susceptibility to OR-7. As 

shown in Table 13, inactivation of CmeB in wild-type strain also significantly increased 

susceptibility of the mutant (JL199) to OR-7. To determine whether the BCN resistance 

in JL341 is partly attributed to the overexpression of CmeABC, the cmeR mutant of 

11168, which overexpresses CmeABC (Lin et al. 2005), was also subjected to MIC test. 

Compared to its parent strain, overexpression of CmeABC in JL4 due to cmeR mutation 

led to slight but consistent increase in the MIC of  BCN (1 μg/ml) (Table 13). 
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  Identification of genes contributing to BCN resistance by random transposon 

mutagenesis. A complementary genomic approach to microarray, random transposon 

mutagenesis, was used to identify genes involved in BCN resistance in this study. A 

library containing 2496 Kanr mutants were generated for screening mutants with an 

increased susceptibility to BCN. Six mutants displaying higher susceptibility to BCN 

OR-7 than parent strain JL358 were identified (Table 14). Backcrossing of the transposon 

mutations into the parent strain by natural transformation further confirmed that the 

BCN-sensitive phenotype in each mutant was linked to the gene with a specific 

transposon insertion. Direct sequencing of the mutant genomic DNA using transposon-

specific primers (Lin et al. 2009) revealed a specific transposon insertion site in each 

mutant (Table 14). All the transposon insertions were in coding regions of corresponding 

genes. Five of the six mutants had transposons inserted in different sites of the genes 

encoding the multidrug efflux pump CmeABC, which has been characterized in our 

previous study (Lin et al. 2002). This finding clearly indicated that CmeABC is involved 

in acquired BCN resistance in JL358.  However, the expression level of CmeABC in 

JL358 is comparable to its BCNs parent strain 81-176 as demonstrated by 

immunoblotting and LacZ-promoter fusion assay (data not shown). Similar to the finding 

in NCTC 11168 (Table 13), inactivation of CmeABC in 81-176 also led to increased 

susceptibility to OR-7 (4-fold MIC reductions) (data not shown).  

The remaining mutant K15A2 has a transposon insertion in perR, a gene encoding 

the Fur family regulator. Complementation of perR mutation in K15A10 (construct 

JL412) partially restored BCN resistance to 8 μg/ml for OR-7. In addition, inactivation of 
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PerR in wild type C. jejuni 81-176 resulted in increased susceptibility to OR-7 (2-fold 

MIC reduction), indicating that PerR is also involved in intrinsic resistance to BCN. 

DISCUSSION 

The comprehensive survey in this study using Campylobacter strains from various 

origins and geographically diverse regions provides more compelling evidence 

demonstrating the potent killing activity of BCNs OR-7 and E-760 against 

Campylobacter, which has been shown in previous publications (Svetoch et al. 2005; 

Svetoch et al. 2008). The survey also clearly indicated that BCN Campylobacter is rarely 

detected in clinical and environmental isolates, suggesting that Campylobacter has 

difficulty developing BCN resistance in hosts even if Campylobacter may frequently 

encounter various BCNs produced by commensals in the intestine (Svetoch et al. 2005; 

Svetoch et al. 2008). The finding from this survey is consistent with the examination of in 

vitro emergence of BCNr Campylobacter described in this study (Table 10), in which no 

BCNr C. jejuni mutants were selected under selection pressure while only C. coli mutants 

could develop BCN resistance in vitro with all mutants only displaying low-level 

resistance to BCN. Although it is still unknown why C. coli develops BCN resistance 

more easily than C. jejuni, our findings strongly suggest that there is less in the way of 

resistance development for the anti-Campylobacter BCNs, such as OR-7 and E-760. 

These findings support a recent theory that bacteria have not developed highly effective 

mechanisms to resist BCNs and other endogenous AMPs during evolution, which is 

likely due to multiple activities of natural AMPs (Peschel et al. 2006). The best studied 
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BCN is nisin which is ribosomally produced by Lactococcus lactic. Nisin exerts 

bactericidal effects via at least two modes of action: targeting the membrane-bound cell 

wall precursor lipid II, consequently resulting in inhibition of peptidoglycan synthesis, 

and membrane pore formation resulting in membrane damage and depolarization (Hasper 

et al. 2006). Resistance to nisin has been reported in some bacteria (Margolles et al. 2006; 

Sun et al. 2009); however,  high levels of nisin resistance in bacteria  were not observed 

in bacteria eventhough it has been used as a food preservative for a half century 

(Enserink 1999). It has been also reported that the acquired bacterial resistance to BCNs, 

such as pediocin PA-1 and nisin A, is unstable and has associated with a fitness cost 

(Gravesen et al. 2002). The stability of the acquired resistance to anti-Campylobacter 

BCNs in Campylobacter is still unknown and needs to be examined in future studies.  

AMPs including various BCNs have been considered potential natural ‘peptide 

antibiotics’ to combat bacterial infections (Hancock 1997; Ennahar et al. 2000; Cotter et 

al. 2005; Asaduzzaman et al. 2009). Elucidating the underlying mechanisms of AMP 

resistance in bacteria could help us to develop ‘smarter’ antibiotics (Peschel et al. 2006). 

Therefore, in this study, we also determined genetic loci involved in BCN resistance in 

Campylobacter using complementary genomic approaches. Both microarray and random 

transposon mutagenesis demonstrated the role of the multidrug efflux pump CmeABC in 

resistance of Campylobacter to BCN OR-7. Active extrusion of antimicrobials by 

multidrug resistant (MDR) efflux pumps plays vital roles in antimicrobial resistance in 

many Gram-negative bacteria (Poole 2000). It has been observed that MDR efflux pumps 

are also involved in AMP resistance in several bacteria (Yeaman et al. 2003; Tzeng et al. 
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2005; Otto 2009). The best studied bacterium is Neisseria gonorrhoeae whose multidrug 

efflux pump mtrCDE contributes to both intrinsic and acquired AMP resistance; 

overexpression of MtrCDE mildly increased resistance to human AMPs (2 to 4 fold 

increase in MIC) (Shafer et al. 1998). In Campylobacter, the CmeABC MDR efflux 

pump contributes to resistance to various antimicrobials, including both structurally 

diverse antibiotics and natural antimicrobials present in the intestine, such as bile salts 

(Lin et al. 2002; Lin et al. 2003; Yan et al. 2006). In this study, we observed that 

CmeABC also contributes to both intrinsic and acquired BCN resistance in 

Campylobacter. Notably, the findings from this study indicated that involvement of 

CmeABC in BCN resistance does not require overexpression of CmeABC although 

overexpression of CmeABC could lead to increased BCN resistance. Together, this study 

provides further evidence explaining why CmeABC is essential for Campylobacter 

colonization in the intestine (24) and further highlighting the multi-function nature of 

CmeABC and critical role of CmeABC in Campylobacter pathobiology. 

Although CmeABC plays an important role in BCN resistance,  inactivation of 

CmeABC alone in the BCNr strain JL360 did not lead to a susceptibility level comparable 

to its parent strain JL241 (Table 13), strongly suggesting that other factors work together 

with CmeABC to contribute to the acquired BCN resistance observed in JL360.  Based 

on microarray work in this study, several up-regulated genes are of particular interest. In 

addition to the putative efflux transporters Cj1687 and Cj0035c, Cj1116c, a putative 

peptidase, may involve proteolytic cleavage of BCNs because degradation of AMPs by 

protease is one of mechanisms used by bacteria to resist endogenous AMPs (Yeaman et 
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al. 2003). In Salmonella, the membrane protease PgtE, which is regulated by the two 

component regulatory system PhoP/PhoQ, is responsible for degrading cationic AMPs 

(Guina et al. 2000). The zinc-dependent membrane metalloprotease ZmpA and ZmpB in 

B. ennocepacia degrade antimicrobial peptides protamin and human cathelicidin LL-37 

as well as other alpha helical cationic AMPs (Kooi et al. 2009). The PglA (Cj1125c) is a 

galactosyltransferase that is involved in N-linked protein glycosylation, a unique surface 

carbohydrate modification mechanism that was observed in C. jejuni (Linton et al. 2005); 

such surface modification may be required for BCN resistance in Campylobacter. In this 

study, we have successfully obtained mutants with mutations in most of these interested 

genes. However, none of these mutants displayed increased susceptibilities to BCN 

compared to their parent strain JL341. We were not able to generate a mutation in 

Cj1116c, strongly suggesting that Cj1116c is an essential gene for Campylobacter 

physiology. Additional work, such as production and purification of recombinant 

Cj1116c, are needed to determine whether Cj1116c could function as a peptidase to 

degrade the anti-Campylobacter BCNs. 

Random transposon mutagenesis also identified another gene perR that is 

involved in BCN resistance. PerR is a transcriptional regulator controlling transcription 

of genes encoding oxidative stress resistance proteins (such as catalase KatA, superoxide 

dismutase SodB, and alkyl-hydroxyperoxidase AhpC) (Palyada et al. 2009). 

Transcriptional profiling analysis of an isogenic perR mutant identified 104 genes that 

belong to the PerR regulon (Palyada et al. 2009). PerR activates several genes encoding 

proteins responsible for capsule biosynthesis, which include acetyl-CoA carboxylase 
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AccA, 3-oxoacyl-synthase FabH, and fatty acid/phospholipid synthesis protein PlsX 

(Palyada et al. 2009). Thus, inactivation of perR in BCNr JL358 may affect capsule 

synthesis and such surface remodeling may increase the susceptibility of JL358 to the 

BCN OR-7.  This speculation needs to be examined in the future. 

The results obtained from this study provide helpful information for risk 

assessment of on-farm control of Campylobacter using anti-Campylobacter BCNs, and 

represent the first and major step forward in understanding the genetic mechanisms of 

Campylobacter resistance to BCNs. We have observed that Campylobacter can develop 

low-level BCN resistance in vitro. Clinical survey also suggests that Campylobacter may 

develop BCN resistance at very low frequency in the host. However, it is unknown if 

higher selection pressure (e.g. therapeutic usage of bacteriocins) will promote emergence 

of BCNr Campylobacter mutants in vivo. If so, can Campylobacter develop high-level 

bacteriocin resistance in response to therapeutic treatment with BCN? In addition, it is 

unclear if the BCNr Campylobacter can persist in the absence of selection pressure. To 

obtain solid answers to these questions, multiple laboratory experiments using chickens 

should be performed to examine the dynamic changes of the Campylobacter population 

in response to BCN treatment and to determine in vivo stability of BCN resistance in 

Campylobacter. These studies are expected to provide important information that may 

help avoid a rapid loss of efficiency of BCN and to design more sustainable and ‘smarter’ 

peptide antibiotics. In addition, examination of the molecular basis of BCN resistance in 

Campylobacter may help us to develop more sustainable and effective BCN-based 

intervention strategies against Campylobacter colonization in chickens. In this study, we 
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revealed that active transport of multidrug efflux pump CmeABC confers resistance to 

BCN in Campylobacter. Thus, inhibition of this pump by efflux pump inhibitors will 

significantly increase susceptibility of Campylobacter to BCN. Previous studies (Lin et 

al. 2006; Hannula et al. 2008) have shown that inhibition of efflux pump CmeABC in 

Campylobacter spp resulted in increased susceptibility to various antimicrobials. 

Notably, such an efflux pump inhibitor also could dramatically increase Campylobacter 

susceptibility to intestinal bile salts by inhibiting CmeABC, leading to reduced 

colonization of Campylobacter in chickens (Lin et al. 2006; Hannula et al. 2008). 

Therefore, oral administration of the anti-Campylobacter BCNs together with such efflux 

pump inhibitors using an appropriate delivery system (e.g., encapsulation) would enhance 

the therapeutic effect of anti-Campylobacter BCNs. This speculation needs to be 

determined in future studies.  
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Table 8. Major bacterial strains and plasmids used in this study (Chapter III) 
 
Strains or 
plasmids 

Description Source or 
reference 

Strains 
Campylobacter 
JL106 C. coli strain isolated from human Human a 
JL20 C. coli strain isolated from pig This study 
JL349 JL 20 derivative, BCNr mutant obtained from single step 

selection in vitro 
This study 

JL241 C. jejuni NCTC 11168 strain isolated from human (Parkhill et al. 2000) 
JL28 C.jejuni 81-176 isolated from human (Black et al. 1988) 
JL199 NCTC 11168 derivative, cmeB::kan (Lin et al. 2005) 
JL341 NCTC11168 derivative, BCNr  mutant generated by natural 

transformation using genomic DNA of C. coli JL106 
This study 

JL4 NCTC 11168 derivative, cmeR::cm  
JL360 JL341derivative, cmeB::kan This study 
JL199 NCTC 11168 cmeB::kan (Lin et al. 2002) 
JL424 JL360 containing shuttle vector pCME This study 
JL416 JL341derivative, Cj1125c::cm This study 
JL372 JL341derivative, Cj1687::cm This study 
JL3 81-176 derivative, cmeB::kan (Lin et al. 2002) 
JL219 81-176 derivative, Cj0035c::cm (Ge et al. 2005) 
JL377 JL341derivative, Cj0035c::cm This study 
JL358 81-176 derivative, BCNr mutant generated by natural 

transformation using JL349 genomic DNA 
This study 

K15A2 JL358 perR::kan This study 
JL412 K15A2/pPerR This study 
Plasmids 
pGEM-T Easy  PCR cloning vector, Ampr Promega 
pCj1125c  pGEM-T Easy containing 1.7 kb Cj1125c gene of JL241 This study 
pcmCj1125c  pCj1125c with Cm resistance gene inserted in Cj1125c gene This study 
pCj1687  pGEM-T Easy containing 2.0 kb Cj1687 gene of JL241 This study 
pcmCj1687  pCj1687 with Cm resistance gene inserted in Cj1687 gene This study 
pRY111  E.coli-C.jejuni shuttle vector, cmr (Lin et al. 2002) 
pPerR  pRY111 derivative containing a 1.45-kb perR gene plus its 

promoter region 
This study 

pCME  pUOA18 shuttle vector derivative containing a wild-type 
cmeABC operon 

(Lin et al. 2003) 

pRK2013 IncP Tra RK2+ repRK2 repE1+, Kanr (Ditta et al. 1980) 
E.coli    
DH5α F– 80lacZ M15 (lacZYA-argF)U169 recA1 endA1 

hsdR17 (rk
–, mk

+) phoA supE44 thi-1 gyrA96 relA1 – 
Invitrogen 

JL402 E.coli DH5α containing  pPerR  This study 
JL48 Conjugation helper strain, DH5α containing plasmid RK2013 (Akiba et al. 2006) 
 

a Isolated from human feces and kindly provided by Qijing Zhang (Iowa State 
University). 
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Table 9.  Key oligonucleotide primers used in this study (Chapter III) 
 

Primer DNA Sequences (5’ - 3’) a Product 
size 

 

Gene amplified 

    
Cj1125cF GCCCGCTAGAATGTCTTTGA 1733 Cj1125c 
Cj1125cR ATCTAACCCGGGACGATTTT   
Cj1116cF GGAACTCATTGATGAAATGCAA 1982 Cj1116c 
Cj1116cR CCCTACCATCTATAGGTGCAAAA   
CmAfeI-F GCGAGCGCTTGCTCGGCGGTGTTCCTTT 

 
811 cmr cassette 

CmAfeI-R GCGAGCGCTGCGCCCTTTAGTTCCTAAAG 
 

  
Cj1687F1 TCTTTGGCATCTTTGGCTTT 2000 Cj1687 
Cj1687R1 TGCGATTTTGATGTTTCC   
Cj0630cF CAACGAAAAACAAAGCAA 1350 Cj0630c 
Cj0630cR TGTTTTTAAGTTCTTCGATTTTTGC   
PerRF2 AAACAAGTAAGGTGGAA 1662 Cj0032 (perR) 
PerRR2 AGTGCAATCAGATAGTAAA   
     
a Restriction sites are underlined in the primer sequences 



 

 77 

Table 10.  Frequency of emergence of BCN resistant Campylobacter in vitro 
 

BCN 
conc. 

 (μg /mL) 

Frequency of emergence of BCN resistance for each straina 

C. jejuni C. coli 

 81-176 11168      S3B JL20 JL25 
4 <9.2x10-9 <2x10-10 <1.5x10-10 (3.5 ± 1.0)x10-7 (8.7 ± 5.6)x10-7 

8 <9.2x10-9 <2x10-10 <1.5x10-10 (1.8 ± 1.6)x10-7 (1.1 ± 1.0)x10-7 

16 <9.2x10-9 <2x10-10 <1.5x10-10 (1.5 ± 1.4)x10-8 (1.7 ± 1.4)x10-8 
 
a The values are means of two independent experiments with triplicate measurements. 
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Table 11.  Horizontal gene transfer of BCN resistance in Campylobacter spp  
 

Donor strains 
(C. coli) 

Recipient 
strains 

 

Transformation 
frequencya 

(transformants/μg DNA/ 
recipient CFU) 

Highest MIC of 
selected 

transformants 
(μg/ml) 

C. coli JL106 
(MIC = 64) 

C. jejuni  
NCTC11168 

1.2 x10-8 8 (JL341) 

C. coli JL349 
(MIC = 32) 

C. jejuni 81-176 1.0 x10-8 16 (JL358) 
C. coli JL20 4 x10-7 16 
C. coli JL25 4 x10-7 16 

 
a The values are from a representative experiment with duplicate measurements within 
each independent experiment. 
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Table 12. Differentially expressed genes ( ≥ 2-fold change) in NCTC 11168 BCNr mutant 
JL341 identified by microarray 
 
Gene Function description Fold change 

(microarray) 
P-value 

 
Up-regulated genes 
Cj0366c 
(cmeB) 

Inner membrane transporter of CmeABC efflux system 4.9 5.93E-06 

Cj0365c 
(cmeC) 

Outer membrane component of CmeABC efflux system 4.0 2.72E-05 

Cj0630c DNA polymerase III, delta subunit 13.5 4.63E-04 
Cj1726c Putative homoserine O-succinyltransferase 2.0 8.31E-04 
Cj1116c Putative membrane bound zinc metallopeptidase 4.8 4.00E-03 
Cj1125c  Putative galactosyltransferase (wlaG/pglA) 12.8 5.50E-03 
Cj0176c Putative lipoprotein 2.0 7.05E-03 
Cj1687 Putative efflux transporter (MFS family) 2.0 2.14E-02 
Cj0035c Putative efflux transporter (MFS family) 3.4 2.19E-02 
Down-regulated genes 
Cj0508  Penicillin-binding protein -4.5 2.37E-05 
Cj0093 Putative periplasmic protein -2.5 1.49E-04 
Cj0628 Putative lipoprotein -2.9 1.57E-04 
Cj0045c Putative iron-binding protein -2.0 6.60E-04 
Cj0091 Putative lipoprotein -2.5 8.90E-04 
Cj0629 Putative lipoprotein -2.7 1.16E-03 
Cj1423c Putative sugar-phosphate nucleotidyltransferase -2.7 1.49E-03 
Cj1650 Hypothetical protein -17.9 1.80E-03 
Cj1714 Small hydrophobic protein -2.4 4.56E-03 
Cj1539c Putative anion-uptake ABC-transport system protein -2.1 9.39E-03 
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Table 13. CmeABC contributes to both intrinsic and acquired BCN resistance in C. jejuni 
NCTC 11168 
 

Strains Description MICs of OR-7 
(µg/ml) 

JL241 Wild type NCTC 11168 0.5 
JL199 NCTC 11168 derivative, cmeB::kan 0.125 
JL4 NCTC 11168 derivative, cmeR::cm 1 
JL341 NCTC 11168 derivative, BCNr mutant 8.0 
JL360  JL341 derivative, cmeB::kan 2 
JL424 JL360 containing pCME for complementation of cmeB 8 
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Table 14.  Identification of transposon mutants with increased sensitivity to BCN 
compared to MIC of 16 μg/ml for parent strain JL358 
 
Strain MICs of 

BCN 
(μg/ml) 

Locus 
designation 

Tn location 
(ORF size, bp)a 

Function of inserted gene 
product 

K15A2 4 Cj0322 (perR) 54 (411) Fur family regulator 

K17E10 4 Cj0367c (cmeA) 557(1104) Component of CmeABC pump 

K16H6 4 Cj0366c (cmeB) 790(3123) Component of CmeABC pump 

K11A10 4 Cj0365c (cmeC) 107(1479) Component of CmeABC pump 

K1H1 4 Cj0366c (cmeB) 1679(3123) Component of CmeABC pump 

K15G10 4 Cj0365c (cmeC) 1213(1479 Component of CmeABC pump 
 

aThe number indicates the nucleotide before which the transposon (Tn) is inserted.  
 ORF, open reading frame.  
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Figure 2. Prevalence of Campylobacter spp isolates resistance to bacteriocin. 137 C. 
jejuni and 20 C. coli isolates were examined for the susceptibility to BCN OR-7 and E-
760 using MIC tests. Open bars represent C. jejuni isolates. Black bars represent C. coli 
isolates. 
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CHAPTER IV 

DEVELOPMENT AND STABILITY OF BACTERIOCIN RESISTANCE IN 

CAMPYLOBACTER 
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ABSTRACT 

Bacteriocins (BCNs) are antimicrobial peptides produced by bacteria with narrow 

or broad ranges of antimicrobial activity. Recently, several unique anti-Campylobacter 

BCNs have been identified in commensal bacteria isolated from chicken intestines. These 

BCNs dramatically reduced C. jejuni colonization in poultry and are being directed 

toward on-farm control of Campylobacter. Our previous study in Chapter III 

demonstrated that Campylobacter could develop resistance to BCNs in vitro. However, 

no information exists concerning in vivo development and stability of BCN resistance in 

Campylobacter, an important issue needing to be addressed for practical application of 

BCN-based intervention measures. In this study, development and stability of BCN 

resistance were examined. For the in vivo development of BCN resistance, chickens that 

have been colonized by C. jejuni NCTC 11168 were fed with BCN E-760 at dose of 5 

mg/kg body weight for three consecutive days. For in vivo stability of BCN resistance, 

groups of chickens were fed one of three BCNr Campylobacter strains obtained from 

different sources. Total and BCNr C. jejuni populations in fecal samples from both 

studies were determined by differential plating using selective plates with or without 

BCN E-760. In addition, in vitro stability was tested by repeated subculturing of the 

BCNr mutants in BCN E-760-free broth medium followed by differential plating. Our 

results showed that C. jejuni could develop resistance to BCN in vivo. However, the 

BCNr mutants only accounted for 0.0005% of the total C. jejuni population in the feces. 

MIC tests indicated all mutants displayed low-levels of resistance to E-760 with MIC 
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values ranging from 2 to 8 µg/ml. Inactivation of the CmeABC efflux pump of the BCNr 

mutants led to increased susceptibility to E-760. The low-level of BCN resistance was not 

stable in vivo, and BCNr mutants were not detected at day 42 after inoculation. BCN 

resistance was also not stable after 10 passages in vitro; more than 95% of BCNr 

Campylobacter spp were sensitive to the BCN after 35 passages. This study highlights 

the significance of in vivo usage of BCN for Campylobacter control in poultry. BCN 

selected only low-level BCNr C. jejuni mutants in vivo and the low-level BCN resistance 

was not stable both in vivo and in vitro. 
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INTRODUCTION 

Campylobacter species, the epsilon class of proteobacteria, are the leading 

bacterial causes of human gastroenteritis in developed countries (Allos 2001). In addition 

to watery diarrhea and/or hemorrhagic colitis, infection with Campylobacter spp can 

result in post-infectious manifestations such as Guillain-Barre’ syndrome, an acute 

immune mediated disorder that may lead to respiratory muscle compromise and death 

(Nachamkin et al. 1998). Campylobacter spp are considered to be commensal organisms 

in the intestinal tract of wild and domestic animals including chicken and other avian 

species (Diker et al. 2000). Epidemiological studies demostrated that consumption of 

contaminated poultry meat is the major cause of human campylobacteriois (Stern et al. 

2001; Cox et al. 2002; Stern et al. 2004). Thus, on-farm control of Campylobacter spp 

could reduce risk of human Campylobacter infection. Of the several proposed strategies 

to reduce this risk, anti-Campylobacter bacteriocins (BCNs) are considered a promising 

strategy to protect food safety and public health (Lin, 2009). 

BCNs are short cationic antimicrobial peptides naturally produced by diverse 

microbes in different environments (Willey et al. 2007). Despite significant structural and 

characteristic differences, BCNs display potent antimicrobial activities against a wide 

range of viruses, bacteria, and fungi with diverse modes of action and have been 

recognized as a novel class of antimicrobials to control foodborne pathogens (Hugas et al. 

1998; Zasloff 2002; Galvez et al. 2007; Settanni et al. 2008). As a group of natural 

antimicrobials, some BCNs, such as nisin, have long been applied for food preservation.  
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More than 99 percent of bacteria including intestinal commensals can make at least one 

bacteriocin (Klaenhammer 1988; Riley et al. 1992). Therefore, intestinal BCN-producing 

bacteria may achieve a competitive advantage and function as an innate barrier against 

pathogens in the hosts. The natural BCNs have been proposed as promising candidates 

for novel antimicrobials (Joerger 2003; Asaduzzaman et al. 2009). 

Several anti-Campylobacter BCNs were successfully isolated and characterized 

from chicken commensal bacteria, which includes OR-7 from Lactobacillus salivarius 

(Stern et al. 2006), E-760 and E50-52 from Enterococcus faecium (Line et al. 2008; 

Svetoch et al. 2008), and SRCAM from Paenibacillus polymyxa (Stern et al. 2005). 

Animal studies have demonstrated that these BCNs dramatically reduced C. jejuni 

colonization in the intestine and these BCNs are being developed toward on-farm control 

of Campylobacter to protect public health. Although the anti-Campylobacter BCNs are 

very effective in reducing C. jejuni colonization in poultry, several important issues (e.g. 

production, safety, and development and stability of resistance) need to be addressed for 

future regulatory approval and public acceptability of this intervention measure. The 

study in chapter III has demonstrated that Campylobacter could develop low-level BCN 

resistance in vitro.  However, no information exists concerning in vivo development and 

stability of BCN resistance in Campylobacter. Using both in vitro and in vivo systems, 

we showed the in vivo usage of BCN selected only low-level BCNr C. jejuni mutants and 

the low-level BCN resistance was not stable under both in vitro and in vivo conditions. 

This study provides helpful information for risk assessment of the future practical 

application of the anti-Campylobacter BCNs in poultry. 
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MATERIALS AND METHODS 

Bacteriocin E-760, bacterial strains and growth conditions.  Bacteriocin E-760 

(Line et al. 2008) was kindly provided by Dr. Norman J. Stern (USDA/ARS). E-760 was 

dissolved in distilled water and stored at -200C prior to use. The major bacterial strains 

used in this study are listed in the Table 15. All strains were routinely grown in MH broth 

or agar at 420C under microaerophilic conditions generated using a CampyGen Plus gas 

pack (Oxiod, Lenxa, KS) in an enclosed jar. When needed, E-760 was added in MH agar 

at desired concentrations. 

in vivo development of BCN resistance in Campylobacter. The in vivo 

development of BCN resistance in Campylobacter was examined using a chicken model 

system. In this experiment, day-old broiler chicks (a kind gift from commercial company 

Hubbard Hatchery, Pikeville, TN) were randomly assigned to either treatment (10 chicks) 

or control groups (10 chicks). All birds were placed in sanitized wire cages with 

unlimited access to feed and water. Nutritionally complete feed was prepared in the feed 

mill at the Johnson Animal Research and Teaching Unit, the University of Tennessee. 

Prior to inoculation with C. jejuni NCTC 11168, all birds were confirmed to be free of 

Campylobacter by culture of cloacal swabs. At 2 days old, all birds in treatment and 

control groups were inoculated with fresh C. jejuni NCTC 11168 cultures (107 CFU/bird) 

via oral gavages. Three days after Campylobacter inoculation, all birds were examined to 

ensure colonization by Campylobacter. For the treatment group, at 9 days of age, all birds 

were treated with BCN E-760 at the dose of 5 mg/kg body weight/day via oral gavages 

for three consecutive days. Birds in the control group were gavaged with water. Cloacal 
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swabs were collected from all birds in both groups at day 1, 2, 3, 5, and 7 after the initial 

BCN treatment. Samples from each bird were serially diluted and spread onto two 

different plates: MH agar selective supplement (normal selective plates) to recover all 

Campylobacter populations, and MH agar selective supplement plus E-760 with final 

concentration of 16 µg/ml to recover BCN resistant populations. Campylobacter colonies 

were counted following 48 hours of incubation at 420C under microaerophilic conditions. 

Individual colonies from E-760 containing plates were randomly picked to identify level 

of BCN resistance using MIC testing as described below. In addition, representative 

colonies from BCN-free plates were also chosen for MIC test. 

The detection limit of the plating method was approximately 100 CFU/g of feces. 

The significant difference in Campylobacter colonization levels (log10 transformed 

CFU/g of feces) at each sampling point between groups was calculated using Student’s t 

test. A P-value of <0.05 was considered significant. 

in vitro stability of BCN resistance. Three BCN resistant mutants were 

examined for in vitro stability of acquired BCN resistance, which include a human 

clinical isolate JL106 (E-760 MIC = 64 μg/ml), the in vitro-selected mutant JL341 (E-760 

MIC = 8 μg/ml), and the in vivo-selected strain K58 (MIC = 8 μg/ml) (Table 15). Briefly, 

the three strains were inoculated in E-760-free MH broth and grown under 

microaerophilic conditions at 420C. The Campylobacter cultures were sub-cultured every 

2 to 3 days in fresh MH broth (1:400 dilutions) for 70 days in the absence of any 

antimicrobials. Following passages 10, 15, 20, 25, 30, and 35, the cultures were serially 

diluted (10-fold dilutions) in MH broth and plated onto both MH agar plates and MH 
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agar plates supplemented with E-760 at a concentration of 16 μg/ml. The plates were then 

incubated in microaerophilic conditions at 420C for two days. Total numbers of colonies 

on each type of plate were counted and compared for each time point. In addition, 

following passage 35 differential plating, 20 colonies for each mutant were randomly 

picked up from bacteriocin-free MH agar plates and were subjected to E-760 MIC test as 

described below. 

in vivo stability of BCN resistance using a chicken model system. The same 

BCN resistant mutants were used for an in vivo stability test using a chicken model 

system. Bird source and maintenance were the same as those used in the in vivo 

development of BCN resistance experiment described above. Forty one-day old chickens 

were randomly assigned into four groups (10 chickens each group). Prior (3 days) to 

inoculation with Campylobacter, all birds were confirmed free of Campylobacter by 

cultured cloacal swabs. Birds in each group received the corresponding Campylobacter 

strain at a dose of 107 CFU/bird via oral gavage at 3 days old. Birds in the control group 

were treated with wild-type, E-760 sensitive strain C. jejuni NCTC 11168.  Birds in the 

other three treatment groups were inoculated with JL106, JL341, and K58, respectively 

(all strains displayed comparable growth level in vitro). Birds in all groups received 

BCN-free feed and water throughout the trial. Cloacal swabs were collected from birds in 

all groups at day 6, 22, and 42 after Campylobacter inoculation. Isolation of 

Campylobacter spp and differential plating for enumerating the proportion of BCN 

resistance mutants in the populations in each group were identified the same as the 

chicken experiment described above. At each time point, representative colonies (40 
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colonies) from chickens in each group were chosen for E-760 MIC test. Multiple isolates 

with different E-760 MICs were analyzed by PCR to confirm their genetic identities. The 

PCR was done using primers specific for the cmp gene encoding the major outer 

membrane protein as described previously by Huang et al. (2005), which revealed no 

difference between input strain and output isolates. 

E-760 susceptibility test. The susceptibility of Campylobacter spp to E-760 was 

determined by standard micro titer broth dilution method with an inoculum of 106 

bacterial cells/ml that was described previously (Lin et al. 2002). Minimum inhibitory 

concentration (MIC) was determined by the lowest E-760 concentration that completely 

inhibited Campylobacter growth after 24 hours under microaerophilic condition at 420C. 

Insertional mutagenesis of the cmeB gene in BCN resistant mutants. To 

construct an isogenic cmeB mutant in Campylobacter in vivo-selected BCN resistant 

mutants, genomic DNA of JL3 (Table 15), a cmeB mutant, was extracted and was used 

for natural transformation by biphasic natural transformation as described previously 

(Davis et al. 2008). 

RESULTS 

Effect of E-760 treatment on the emergence of BCN resistant Campylobacter 

in chickens. In this experiment, all chickens in both groups were successfully colonized 

by C. jejuni NCTC 11168 prior to E-760 treatment. The shedding levels of C. jejuni in 

both groups were similar (approximately 5.5 log10 units). Throughout the trial C. jejuni 

consistently colonized all chickens regardless of BCN treatment (Fig 3). E-760 resistant 
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mutants were selected from one chicken in the BCN treated group one day after the first 

treatment. Six days after the first treatment, 80% of chickens were found to shed E-760r 

mutants (Fig 4). However, the E-760 resistant mutants only accounted for a small portion 

of Campylobacter population in individual chicken (0.0005%). MIC test of 17 randomly 

selected E-760 resistant Campylobacter isolates generated in vivo indicated that mutants 

displayed low-level resistance to E-760 with MIC ranging from 2 µg/ml to 8 µg/ml 

(Table 16). No chickens in the control group shed E-760 resistant mutants. 

CmeABC contributes to E-760 resistance in the in vivo-selected 

Campylobacter isolates. Studies in chapter III have shown the multidrug efflux pump 

CmeABC contributed to both intrinsic and acquired BCN resistance in Campylobacter. 

However, it is unknown if CmeABC plays a role in E-760 resistance in the in vivo-

selected mutants obtained from this study. As shown in Table 16, regardless of resistance 

level of a specific mutant, inactivation of cmeB significantly reduced E-760 MIC to 0.125 

µg/ml, which is lower than the E-760 MIC for the wild-type strain NCTC 11168.  

Bacteriocin E-760 resistance is not stable in vitro in the absence of BCN 

selection pressure. As shown in Fig 5, less than 10% of JL341 populations could be 

selected on MH agar plates containing 16 µg/ml of E-760 after 10 passages in the 

absence of BCN selection pressure. Following 35 passages, only a very small population 

of JL341 (0.0005%) were recovered on an E-760-containing plate. Although JL106 and 

K58 showed higher stability than JL341 in vitro, less than 0.1% and 1% of JL106 and 

K58, respectively, were selected on BCN-containing plates after 35 passages. The 
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differential plating results were also confirmed by E-760 MIC tests of representative 

colonies selected after 35 passages (data not shown).  

in vivo instability of E-760 resistance in Campylobacter. All chickens were 

successfully colonized by Campylobacter in both control (C. jejuni NCTC 11168) and 

treatment groups inoculated with C. jejuni JL341, K58, or  C. coli JL106 with shedding 

levels of approximately 7 log10 units per gram feces at 6 days post inoculation (Fig 6A). 

Unexpectedly, the percentage of chickens colonized with E-760 resistant strains 

decreased after 22 days (JL106) and 42 days (JL341, K58, and JL106) of inoculation 

(Table 17). The shedding levels of Campylobacter in colonized chickens were also 

slightly reduced in both control and treatment groups at 22 and 42 days postinoculation 

when compared to 6 days postinoculation (Fig 6A). 

The in vivo stability of BCN resistance was monitored by differential plating as 

well as E-760 MIC tests of randomly selected colonies (40 colonies per time point per 

group). As showed in Fig 6B, percentage of E-760 resistant mutants decreased for all 

three Campylobacter strains with time. By 42 days post inoculation, E-760 resistant 

populations were less than 7% for all three resistant strains. The resistance levels were 

also reduced to < 2 µg/ml for randomly selected resistant colonies (data not shown).  

DISCUSSION 

Several anti-Campylobacter BCNs have been successfully identified and 

characterized from chicken commensal bacteria (Stern et al. 2005; Svetoch et al. 2005; 

Stern et al. 2006; Line et al. 2008; Svetoch et al. 2008). Feeding these anti-
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Campylobacter BCNs to poultry pre-slaughter eliminated Campylobacter colonization 

(Stern et al. 2005; Svetoch et al. 2005; Stern et al. 2006; Line et al. 2008; Svetoch et al. 

2008). Although these BCNs are very effective in reducing Campylobacter spp 

colonization in poultry, the use of these anti-Campylobacter BCNs may lead to 

emergence of BCN resistant isolates resulting in problems in the treatment of resistant 

Campylobacter infection. Therefore, studying BCN resistance including development and 

stability of resistance are crucially important for future regulatory approval and public 

acceptability of this intervention measure. In our previous study discussed in Chapter III, 

we demonstrated that Campylobacter spp could develop low levels of BCN resistance in 

vitro. In this study, we examined the in vivo development BCN resistance in 

Campylobacter using a chicken model system. Because BCNs have been proposed to be 

fed to chickens for three consecutive days pre-slaughter to control Campylobacter (Cole 

et al. 2006), a treatment regimen mimic clinical (3 consecutive days) with BCN was 

applied in this study. Our data showed that in response to BCN treatment, BCN resistant 

C. jejuni quickly emerged as early as one day after the first BCN treatment. However, the 

BCN resistance in Campylobacter was low in terms of MIC (1 µg/ml to 8 µg/ml, even 

after the third BCN treatment) and frequency (0.0005%) during the whole experiment. 

This in vivo finding is consistent with the in vitro results described in Chapter III. In vivo 

resistance development of Campylobacter to several antibiotics used as either therapeutic 

or growth promotants has been well studied (Luo et al. 2003; Lin et al. 2007; Han et al. 

2008; Lindow et al. 2010). A previous study (Lin, Yan et al. 2007) showed that 

development of macrolide resistance in vivo was only observed after long-term exposure 

to tylosin. Short-term treatment of Campylobacter-infected chickens with a high dose of 
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macrolide also did not result in selection of Erythromycin resistance. However, long-term 

treatment with a low dose of tylosin in feed resulted in the emergence of resistance 

mutants with high levels of MIC (12 to 100% of tested isolates). The result in this study 

revealed different patterns of resistance development for tylosin and BCN usage.  The 

BCN resistance appears to develop quickly but the MIC resistance levels of the mutants 

are low in Campylobacter. However, the results should be interpreted cautiously because 

the experiment was conducted in a laboratory environment using a small number of 

chickens which does not represent the production conditions in most poultry farms. In 

addition, a dose experiment should be performed to determine if greater selection 

pressure would promote the development of mutants with high-level BCN resistance. 

Finally, antibiotic resistance development on farms is very complex and influenced by 

multiple factors such as animal species, production environment, genetic background of 

bacterial species, and management practices.  

 In addition to demonstrating the development of BCN resistance, we also 

observed dynamic changes in BCN resistance of individual chickens in this study. One 

day after the first treatment, only 10% of the chickens in the treated group were positive 

with BCN resistant Campyloabcter. Then, the number of chickens colonized by 

resistance Campylobacter steadily increased during the course of treatment eventually 

80% of chickens were found positive with BCN resistant Campylobacter two days after 

the third treatment, and quickly dropped to 40% two days afterward (Fig 4). This finding 

showed the 3-day BCN treatment exerted continuous selection pressure and resulted in an 

increased number of chickens shedding BCN resistant mutants by 5 days after the first E-
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760 treatment. The resistance in Campylobacter is likely not stable due to fitness cost, 

consequently resulting in clearance of BCN resistant Campylobacter after cessation of 

BCN treatment. These speculations need to be further examined in future studies. 

Multidrug resistance efflux pump CmeABC plays a prominent role in resistance 

to various antimicrobials and chicken colonization (Lin et al. 2002; Lin et al. 2003). It 

was shown in Chapter III that CmeABC contributed to both intrinsic and acquired 

resistance to BCN for the mutants selected in vitro. This result suggests that CmeABC 

plays a role in low level BCN resistance in Campylobacter in both in vivo and in vitro. 

Thus, a combination of anti-Campylobacter BCN and CmeABC pump inhibitors could be 

a feasible approach to eliminate Campylobacter colonization and reduce BCN resistance 

in chickens. 

Antibiotic resistance in bacteria is occurring as the result of either chromosomal 

mutations or horizontal transfer of mobile genetic elements, such as plasmids, phages, 

transposons, and integrons. These genetic changes may influence physiological processes 

in microorganisms. Both chromosomal mutations and plasmid-mediated antibiotic 

resistance, generally result in a fitness cost creating growth impairment and/or less 

decreased competitiveness with antibiotic sensitive strains. The stability of antibiotic 

resistance and fitness cost due to acquisition of antibiotic resistance are unique in 

Campylobacter compared to other microorganisms. Our previous studies demonstrated 

that low levels of macrolide resistance in Campylobacter associated with mutations in 

ribosomal proteins L4 and L22 were unstable in vitro. In contrast, high levels of 

macrolide resistance due to mutations at A2074G and A2075G in 23S rRNA were stable 
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in vitro in the absence of macrolide selection pressure (Lin et al. 2007; Caldwell et al. 

2008). Luo et al. (Luo et al. 2005) reported that fluoroquinolone (FQ) resistance in 

Campylobacter associated with gyrA mutation is very stable in vivo and in vitro, and FQ-

resistance strains did not show any fitness costs. FQ-resistance even enhances ecological 

fitness and outcompetes FQ-sensitive strains when coinoculated in chickens. In our study, 

both in vivo and in vitro experiments clearly showed that BCN resistance was not stable 

regardless of Campylobacter species and resistance levels. This information is also 

important for the risk assessment of using BCN in practical applications. For example, it 

is likely that some BCN resistant Campylobacter mutants may be transmitted to a new 

flock. However, based on the finding from this study, the BCN resistance trait will be lost 

when these mutants colonize new a flock that receives BCN-free feed, consequently 

having little effect on BCN treatment at pre-slaughter. 
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Table 15. Major bacterial strains used in this study (Chapter IV) 

Strains Description Source and reference 

JL3 NCTC 11168  derivative, cmeB::kan (Lin et al. 2002) 
JL106 E-760r C. coli; clinical strain isolated from 

 

This study 
NCTC 11168 Human isolate, genome available (Parkhill et al. 2000) 
JL341 NCTC 11168 derivative, E-760r mutant 

generated by transformation using genomic 
   

This study 

K58 NCTC 11168 derivative, E-760r mutant 
selected from in vivo experiment 

This study 
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Table 16. E-760 MICs of the in vivo-selected E-760r C. jejuni isolates and their isogenic 
cmeB mutants 

 

Strain E-760 MIC (µg/ml)a E-760 MIC of  isogenic cmeB 
mutant(µg/ml) 

C. jejuni NCTC 11168  0.5 0.125 

E-760r mutants selected 
in vivo  

2 (3) 0.125 

4 (4) 0.125 

8 (10) 0.125 
 
a Numbers in parentheses indicate the total number of isolates corresponding to each 

MIC. 
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Table 17. Percentage of chickens colonized with Campylobacter spp 

Strains Day 6 (%) Day 22 (%) Day 42 (%) 
NCTC 11168 100 100 100 
JL341 100 100 60 
K58 100 100 60 
JL106 100 30 20 
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Figure 3. Shedding levels of C. jejuni NCTC 11168 in chickens orally gavaged with 
water (control) or BCN E-760 (treatment). In the treatment group, all birds were treated 
with BCN E-760 at 5 mg/kg body weight/day via oral gavage for three consecutive days. 
Each bar represents the mean log10 CFU/gram feces ± standard deviation in each chicken 
group. 
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Figure 4. Percentage of chicken colonized with E-760 mutants following E-760 
treatment. Each bar represents the percentage of chickens that shed E-760 resistant 
mutants at each sampling point (n = 10). 
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Figure 5. Stability of E-760 resistance in vitro. Three strains were passed in MH broth 
without E-760 selection pressure as described in Materials and Methods. The percentage 
of BCNr population was calculated based on differential plating using plates with or 
without 16 μg/ml of E-760. 
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Figure 6. Stability of BCN resistance in vivo. (A) Shedding levels of BCN resistant 
Campylobacter strains in chickens colonized with Campylobacter. Chickens in each 
group (10 birds/group) were inoculated with BCN sensitive strain NCTC 11168, or one 
of E-760 resistant mutants (JL341, K58, or JL106). All chickens received nonmedicated 
feed throughout the study. Each bar represents the mean of log10 CFU/gram feces ± 
standard deviation of Campylobacter colonized chickens in each group; (B) The E-760 
resistance was not stable in vivo. The percentage of BCNr population was calculated 
based on differential plating using plates with or without 16 μg/ml of E-760. 
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CHAPTER V 

IDENTIFICATION AND CHARACTERIZATION OF GENES REQUIRED FOR 

CAMPYLOBACTER RESISTANCE TO FOWLICIDIN-1, A CHICKEN HOST 

DEFENSE PEPTIDE 
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ABSTRACT 

Antimicrobial peptides (AMPs) are critical components of host defense limiting 

bacterial infections at the gastrointestinal mucosal surface. Bacterial pathogens have co-

evolved with host innate immunity and developed means to counteract the effect of 

endogenous AMPs. However, AMP resistance mechanisms are still unknown in C. jejuni, 

an important human foodborne pathogen with poultry as a major reservoir. In this study, 

random transposon mutagenesis and targeted site-directed mutagenesis approaches were 

used to identify genes contributing Campylobacter resistance to fowlicidin-1, a 

representative AMP in chickens. In addition, a chicken experiment was performed to 

determine the role of candidate genes in Campylobacter colonization in the intestine. An 

efficient transposon mutagenesis approach (EZ::TNTM <KAN-2> Transposome) in 

conjunction with microtiter plate screening identified three mutants whose susceptibilities 

to fowlicidin-1 were significantly increased. Backcrossing of the transposon mutations 

into parent strain confirmed that the AMP-sensitive phenotype in each mutant was 

associated with the specific transposon insertion. Direct sequencing showed that these 

mutants have a transposon inserted in the genes encoding the two-component regulator 

CbrR, transporter CjaB, and a putative trigger factor (Tig). Based on the analysis of 12 

Campylobacter genomes, a conserved gene cj1583c displayed high homology (up to 46% 

similarity at the amino acid level) to sap, an AMP resistance gene identified in other 

pathogens. Insertional inactivation of Cj1583c also significantly increased susceptibility 

of Campylobacter to fowlicidin-1 in diverse strain backgrounds.  In vivo administration 

of CbrR, Tig, and SapB mutants showed a reduction in in vivo colonization. Together, 
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these results have defined four C. jejuni genetic loci that will be useful for characterizing 

the molecular basis of Campylobacter resistance to AMPs, a significant knowledge gap 

in Campylobacter pathogenesis. 

INTRODUCTION 

Campylobacter is a major causative agent of human bacterial gastrointestinal 

diseases worldwide (Allos 2001). Campylobacter is commonly found as a commensal 

organism in the digestive tracts of a variety of wild and domestic animals. Commercial 

poultry are considered the major reservoir for human campylobacteriosis (Moran et al. 

2009). Most Campylobacter infections are epidemiologically associated with 

consumption of undercooked poultry meats; the remaining cases are due to other risk 

factors including contaminated milk, water, and direct contact with infected pets (Lin 

2009). To successfully colonize and persist in intestinal tracts of many animals and 

humans, Campylobacter must have evolved a variety of mechanisms to counteract and 

adapt to harsh conditions. Examination of how this important human pathogen adapts to 

and evades host innate immunity may reveal targets for developing novel vaccine and 

therapeutics to prevent and control Campylobacter infections in humans and animal 

reservoirs. 

Endogenous antimicrobial peptides (AMPs) belong to the most ancient and 

efficient components of host defense. Defensins and cathelicidins are two major groups 

of host AMPs that limit bacterial infections at the gastrointestinal mucosal surface (Bulet 

et al. 2004; Wehkamp et al. 2007). Epithelial AMPs, such as β-defensins, have been 
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observed to be induced in human intestinal epithelia upon infection by C. jejuni (Zilbauer 

et al. 2005; Wehkamp et al. 2007). In addition to their significant role in host innate 

defense, AMPs including chicken cathelicidin fowlicidin-1 (F-1) have been increasingly 

recognized as a novel class of antibiotics (peptide antibiotics) to control pathogens (Xiao 

et al. 2006; Bommineni et al. 2007).  It is not surprising that many bacterial pathogens 

have co-evolved with the host and developed means to counteract the effect of AMPs 

(Yeaman et al. 2003; Peschel et al. 2006). Given the wide prevalence and successful 

colonization of C. jejuni in intestinal tracts, C. jejuni should have acquired mechanisms to 

resist AMPs widely present in the host. However, as an important strategy to evade 

killing by innate immunity and by potential peptide antibiotics, AMP resistance 

mechanisms are still largely unknown in C. jejuni.  Availability of this information will 

not only help us to develop more sustainable peptide antibiotics but also provide insights 

into the delicate host-pathogen interactions and reveal novel intervention targets to 

control Campylobacter infections in humans and animal reservoirs. 

 In this study, using chicken host defense peptide F-1 as a model peptide in 

conjunction with random transposon mutagenesis as well as targeted mutagenesis, we 

identified four genetic loci required for F-1 resistance in Campylobacter, which include a 

two-component regulator CbrR, transporter CjaB, a putative trigger factor Tig, and Sap 

that is homologous to the previously described transporter conferring resistance to AMPs 

in other Gram-negative bacteria. Administration in vivo also demonstrated that these 

genes play an important role in the colonization of Campylobacter in the intestine. 
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MATERIALS AND METHODS 

Bacterial strains, plasmids and growth conditions. The major bacterial strains 

and plasmids used in this study are listed in Table 18. Among 174 Campylobacter 

isolates used for testing susceptibility to chicken AMP F-1, 154 isolates were C. jejuni 

and 20 isolates were C. coli. These Campylobacter strains were isolated from different 

hosts and geographically diverse locations. Campylobacter strains were routinely grown 

in MH broth (Difco) or MH agar at 420C under microaerophilic conditions generated by 

using a CampyGen Plus gas pack in an enclosed jar or by using a tri-gas incubator. E. 

coli strains were grown in Luria-Bertani (LB) broth with shaking (250 rpm) or on agar at 

37ºC overnight. Antibiotics Kanamycin (Kan) or Chloramphenicol (Cm) was added in 

medium at a desired concentration when needed. 

AMP susceptibility testing. The susceptibilities of C. jejuni and C. coli isolates 

to the chicken cathelicidin F-1 were determined by a standard microtiter broth dilution 

method with an inocula of 106 bacterial cells/ml as described previously (Lin et al. 2002). 

Minimum inhibitory concentrations (MICs) were determined by the lowest concentration 

of specific antimicrobial showing complete inhibition of bacterial growth after two days 

of incubation at 420C. Chicken cathelicidin F-1A (F-1) (22 amino acids in length with > 

95% purity) was synthesized by Bio-Synthesis (Lewisville, TX). 

in vitro selection of F-1 resistant C. jejuni. F-1 was used as the selective agent to 

obtain spontaneous F-1 resistant mutants in vitro. Briefly, 0.1 ml of Campylobacter cells 

(OD ~1.2) harvested from MH agar plates incubated overnight  were spread on MH agar 
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plates supplemented with different concentrations of F-1 (32 and 64 μg/ml). To increase 

the chance to get F-1 resistant mutants, the C. jejuni cells were also grown and passed 

five times (2-days for one passage) in MH broth containing sub-lethal concentration of F-

1 (4 μg/ml). After five passages, the bacterial cells then were spread on MH plates 

containing a higher concentration of F-1 (64 μg/ml). F-1 resistant mutants were selected 

from the plates after 4 days of incubation at 420C under microaerophilic conditions. All 

these selected mutants were grown in MH broth and subjected to MIC test together with 

the parent strain C. jejuni 81-176. 

Random transposon mutagenesis. C. jejuni 81-176 (JL28 in Table 18) was 

subjected to in vivo transposon mutagenesis using EZ::Tn5™<KAN-2> Transposome 

(Epicentre) as detailed in our previous publication (Lin et al. 2009). Briefly, one 

microliter EZ-Tn5 <KAN-2> TnP transposome complex containing 25 ng transposon 

was used to electroporate C. jejuni JL28 competent cells. The Kanr transformants were 

individually picked and inoculated in 96-well microplates. Following 2 days of 

incubation, cultures of mutants were replicated into microtiter plates containing 4 μg/ml 

of F-1 (2-fold reduction of MIC of the parent strain). Those mutants that could not grow 

in F-1-containing media were selected from the initial plates and subjected to a second 

screening to confirm increased sensitivities of the mutants to F-1. To confirm specific 

genetic linkage between the transposon insertion and increased BCN susceptibility of 

each mutant, backcrossing of the transposon mutations into the parent strain was 

performed using natural transformation (Wang et al. 1990). The MICs of F-1 for the 

backcrossed mutants were determined together with parent strain C. jejuni JL28. The 
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specific transposon insertion site of each mutant was determined by directly sequencing 

the genomic DNA (Lin et al. 2009). Sequence analysis was performed using DNAStar 

software package. 

Targeted mutagenesis of C. jejuni and complementation in trans.  An isogenic 

Cj1583c (designated as sapB) mutant of C. jejuni NCTC 11168 was constructed by 

insertional mutagenesis according to our previous publication (Lin et al. 2005). Briefly, 

approximately 2-kb of the complete Cj1583c was PCR amplified from C. jejuni JL241 

genomic DNA using primer pairs of Cj1583c-R and Cj1583c-F (Table 19) and Taq DNA 

polymerase (Promega). The PCR product was cloned into a pGEM-T Easy vector 

(Promega) to generate pSapB. The chloramphenicol resistance gene cassette (cm) was 

PCR amplified from plasmid pUOA18 (Wang et al. 1990) using PfuUltra® High-Fidelity 

DNA polymerase (Stratagene) and primers of CmF and CmR (Table 19). The resulting 

blunt-ended PCR product was purified and ligated into pSapB vector, which was digested 

with Hind III prior to ligation, to generate the mutant construct pcmSapB (Table 18). The 

construct pcmSapB, which serves as suicide vector, was then introduced into C. jejuni 

JL241 and JL242 by biphasic natural transformation or electroporation (Wang et al. 

1990; Lin et al. 2009). The putative sapB isogenic mutants of corresponding strains were 

selected on MH agar containing 5 μg/ml of Cm. The inactivation of putative sapB 

(Cj1583c) in mutant JL697 was confirmed by PCR (data not shown). 

To complement cjaB mutation in JL657, a 2.7-kb fragment including 174 bp 

upstream of cjaA covering promoter region to 193 bp downstream of cjaB stop codon 

was PCR amplified from NCTC11168 using primer pairs of CjaAB-F and CjaAB-R 
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(Table 19). The PCR was performed using pfu DNA polymerase (Stratagene) and the 

blunt-ended PCR product was purified and ligated to shuttle vector pRY111 (Yao et al. 

1993), which was digested with SmaI prior to ligation. The ligation mix was introduced 

into DH5α by transformation. One transformant (JL690) with a plasmid bearing an intact 

cjaAB operon was created. The pCjaAB from JL690 was then transferred to JL657, a 

cjaB isogenic mutant, by tri-parental conjugation using DH5α/pRK2013 as a helper strain 

(Lin et al. 2005). A similar approach was used to complement tig and cbrR mutations 

using primer pairs of Td-F/Td-R and Cj0643-F/Cj0643-R (Table 19), respectively. The 

insertion of cjaAB, tig, or cbrR sequence in shuttle vector pRY111 was confirmed by 

sequencing using specific primers. 

Prevalence of sap genes among Campylobacter species. To examine the 

prevalence of sapA and sapB in C. jejuni and C. coli, sapA and sapB sequences of 12 

Campylobacter strains in Campylobacter a data bank (CampyDB, 

http://xbase.bham.ac.uk/campydb) were obtained and aligned using the Clustalw 

program. The conserved domains of sapA and sapB were used to design specific primers 

for PCR amplification of sapA and sapB, respectively (Table 19). The primers were used 

to examine the prevalence of sapA and sapB in nineteen Campylobacter strains including 

fifteen C. jejuni strains and four C. coli strains. 

F-1 killing assay. The F-1 killing assay was performed in a 96-well plate as 

described previously (Mount et al. 2010) with minor modifications. Briefly, 

Campylobacter strains were grown in MH broth to mid-log phase, and the cells were 

washed with MH broth and diluted to approximately 106 CFU/ml in MH broth. A volume 
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of 180 μl of the diluted cells was mixed with 20 μl MH broth (control) or F-1 stock (80 

μg/ml) (treatment). The plates were incubated under microaerophilic conditions at 420C 

for 2 hours.  After 2-hour incubation, 20 µl of bacterial culture were taken and serially 

diluted in MH broth and plated onto MH agar plates. The number of CFU was 

enumerated after 2 days of incubation under microaerophilic conditions at 420C. 

Percentage survival was calculated by dividing the CFU of bacteria incubated with F-1 

relative to those incubated in the presence of MH broth and then multiplied by 100. All 

assays were done in triplicate and two independent experiments were performed. The 

significance of differences in susceptibility was determined using the Student’s t-test. 

Chicken colonization experiment. One-day-old broiler chickens were obtained 

from a commercial hatchery (Hubbard Hatchery, Pikesville, TN). The chickens were 

negative for Campylobacter as determined by culturing cloacal swabs prior to use in this 

study. These chickens were randomly assigned into three treatment groups (10 or 11 

chicks/group). At 4 days of age, each chicken was orally inoculated with a 1:1 mixture of 

wild type 81-176 (JL242) and its isogenic cjaB mutant (group I), tig mutant (group II), or 

sapB mutant (group III), with a dose of approximately 107CFU of bacteria per chick. For 

each group, five birds were euthanized and cecal content were collected at 3 and 10 days 

postinoculation (DPI). The cecal content from each bird were weighed and diluted in MH 

broth. The cecal suspensions were duplicate plated onto MH agar plates with 

Campylobacter-specific selective supplements (Oxoid, United Kingdom) for total 

Campylobacter enumeration and onto selective plates supplemented with appropriate 

antibiotics (30 µg/ml of Kan or 6 µg/ml of Cm) for the specific mutant numbers in each 
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sample. The plating media were tested prior to use to ensure that they supported the 

growth of the mutant strains. Notably, before inoculation, the motility of the wild-type 

and its isogenic mutants were confirmed to be at a comparable level. The number of CFU 

per gram of cecal contents was calculated for each chicken and was used as an indicator 

of the colonization level. The detection limit of the plating methods was 100 CFU/g of 

cecal contents. The bird from which no Campylobacter colonies were detected was 

assigned a conservative value of 99 CFU/g of cecal content for the purpose of calculating 

means and for statistical analysis. The significant difference in Campylobacter 

colonization levels (log10 transformed CFU) at each sampling point within group was 

calculated using Student’s t test. A P-value of < 0.01 was considered significant. 

RESULTS 

Susceptibilities of Campylobacter to chicken cathelicidin F-1. As shown in 

Table 20, the majority of C. jejuni and C. coli isolates exhibited susceptibility to chicken 

cathelicidin F-1 with MICs ranging from 4 μg/ml to 8 μg/ml. Only one C. jejuni strain 

showed a slightly higher MIC of 16 μg/ml.  

in vitro selection of F-1 resistant mutants. Different in vitro selection methods 

led to the emergence of F-1 resistant mutants on the selective plates.  A total of 8 mutants 

were selected for MIC testing together with the parent strain 81-176.  However, after 

being cultured in F-1 free MH broth, none of these mutants displayed a higher MIC than 

81-176 for F-1, indicating all these mutants were false-positive. Despite extensive efforts, 

no F-1 resistant mutants were selected in vitro. 
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Identification of genetic loci contributing to F-1 resistance by random 

transposon mutagenesis. A library containing 4,800 Kanr mutants were generated to 

screen for increased susceptibility to F-1. Three mutants displaying increased sensitivity 

to chicken cathelicidin F-1 compared to the parent strain JL28 were identified (Table 21). 

Backcrossing of the transposon mutations into the parent strain by natural transformation 

further confirmed that the F-1-sensitive phenotype in each mutant was linked to the gene 

with a specific transposon insertion. Direct sequencing of the mutant genomic DNA 

using transposon-specific primers revealed a specific transposon insertion site in each 

mutant (Table 21). All the transposon insertions occurred in the coding regions of 

corresponding genes. The orientation of Kanr cassette within the transposon of each 

mutant was the same as the corresponding disrupted gene. 

 F-1 killing assays were further performed to confirm if these three transposon 

mutants displayed higher susceptibility to F-1 than 81-176. As shown in Fig 8A, 

inactivation of CbrR, CjaB, or Tig led to increased susceptibility (5 to 12-fold) to F-1 

compared with their parent strain 81-176. However, only complementation of CjaB 

mutant with wild-type CjaB restored F-1 resistance back to the level of parent strain; 

complementation of CbrR and Tig did not affect F-1 sensitivity of the mutants.  In 

addition, inactivation of CbrR, Tig, or CjaB alone in other strain background (NCTC 

11168 and S3B) also led to increased susceptibilities of the mutants to F-1 (Fig 8B). 

  SapB is required for F-1 resistance in C. jejuni. The sap genes in Haemophilus 

influenza confer AMP resistance in this bacterium (Mason et al. 2005). A BLAST search 

of this study identified genes homologous to the sap genes identified in H. influenza 86-
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028NP (Mason et al. 2005), which include periplasmic solute peptide binding protein 

Cj1584c (25% aa identity to SapA), membrane permease proteins Cj1583c (20% aa 

identity to SapB), Cj1582c (21% identity to SapC). Cj1581c (25% aa identity to SapD), 

and Cj1580c (26% aa identity to SapF). However, the sapZ identified in H. influenza is 

not located on the sap opreron in Campylobacter; the SapZ homolog Cj0999c (32% aa 

identity) was identified in a separate region in C. jejuni NCTC 11168 genome. Isogenic 

SapB mutants were created in C. jejuni 81-176 and NCTC 11168. As shown in Fig 8C, 

inactivation of SapB resulted in increased sensitivity to F-1 (~4-fold) compared with their 

parent strains. 

Two pairs of primers (Sap4-F, Sap4-R) and (Sap5-F, Sap5-F) (Table 19) were 

used to amplify a conserved fragment of sapB and sapA, respectively, in 19 

Campylobacter strains. The PCR survey showed that majority of strains contains sapB 

(17 out of 19) and sapA (15 out of 19) genes. 

Genomic organization of the genes involved in F-1 resistance. As shown in Fig 

7A, cjaB operon consists of two genes cjaA and downstream cjaB (Wyszynska et al. 

2006). The tig operon contains two genes encoding trigger factor (Tig) which may 

function as a chaperon facilitating folding of nascent peptides (Martinez-Hackert et al. 

2009) and an ATP-dependent Clp protease, proteolytic subunit ClpP which was 

demonstrated to be involved in stress tolerance and virulence in Campylobacter and other 

bacteria (Cohn et al. 2007; Frees et al. 2007; Ingmer et al. 2009) (Fig 7B). Sequence 

analysis showed that both trigger factor and ClpP are highly conserved in Campylobacter 

spp (data not shown). The clpP is separated from its downstream gene def by a 28-bp 
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intergenic region which is predicted to contain a promoter sequence 

(http://www.fruitfly.org/seq_tools/promoter.html). Thus, tig operon probably contains 

two genes, trigger factor and clpP. Similarly, genetic organization of the cbrR operon was 

analyzed and presented in Fig 7C. The cbrR operon contains ten genes and the functions 

of the majority of these genes are not understood. The gene cbrR encoding a response 

regulator was demonstrated to be involved in bile salt resistance and in vivo colonization 

in Campylobacter (Raphael et al. 2005). Finally, in Fig 7D, putative sap operon contains 

five genes cj1584c (sapA), cj1583c (sapB), cj1582c (sapC), cj1581c (sapD), and cj1580c 

(sapF). 

Tig, CjaB, and SapB are required for Campylobacter optimal colonization in 

chickens. Since the identified genes confer resistance to F-1 in vitro, it is likely that these 

genes also contribute to colonization of Campylobacter in chicken by mediating 

resistance to F-1. It has been demonstrated that cbrR is required for optimal colonization 

of Campylobacter in chickens (Raphael et al. 2005). Here we examined the role of cjaB, 

tig and sapB in colonization of Campylobacter in chickens. As shown in Fig 9A, B, and 

C, inactivation of cjaB, tig, or sapB greatly impaired the colonization ability of C. jejuni 

81-176 in chickens. Specifically, when the wild-type and its specific isogenic mutant 

were coinoculated into a group of chickens, the colonization level of the specific mutant 

was significantly (P < 0.01) lower than that of the corresponding wild-type strain at 10 

days post-inoculation (DPI). In particular, by 10 DPI, the specific mutant of C. jejuni 81-

176 (tig-, cjaB-, or sapB- mutant) was no longer detected in any of the cecal samples 

collected from the chickens inoculated with a mixture of JL242 and its isogenic mutant. 
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Notably, both the wild-type and its isogenic mutants showed comparable growth patterns 

in MH broth (data not shown). 

DISCUSSION 

Our comprehensive survey using Campylobacter strains demonstrates the potent 

killing activity of F-1 against Campylobacter from various origins and geographically 

diverse regions. The unsuccessful generation of F-1 resistant Campylobacter mutants, 

using cells grown in MH broth that was free of F-1 or containing sublethal concentrations 

of F-1 strongly suggest that it is difficult for Campylobacter to develop acquired 

resistance to chicken host defense peptide F-1. Recently, it has been proposed that AMPs 

exert killing activity via interaction with multiple low-affinity targets. Therefore, 

conceptually it is very difficult for bacteria to develop resistance to AMPs while high-

level resistance to most clinical antibiotics (e.g. fluroquinolone) would be developed 

quickly due to their specific and high affinity target (Peschel et al. 2006). The findings 

from this chapter and the BCN studies in chapter III and IV strongly support this theory 

that bacteria have not developed highly effective mechanisms to resist various AMPs 

during evolution (Peschel et al. 2006). Consequently, either BCNs or endogenous AMPs 

are promising antibiotic alternatives (peptide antibiotics) to control bacterial pathogens. 

Mechanisms of Campylobacter resistance to endogenous defense AMPs are 

largely unknown. Alteration of LOS in the Campylobacter outer membrane led to altered 

susceptibility to the host antimicrobial peptide cathelicidin (Naito et al. 2010; van Mourik 

et al. 2010). In Campylobacter LOS synthesis, two genes gnnA and gnnB facilitate the 
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formation of a 2, 3-diamino-2,3-dideoxy-D-glucose (GlcN3N) disaccharide lipid A 

backbone when compared with the -1-6-linked D-glucosamine (GlcN) disaccharide 

observed in E. coli lipid A. van Mourik et al 2010 demonstrated that inactivation of gnnA 

and gnnB resulted in lipid A alternation and consequently increased sensitivity of the 

mutants to chicken cathelicidin F-1 (van Mourik et al. 2010). Truncation of LOS core in 

different locations resulted in altered sensitivity to human cathelicidin LL-37 (Naito et al. 

2010). 

In this study, inactivation of Campylobacter bile salt resistance regulator (CbrR) 

resulted in increased sensitivity to F-1 and reduced colonization ability in chickens 

(Raphael et al. 2005). However, the CbrR complemented strain did not restore resistance 

back to wild type. Transposon insertion in cbrR may yield polar effects on downstream 

genes. Notably, the gene Cj0649 encodes a beta-barrel OstA protein, known as LptD 

which functions in the assembly of LPS in the outer leaflet of the outer membrane in 

Gram-negative bacteria (Srinivas et al. 2010) and LOS modification in Campylobacter 

altered host cathelicidin susceptibility (Naito et al. 2010; van Mourik et al. 2010). Thus, it 

is likely that LOS synthesis defect may result in increased susceptibility to F-1. 

The gene encoding efflux pump CjaB is widely distributed in Campylobacter 

species and is located downstream of cjaA, and likely these two genes are organized in 

the same operon (Wyszynska et al. 2006). Classification of transporter CjaAB is 

intriguing at this stage (Wyszynska et al. 2006). In this study, we identified 

Campylobacter transporter CjaB that contributes to F-1 resistance in vitro and 

colonization of Campylobacter in chickens. In the chicken digestive tracts, 
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Campylobacter has to interact with multiple antimicrobials and toxic substances 

including chicken antimicrobial peptides (cathelicidin known as fowlicidin, and 

defensins). Using efflux pumps (Lin et al. 2002; Akiba et al. 2006; Lin et al. 2006) to 

extrude toxic compounds is critical for Campylobacter persistence and colonization in 

chickens. At this point, the fowlicidin concentration in chicken intestine and 

comprehensive in vivo information on substrates for the CjaAB efflux transporter are still 

unknown. Thus, a defect in the colonization ability of the Campylobacter CjaB mutant is 

likely the result of multiple actions of other unknown toxic compounds in the digestive 

tract. This speculation needs more studies to identify and characterize the transporter 

CjaAB and its cognate substrates. 

Trigger factor (Tig) was found highly conserved in eubacteria, functioning as a 

chaperon to interact with newly synthesized polypeptides and assist their folding as they 

emerge from the ribosome (Rassow et al. 1996). In Campylobacter, the gene encoding 

trigger factor (Tig) is located upstream of clpP which has proteolytic activity to degrade 

misfolded proteins and plays a critical role in protein quality control in bacteria (Frees et 

al. 2007). Inactivation of Tig by transoposon resulted in increased sensitivity to F-1 in 

Campylobacter. However, complementation of Tig did not restore F-1 resistance back to 

wild type strain, suggesting the tig downstream gene clpP may be indeed responsible for 

F-1 resistance. ClpP mutant resulted in increased sensitivity of Campylobacter to stress 

conditions such as heat and reduced virulence (Cohn et al. 2007). Shauna M. Mc 

Gillivray (ASM 2010 meeting) demonstrated that a ClpP mutant resulted in increased 

sensitivity of Bacillus anthracis to antimicrobialsl, including human cathelicidin LL-37 
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(ASM 2010 meeting). This information strongly suggests the importance of the tig 

operon in F-1 resistance and in vivo colonization of Campylobacter in chickens. It is 

noteworthy that defective colonization of Campylobacter Tig mutant in chickens might 

not be solely the result of increased susceptibility to F-1, but as a consequence of 

increased susceptibility to overall stress conditions in the chicken intestine such as 

temperature, bile salts, and other toxic compounds. 

Our random transposon mutagenesis library (4,800 mutants) was not large enough 

to identify all gene candidates, and thus failed to identify previously known genes 

contributing to fowlicidin resistance such as relevant LOS genes (Naito et al. 2010; van 

Mourik et al. 2010). Bacteria have co-evolved resistance to host AMP and resistance to 

AMP as a combination of multiple components (Peschel et al. 2006). Thus, technical 

limitation of random transposon mutagenesis capable of selecting the mutants with at 

least two fold increased sensitivity could not identify all mutants with mildly increased 

susceptibility (less than two-fold reduction in MIC) to F-1. 

Sap transporters that belong to the ABC-type influx transporter have been 

demonstrated to be required for AMP resistance in various Gram-negative bacteria 

including Salmonella enterica serovar Typhimurium, Proteus mirabilis, Erwinia 

chrysanthemi, and Haemophilus ducreyi (Parra-Lopez et al. 1993; Lopez-Solanilla et al. 

1998; McCoy et al. 2001; Mason et al. 2005; Mount et al. 2010). Inactivation of the Sap 

transporter resulted in defects in colonization in animal models (Lupp et al. 2002; Mason 

et al. 2005; Mason et al. 2006; Mount et al. 2010). However, the Sap transporter does not 

always confer AMP resistance in all bacteria expressing sap genes (Lupp et al. 2002). 
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Thus, Sap transporters may display distinct functionality within bacterial species to 

comply with the demands of that particular pathogen. In our study, a homolog to 

SapABCDFZ of non-typeable Haemophilus influenza 86-028NP was identified among 

Campylobacter species. Inactivation of SapB resulted in increased susceptibility to F-1 

(but not to other AMPs such as bacteriocins OR-7, E-760, magainin and cecropin A, 

using MIC tests, data not shown) and caused colonization defects in a chicken model 

system. The gene sapB and sapA were amplified from a majority of Campylobacter 

species including C. jejuni and C. coli. These results suggest the specific functionality of 

Sap transporter in resistance to F-1A and in vivo colonization. The mechanisms of how 

Sap transporters protect the cells from AMP attack are still unknown. It is generally 

believed that AMPs exert bacterial killing activities by inserting cationic peptides into the 

cytoplasmic membrane and form channels that result in leakage of cytoplasmic contents 

(Hancock et al. 2006; Peschel et al. 2006). Because Sap transporters function as influx 

pump, it is likely that Sap transporters reduce AMP localization in the periplasmic space 

by pumping these AMPs into bacterial cytosol and consequently subjecting them to 

enzymatic degradation. More studies to compare the fate of AMP in wild type and 

different sap isogenic mutants could shed light on mechanisms of Sap-mediated 

resistance to different AMPs in Campylobacter. We are currently examining functions of 

each individual sap gene. 

In this study, using F-1 as a model peptide to study chicken AMP resistance in 

Campylobacter, four genes were identified contributing to F-1 resistance. However, at 

this time, there are at least eighteen chicken AMPs (fourteen defensins and four 



 

 124 

cathelicidins) that have been identified and characterized (Xiao et al. 2006; Lynn et al. 

2007). Thus, more studies are needed to test if these identified genes are also required for 

resistance to other chicken AMPs such as defensins. Taken together, our study provided 

comprehensive information on mechanisms of F-1 resistance in Campylobacter. 

Campylobacter has utilized various strategies in conferring resistance to chicken host 

antimicrobial peptide F-1 to persist and colonize in chickens. Although our results did not 

pinpoint the exact mechanisms which Campylobacter utilizes to resist killing by F-1, the 

information in this study provides a solid foundation to further characterize the 

mechanisms of F-1 resistance in Campylobacter that will help us better understand 

Campylobacter-chicken host interaction and facilitate development of effective measures 

to reduce Campylobacter loads in chickens. 
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Table 18. Major bacterial strains and plasmids used in this study (Chapter V) 
Strains or 
plasmids Description Source and reference 

C. jejuni 
JL241 NCTC 11168, human isolate (Parkhill et al. 2000) 
JL28 81-176, human isolate, unable  to colonize in 

chicken 
(Black et al. 1988) 

JL242 81-176, human  isolate, can colonize in chickens (Black et al. 1988) 
JL599 JL28 derivative, cbrR::kan This study 
JL628 JL599/pCbrR This study 
JL623 JL241 derivative, cbrR::kan This study 
JL656 JL242 derivative, cbrR::kan This study 
JL601 JL28 derivative, cjaB::kan This study 
JL665 JL241derivative, cjaB::kan This study 
JL657 JL242 derivative, cjaB::kan This study 
JL602 JL28 derivative, tig::kan This study 
JL629 JL241derivative, tig::kan This study 
JL658 JL242 derivative, tig::kan This study 
JL668 JL656/pCbrR  This study 
JL694 JL657/pCjaAB This study 
JL695 JL658/pTig  This study 
JL624 C. jejuni S3B derivative, cbrR::kan This study 
JL631 C. jejuni S3B derivative, tig::kan This study 
JL697 JL242 derivative, cj1583c::cm This study 
JL706 JL241 derivative, cj1583c::cm This study 
Plasmids 
pRY111 E.coli-C.jejuni shuttle vector, Cmr (Yao et al. 1993) 
pCbrR pRY111 containing cbrR This study 
pTig pRY111 containing tig This study 
pCjaAB pRY111 containing cjaAB This study 
pGEM-T Easy Cloning vector, Ampr Promega 
pSapB pGEM-T Easy  containing sapB, Ampr This study 
pcmSapB pSapB with  cm inserted sapB This study 

E.coli    

DH5α F– 80lacZ M15 (lacZYA-argF)U169 recA1 
endA1 hsdR17 (rk

–, mk
+) phoA supE44 thi-1 gyrA96 

relA1 – 

Invitrogen 

JL690 DH5α  containing pCjaAB operon This study 
JL691 DH5α  containing pTig  This study 
JL652 DH5α  containing pCbrR This study 
JL692 DH5α  containing pGEM-T Easy plus Cj1583c::cm This study 
JL48 Conjugation helper strain, DH5α containing plasmid 

RK2013 
(Akiba et al. 2006) 
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Table 19. Key primers used for PCR in this study (Chapter V) 

Primer DNA Sequence (5’-3’)a Product 
size 
(kb) 

Target gene or 
functional 
description  

Tf-F TCATGAATTTCACCACTTAGCA 

 

1.6 Trigger factor (tig)  

 Tf-R TGCTATCATTGAAGGCAAATTTTA  

CjaAB-F TCGCCTAATGCCAAAGTTTC 2,7 Complete cjaAB 
 CjaAB-R TCACCATCTGCATTGCATTTA 

 
  

 
Cj0643-F GCAATGCGTATCAACAATCC 1.5 cbrR 
Cj0643-R AAAAATTTCCTTTCTTTTGAAAAC   

 
Cj1583c-F AAAAAGCCGAGGATTTGCTT 2,0 Cj1583c  

 Cj1583c-R CTGTGGCTATAGCATGAACGA  

CmF CGATTTAAATGCTCGGCGGTGTTCCTTT 0.8 cmr cassette 
CmR CGATTTAAATGCGCCCTTTAGTTCCTAAAG  

Sap4-F  GTG CTA AAA CGCTTA GTTTTTAGTATT 0.6 Conserved sapB 
 Sap4-R AATCAAATGCTCTAAACGATTTAA AAA    

Sap5-F GATGCAGTG ATTAATCTTGTATTT TCAGG 0.5 Conserved sapA 
 Sap5-R TCCATTTTACAAATTTATAAGGACCTG   

 



 

 128 

 Table 20.  Susceptibilities of diverse Campylobacter spp. to F-1 
 
Species Number of isolates with MIC of F-1 (µg/ml) Total 

0.5 1 2 4 8 16 174 
        
C. jejuni 0 2 8 58 85 1 154 
C. coli 1 3 3 8 5 0 20 
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Table 21. Mutants with increased sensitivity to F-1 
 
Strains MICs  

of F-1 
(μg/ml) 

Insertion 
site/ORF 

size 

Cj number  
NCTC11168 

Functions or description 

    JL28 8 N/A   
JL602 4 101/1335  Cj0193c Trigger factor (Tig) 
JL599 4 910/1245  Cj0643 Response regulator  (CbrR) 
JL601 4 258/1248  Cj0981c Putative transporter  (CjaB) 
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Figure 7. Genomic context of cjaB (A), tig (B), cbrR (C), and cj1583c (D). The locations 
of various major primers used in this study are indicated by arrows. The location and 
orientation of antibiotic resistance cassette are indicated below each candidate gene 
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Figure 8. Role of cbrR, tig, cjaB and sapB in F-1 resistance in different C. jejuni strains. 
The F-1 was added to washed bacteria and incubated for 2 hrs at 42oC under 
microaerophic condition. Survival values are relative to original inoculumn (details of 
bacterial strains in Table 18).  (A) Susceptibility of wild-type 81-176 (WT), its cbrR 
(JL656), tig (JL658) and cjaB (JL657) derivative mutants, and their corresponding 
complementation construct JL668, JL695, and JL694 respectively to F-1. (B) Effects of 
mutations in cbrR, tig, and cjaB on the susceptibility of NCTC 11168 and S3B to F-1. 
(C) Inactivation of SapB increased susceptibility of 81-176 and NCTC 11168 to F-1. 
JL697 and JL706 are isogenic SapB mutants of 81-176 and NCTC 11168 respectively. 
Each data represents the mean value obtained from two independent experiments with 
triplicate measurements in each independent experiment.  
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Figure 9. Inactivation of Tig, CjaB, and SapB reduced C. jejuni 81-176 colonization of 
chickens. Three chicken groups (10 or 11 birds/group) were inoculated with a 1:1 mixture 
of wild type 81-176 and its SapB isogenic mutant (A), CjaB isogenic mutant (B), or Tig 
isogenic mutant (C). For each group, five to six birds were euthanized and the cecal 
contents were collected and used for CFU enumeration at the indicated day 
postinoculation (DPI). Each symbol indicates the log10 number of CFU/g of cecal 
contents for a single chicken. The horizontal bars indicate the means of groups at the 
indicated times. Details were described in Materials and Methods. 
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Campylobacter, commonly found as a commensal organism in the digestive tracts 

of a variety of wild and domestic animals, is a major causative agent of human bacterial 

gastrointestinal diseases in developed countries worldwide (Ruiz-Palacios 2007). Poultry 

are the major reservoir for human Campylobacter infections (Kassenborg et al. 2004). 

Thus, reduction of Campylobacter load in poultry is significant to food safety and public 

health. In particular, at the same time that prevalence of infection is increasing, 

Campylobacter has become increasingly resistant to antibiotics, including 

fluoroquinolones and macrolides, the major drugs of choice for treating human 

campylobacteriosis (Luo et al. 2005), which raises an urgent need for novel intervention 

strategies to prevent and control Campylobacter colonization in poultry (Lin 2009). 

Antimicrobial peptides (AMPs) including bacteriocins (BCNs) are major components of 

host innate immune systems as well as a novel class of antibiotics to control food-borne 

pathogens. Recently, several anti-Campylobacter BCNs and chicken host antimicrobial 

peptide (AMPs) such as fowlicidin-1 have been proposed to control Campylobacter in 

poultry (Stern et al. 2005; Svetoch et al. 2005; Stern et al. 2006; Xiao et al. 2006). 

Resistance mechanisms of this pathogen to these AMPs are critical to understand, 

however, largely unknown. In this dissertation research, resistance mechanisms of 

Campylobacter to PM, BCNs, and fowlicidin-1 were studied comprehensively.  

Polymyxin B (PM) has been successfully used as a model to study resistant 

mechanisms of Gram-negative bacteria to host defense AMPs (Ernst et al. 2001; Finlay et 

al. 2004). Inactivation of the genes responsible for PM resistance usually results in 

increased susceptibility of bacteria to a variety of innate AMPs, leading to reduce 
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virulence of the mutants in an animal model system (Ernst et al. 2001). Functional 

genomic studies described in Chapter II successfully identified several genes involved in 

PM resistance in Campylobacter. However, these identified genes did not contribute to 

Campylobacter resistance to other AMPs such as anti-Campylobacter BCNs and chicken 

host defense peptides (F-1, 2). Thus, PM is not an ideal surrogate to study Campylobacter 

resistance to physiologically relevant AMPs. 

Resistance to the promising anti-Campylobacter BCNs was comprehensively 

examined in this dissertation research. Studies in Chapter III and IV demonstrated that 

Campylobacter only developed low-level BCN resistance with low frequency in vitro and 

in vivo. The acquired BCN resistance can be transferred at both inter- and intra-species 

levels. However, BCN resistance is not stable in Campylobacter. Genomic examination 

of two BCN resistant mutants using microarray, random transposon mutagenesis, and 

other functional approaches, revealed that the multidrug efflux pump CmeABC 

contributed to both intrinsic and acquired resistance to BCN (Chapter III). The findings 

from these two chapters support the feasibility of BCN in controlling Campylobacter in 

poultry at the production level, and provide key information for the development of 

effective and sustainable BCNs against Campylobacter infections.  

Campylobacter resistance to F-1, a representative for chicken endogenous AMPs 

was examined in Chapter V. The study in this chapter revealed that Campylobacter spp 

were highly sensitive to F-1 and it was very difficult for Campylobacter to develop 

resistance to F-1 in vitro. Comprehensive examination using random transposon 

mutagenesis, homolog blast search, and site-targeted mutagenesis identified four genes 
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(cbrR, cjaB, tig, and cj1385c) involved in resistance to F-1. These genes were also 

required for optimal colonization of Campylobacter in chickens. The findings from 

Chapter V will not only help us to develop more sustainable peptide antibiotics but also 

provide insights into the delicate host-pathogen interactions and reveal novel intervention 

targets to control Campylobacter infections in humans and animal reservoirs. Together, 

the findings from this dissertation have revealed uniqueness and complexity of AMP 

resistance in Campylobacter. 
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