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Chapter 1 

Literature Review 

 Traditional mathematics curriculum-based measures (M-CBM) have relied on 

computation and other single-task probes to screen and track students’ mathematics 

progress. Typically, these measures contain considerable measurement error even though 

they assess only one facet of mathematics (computation), i.e.; they are limited by mono-

operational bias. Consequently, in this study I describe the development and validation of 

a M-CBM, Monitoring Academic Progress: Mathematics (Hopkins, McCallum, Bell, & 

Mounger, 2010) which incorporates elements of traditional M-CBM, in addition to 

problem-solving elements to create a multi-dimensional ecologically valid assessment. 

Specifically this study addressed the following questions.  

1. What are the percentages of score variance accounted for by the following 

facets: person (p), items (i), and the residual (p x i, e) of the Monitoring 

Academic Progress: Mathematics (MAP:M), relative to a more traditional M-

CBM, the Monitoring Basic Skills Progress: Computation (MBSP)? 

2. What is the generalizability coefficient and standard error of measure (SEM) 

for relative decisions based on student’s raw scores across one, two, three, 

five, seven, and ten probes for the MAP:M versus the MBSP? 

3. What is the index of dependability and SEM for absolute decisions based on 

student’s raw scores across one, two, three, five, seven, and ten probes for the 

MAP:M versus the MBSP? 

4. What is the alternate-form reliability of the MAP:M versus the MBSP?  
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5. What is the test-retest reliability of the MAP:M? 

6. What is the reliability of the slope of the MAP:M versus the MBSP? 

7. What is the concurrent validity of the MAP:M with the MBSP as determined 

by a correlation coefficient expressing the relationship between the two? 

8. What is the relative predictive power of the MAP:M and the MBSP when the 

criterion is STAR Math scores? 

Introduction 

The passage of No Child Left Behind (NCLB; 107th Congress, 2002) Act and the 

2004 reauthorization of the Individuals with Disabilities Education Improvement Act 

(IDEIA; "Individuals with Disabilities Education Improvement Act of 2004,") has 

brought formative educational evaluation to the forefront in determining the presence of a 

learning disability and monitoring the progress of students with learning disabilities. 

NCLB placed states and school districts under increased pressure to provide at-risk 

students with scientifically based education and interventions from highly-qualified 

teachers, while imposing more stringent accountability standards. Prior to these 

legislative actions, accountability standards were assessed primarily using summative 

evaluations. Summative evaluations are state mandated and conducted at the end of the 

school year. Scores are intended to reflect reductions in the achievement gap between 

diverse student groups (107th Congress, 2002), although they provide inadequate 

information regarding individual student’s rate of growth. In addition to yearly 

summative assessments, IDEIA encourages the use of formative assessment for purposes 

of screening, intervention, and special education classification. This additional 
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information provides educators and decision-makers routine academic progress 

monitoring.  

The new legislation allows the use of innovative procedures for the identification 

of a learning disability. That is, not only can a learning disability be defined as an 

achievement-ability discrepancy, the traditional process (Tennessee Department of 

Education, 2004),  but a learning disability can also be defined as a failure to respond to 

empirically supported interventions. This paradigm shift requires not only a change in the 

referral process but also a significant change in the assessment methodology used to 

identify students with specific learning disabilities, such as monitoring student academic 

performance using frequent formative evaluations (Torrance & Pryor, 1998). Educational 

programming decisions (R. Sattler, 1989, p. 120) are then made based on student’s 

responsiveness to intervention (Deno, Fuchs, Marston, & Jongho, 2001; L. Fuchs & 

Fuchs, 1997) as demonstrated by evaluation of the data.  

Curriculum-Based Assessment 

Because formative assessment is a central feature of the new response to 

intervention (RTI) process and because curriculum-based assessment (CBA) systems are 

commonly used within RTI, I discuss briefly the history of CBA including the four most 

widely known procedures, and then the emergence of curriculum-based measurement 

(CBM) as the dominate CBA. 

Although formative evaluations have a long history in education, these evaluation 

schemas were not systematically defined until the late 1980’s. At that time, four 

prominent formative evaluations, characterized as CBA, began to appear in the literature. 
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These proposed systems varied from the use of teacher created assessments to the 

utilization of commercial academic achievement instruments. Although there are subtle, 

yet distinct differences across the models, each propose to use the actual classroom 

curriculum.  

One of the early CBA models outlined by Blankenship (1985), required 

assessments to be derived from curriculum material to “obtain direct and frequent 

measures of a student’s performance on a series of sequentially arranged objectives” (p. 

234). This approach assumes that student skill acquisition occurs in a sequential and 

predictable manner. Instructional time is devoted to promoting mastery of specific 

educational skills, while providing less time teaching skills already mastered. Pre-tests 

purport to measure student prerequisite performance on a particular academic skill. 

Performance on CBA determines the instructional goal, focusing efforts toward skills not 

yet mastered. Administering multiple CBA’s over the course of a few days provides 

evidence of a student’s typical performance on a given skill. Finally, a post-test is 

administered to determine if a student has achieved mastery of the targeted skill 

(Blankenship, 1985). This model of CBA is capable of tracking student performance on a 

successive series of isolated academic skills. The goal of the model is to maximize the 

amount of instructional time; however, students’ overall rate of growth cannot be 

determined. That is, instruction focuses on to-be-learned material, not on skills the 

students already possess. The potential problem with this model is the reliance on an 

assessment with no demonstrated reliability or validity for assessing the particular skill in 
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question. This can potentially result in inaccurate assessment of student’s level of skill 

mastery. 

A second CBA model relies on an analysis of sub-skills required to complete a 

given educational task (Howell & Morehead, 1987). This CBA model is similar to that 

described by Blankenship although the focus lies in assessment of splinter skills as 

opposed to the mastery of a skill as a whole. Through the identification of problematic 

sub-skill development, the instructor can provide customized course content targeting 

splinter skills. One striking difference between Howell and Morehead’s (1987) model and 

Blankenship’s (1985) model is Howell and Morehead’s recommended use of a 

combination of teacher-designed, commercial and normative-based assessments, as long 

as they are representative of the curriculum content (Howell, 1986). The underlying 

assumption of this CBA model is that the development of specific sub-skills is central to 

learning a particular skill. Once a sub-skill deficit is identified and remediated through 

modifications in content, pacing, and difficulty (Howell, 1986), the skill should then be 

acquired. 

A third CBA perspective contends that a student’s lack of academic achievement 

is a curriculum artifact (e.g., curriculum pace) rather than an inherent within-the-student 

variable (Gickling, 1985). In other words, low student performance is not due to the 

student but rather the pace, language used, or other mediating factor in the curriculum 

itself. In order to monitor the impact of these mediating factors ongoing assessment is 

used to determine “the instructional needs of the students based on the student’s ongoing 

performance in existing content” (Gickling, 1985, p. 206). This model of CBA is similar 
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to that of Blankenship, although Gickling uses the assessment information to prescribe 

changes of the instructional materials or strategies rather than focusing on skill mastery in 

the current materials. This model of CBA does not require tracking student progress but 

instead attempts to identify the instructional level and place the child within an 

appropriate educational environment. 

The three aforementioned formative assessment models require that the teacher 

develop the CBA. A potential pitfall of using teacher-developed measures is the lack of 

instrument validity and/or reliability. Reliability is critical for accurate assessment; it is 

necessary because it provides an operationalization of systematic (non-error) variance. In 

addition, validity of CBA is important when assessing student mastery. If an instrument 

is not valid, decisions related to skill mastery are inherently inaccurate because the 

instrument is not measuring the target skill. Without psychometric data (i.e., reliability 

and validity), practitioners cannot determine whether a given CBA is measuring the 

intended construct. 

Fuchs and Fuchs (1986) set curriculum-based CBM apart from other CBA’s by 

focusing on descriptions of its standardization procedure and psychometrics. They define 

this type of CBA-based formative assessment as an inductive and psychometrically 

acceptable method of evaluating student performance within the natural classroom 

setting. Formative assessment is inductive because decisions begin with ongoing 

assessment, using reliable and valid measures, that provides educators with a database of 

information in order to make empirically based educational decisions (Deno, 1985; L. 

Fuchs & Fuchs, 1986; Shinn & Marston, 1985). Following is a discussion of curriculum-
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based measurement that highlights its history and distinguishing factors that separate it 

from the other three CBA models. 

Curriculum-Based Measurement 

Initial CBM research began in the late 1970’s and early 1980’s as Deno and 

colleagues examined various measurement procedures that could produce reliable and 

valid measurements of reading,  (Deno, Mirkin, & Chiang, 1982; Deno, Mirkin, Chiang, 

& Lowry, 1980), written expression (Deno, Mirkin, & Marston, 1980), spelling (Deno, 

Mirkin, Lowry, & Kuehnle, 1980), and mathematics. These studies produced a series of 

single global tasks that had potential to provide a valid and reliable measurement of 

academic skills across repeated administrations, later identified as one of the hallmarks of 

CBM  (Deno, 1985). Tasks used to measure reading included reading words in isolation, 

in context and from passages, in addition to various other strategies (e.g., cloze 

procedures to assess comprehension and vocabulary assessment). Other academic skills 

were also considered, including written expression and spelling. Written expression was 

operationalized by writing a passage under time constraints and counting the number of 

words written, number of words spelled correctly, number of correct letter sequences, and 

the use of mature words. Spelling was defined as the number of correct letter sequences 

or total number of correctly spelled words. 

This early research provided the foundation for the CBM formative measurement 

model, an “approach that uses direct observation and recording of  student’s performance 

in the local school curriculum as a basis for gathering information to make instructional 

decisions” (Deno, 1987). CBM consists of “a set of short duration (1 to 3 min) fluency 
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tests in the basic skill areas of reading, spelling, mathematics, computation, and written 

expression, used in a standardized manner to facilitate problem-solving assessment” 

(Shinn & Hubbard, 1992). Another characteristic of CBM is the strong focus on 

obtaining evidence to determine acceptable reliability and validity.  

In general, CBM uses sensitive cost-effective, brief measures that can be 

administered repeatedly over time (Deno, 1985). The advantage of using CBM over other 

CBA methods is the standardized administration procedures, localized normative data, 

and research establishing the reliability and validity of the instrumentation.   

Responsiveness-to-Intervention and Curriculum-Based Measurement 

CBM is an integral part of the new RTI framework endorsed by recent legislation 

as a means of identifying students with learning disabilities. RTI is a system used to 

evaluate students on a regular basis to identify (D. Fuchs & Fuchs, 2006) those 

performing significantly below their peers on curriculum-based measures. Those students 

then move through two to four tiers (Ardoin, Witt, Connell, & Koenig, 2005; Center; D. 

Fuchs, Mock, Morgan, & Young, 2003; Jankowski, 2003) of increasingly intense 

instruction, based on RTI (Hollenbeck, 2007). 

Typically, CBM is used within a RTI system to identify struggling students 

through universal screenings (Ardoin et al., 2004) and student progress monitoring (Lynn 

S. Fuchs & Fuchs, 1999; Lynn S. Fuchs, Fuchs, Hamlett, Walz, & Germann, 1993; Hosp 

& Hosp, 2003; Stecker & Fuchs, 2000) based on local normative data.  The typical RTI 

model considers all students part of tier 1 wherein they receive a prescribed number of 

minutes per day of adequate research-based instruction (Vaughn, 2003). 
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 Three times per year, typically once at the beginning, middle, and end of the 

school year, school personnel administer a universal screening using a CBM for reading, 

math, and/or writing. Students who score at a designated percentile or lower (e.g., 10th 

percentile or below) based on the universal screening are placed in tier 2 where they 

receive additional instruction (e.g., 30 min per day) in reading, math, or writing.  

Typically tier 2 of RTI consists of biweekly progress monitoring, small group 

instruction, and increased intervention intensity (Hollenbeck, 2007). Increased intensity 

refers to more frequent and lengthier instruction in smaller groups, with more 

experienced instructors (D. Fuchs & Fuchs, 2006). Each student’s rate of progress is 

tracked and weekly or bi-weekly improvement recorded on a graph. The slope of the 

student’s CBM scores indicates rate of progress. The slope is typically calculated using a 

least-squares regression (L. Fuchs et al., 2007). Least-squares regression produces a line-

of-best-fit through the student’s data points, producing a visual display of each student’s 

performance. 

 After approximately 10 weeks of intervention at tier 2, each student’s progress 

(i.e., slope) and performance (i.e., universal screening score) are used to determine 

possible movement either back to tier 1 or into tier 3. Students who demonstrate progress 

greater than those at given percentile (e.g., 25th percentile) and performance greater than 

those at a given percentile (e.g., 10th percentile) move back into tier 1. Students who 

demonstrate progress lower than those at a given percentile and performance lower than 

those at a given percentile move into tier 3 for more intense instruction. Tier 3 typically 

consists of 60 min per day of instruction on top of the 90 min per day of typical 
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classroom instruction. Tier 3 also has a lower student-teacher ratio (e.g., 2:1, 1:1) and 

may utilize a “uniquely prescribed” problem-solving model (PSM), where tier 2 typically 

uses a “tier-wide” standard-treatment-protocol model (STPM), both commonly used 

intervention methods in RTI.  

The PSM requires the personalization of assessments and interventions to meet 

the needs of each student (Jankowski, 2003; Marston, Muyskens, Lau, & Canter, 2003). 

One promising PSM is the Heartland PSM that includes four levels (Jankowski, 2003). 

Level 1 consists of consultation between teachers and parents. This is an informal stage 

of intervention where the teacher informally monitors progress. Level 2 includes a 

teacher consultation team who provides information and support to teachers who are 

working with struggling students. During level 2, written instructional plans are 

developed and progress monitored. Consideration for tracking into level 3 occurs if 

adequate progress is not achieved. Level 3 includes extended support staff such as school 

psychologists, educational consultants, or speech/language pathologists. Level 3 provides 

the most powerful interventions and is the heart of the problem-solving model, including 

a formal intervention plan and ongoing progress monitoring.  

 The model defines the problem (Problem Identification) operationally, using 

specific behavioral descriptions. CBM then provides validation of the existence of the 

problem. Following, data are used to development an intervention plan to correct the 

problem (Problem Analysis). Implementation of the plan follows while assuring 

treatment integrity (Plan Implementation). The final step in the PSM (Problem 
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Evaluation) requires analysis of the success of the plan through ongoing CBM data 

collection. Data provide guidance for intervention modifications as needed. 

These four problem-solving steps occur throughout the RTI process as students 

move from one tier to the next. The benefits of a problem solving RTI model is that each 

student is given an individualized intervention plan designed to meet each specific need 

as it arises, although the model is likely to identify more false positives than a STPM (D. 

Fuchs & Fuchs, 2006). 

Level 4 of the Heartland model allows consideration for special education 

services. When considering an evaluation for special education services, data from the 

prior three levels of intervention and other assessment data are considered. In order to be 

placed in special education, using the Heartland model, a student must demonstrate 

failure to respond to multiple levels of intervention, a significantly lower level of 

performance than peers, and the student must require instruction that cannot be provided 

in the general education curriculum (Jankowski, 2003). 

In contrast, the STPM provides all students with the same intervention at set 

intervals and durations within small groups at tier 2 and individually at tier 3 (D. Fuchs & 

Fuchs, 2006). Tier 3 remains very similar to tier 2, although the intensity of the 

interventions increase and may be more customized. Students move through the tiers 

using the same decision criteria as the PSM although the interventions are the same for 

all students. Decisions pertaining to eligibility for special education can occur in tier 3 for 

students who fail to make adequate progress. Depending on the system and the particular 

process employed to determine special education eligibility, cognitive and adaptive 
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measures may be used to rule out intellectual disability and/or to identify cognitive 

processing strengths and weaknesses. 

Mathematics Curriculum-Based Measurement 

There is a rapidly developing literature focusing on the use of CBM for reading 

and writing; on the other hand, there has been little attention paid to the development of 

M-CBM. Although existing research describes a variety of probe types for measuring 

mathematics performance across grade levels, with the exception of Fuchs and Fuchs’ 

(1999) Monitoring Basics Skills Progress: Concepts and Applications (a commercially 

available M-CBM), the breadth of M-CBM research has focused primarily on brief single 

tasks. Monitoring Basic Skills Progress: Concepts and Applications provides both 

screening and monitoring progress functions and includes a variety of probe types but is 

not time limited.  

An in-depth analysis of the psychometric properties of M-CBM follows. Due to 

the number of differing item types used across and within studies, the analysis is broken 

into sections discussing the psychometric properties of each item type present in the M-

CBM literature. The item types are arranged in order from most prevalent to least 

prevalent including Math Facts, Computation, Discrimination tasks, Missing Number, 

Counting, Number Identification, Concepts and Applications, and Problem Solving. First, 

there is a brief discussion of traditional methods for establishing psychometric properties 

(i.e., reliability and validity). 
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Traditional Estimates of Reliability 

Establishing and compartmentalizing estimates of true score and error variance is 

at the heart of classical test theory. In classical test theory, a “true score” is a hypothetical 

score minus sources of error. An obtained score is the score an examinee gets on any 

given administration of a test, and consists of systematic or true score variance and error 

variance. A combination of increased content mastery and measurement error results in 

variation in obtained scores over multiple CBM administrations. In classical test theory 

measurement error is assumed to be normally distributed; thus over the course of an 

infinite number of administrations an individual’s true score would lie at the center of the 

normal distribution of obtained scores (Nunnally, 1978). Varieties of procedures are used 

to obtain estimates of reliability because it is impossible to administer a test an infinite 

number of times. Nunnally (1978) provided a widely accepted definition of reliability, 

i.e., the extent to which a construct can be measured over difference occasions with 

repeatable results. Particularly, a measure is said to be reliable if it is able to produce the 

same results time after time. The degree to which obtained scores vary, represents error, 

assuming there is no change in mastery. Error can occur in either a random or a 

systematic fashion. Classical test theory focuses primarily on random error because 

systematic error contributes to all examinees mean score and is least important when 

studying individual differences. A reliable instrument is one that can be generalized to 

future measurements of the same construct. Error is typically defined as one minus 

reliability (E = 1 – rel).  
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There are four estimates of reliability typically used in classical test theory: 

alternate-form, internal-consistency, inter-rater, and test-retest reliability. All these 

estimates are operationalized by a correlation coefficient or some variant, typically the 

Pearson product moment correlation coefficient that ranges between -1 and +1. Alternate-

form reliability is a measure of the degree to which two parallel forms of a test are 

correlated with one another. Alternate-form reliability is a useful measure of reliability if 

the construct being assessed produces considerable variability over short periods of time 

(Nunnally, 1978). Internal consistency is a reliability estimate based “on the average 

correlation among items within a test (Nunnally, 1978, p. 229). Coefficient alpha is the 

typical measure of internal consistency, which shows how much the items have in 

common and sets the upper limit of reliability. Inter-rater reliability is an estimate of 

reliability based on the correlation or percent agreement of multiple raters across multiple 

testing forms. Low inter-rater reliability can contribute to testing error. Finally, test-retest 

reliability refers to the degree to which a single test form correlates with itself within a 

short period-of-time. Low correlations would indicate a high degree of variability or error 

in the instrument where high correlations would indicate low levels of variability and a 

more reliable instrument. 

Previous M-CBM research has relied primarily on classical test theory to establish 

reliability. Alternate-form reliability estimates have been used most often followed by 

inter-rater reliability. Internal consistency and test-retest reliabilities have also been 

reported, although not as frequently. It is possible, using traditional techniques, to create 

an estimate of error and to use it to produce a confidence band using the standard error of 
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measure (SEM), for any distribution of scores once reliability is determined. Calculating 

the SEM consists of multiplying the standard deviation of the distribution by the square 

root of one minus the reliability ).rel1SD(SEM −=  The SEM is rarely reported in the 

current M-CBM literature, and the problem is compounded because multiple measures 

are typically used in curriculum-based assessment to monitor progress, multiplying the 

error associated with decision-making. 

Generalizability Theory 

An alternate strategy for determining test error relies on Generalizability theory. 

“Generalizability [G] theory is a statistical theory about the dependability of behavioral 

measurements” (Shavelson & Webb, 1991, p. 1), that incorporates both reliability and 

validity (Silva, 1993). The Standards for Educational and Psychological Testing 

(American Educational Research, 2002) recommend the use of G-Theory for determining 

error variances that arise from multiple sources, when feasible. G-Theory allows “an 

investigator to identify and quantify the sources of inconsistencies in observed scores that 

arise, or could arise, over replications of a measurement procedure” (Brennan, 2001, p. 

2). In other words, in contrast to classical test theory that is “decomposed into a ‘true’ 

score T and a single undifferentiated error term E, G-Theory differentiates between 

multiple sources of score variation or facets, where classical test theory cannot (Brennan, 

2001). Additionally, G-Theory can guide instrument development in such a way as to 

maximize its reliability (Cardinet, Johnson, & Pini, 2010). 

 G-Theory can be defined in the context of two types of studies, a generalizability 

study (G-Study) and a decision study (D-Study). The purpose of a G-Study is to 
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“anticipate the multiple uses of a measurement (Shavelson & Webb, 1991, p. 12) and 

“obtain estimates of variance components associated with a universe of admissible 

observations” (Brennan, 2001, p. 8). A universe of admissible observations is considered 

“the observations encompassed by the possible combinations of conditions that the G-

Study represents (L. J. Cronbach, Gleser, Nanda, & Rajaratnam, 1972, p. 20). In other 

words, the universe of admissible observations consists of all combinations of possible 

observations as defined by the researcher. In order to estimate the variance components 

the G-Study requires two or more scores for each person obtained across one or more 

conditions (L. J. Cronbach, et al., 1972). A Universe Score, similar to a “true” score in 

classical test theory, is obtained for each person. A Universe Score is the expected mean 

score across all acceptable observations (Brennan, 2001; L. J. Cronbach, et al., 1972). 

The variance associated with the Universe Scores across all persons is called the 

Universe Score Variance (Brennan, 2001). A “factorial ANOVA [is then used] to 

partition an individual’s score into an effect for the universe-score (for the object of 

measurement), an effect for each facet or source of error, and an effect for each of their 

combinations” (Shavelson & Webb, 1991, p. 16).  

 The purpose of a D-Study is to use information from the G-study (i.e., variance 

components) to design the best instrument (Shavelson & Webb, 1991), make decisions 

and/or draw conclusions (Brennan, 2001; L. J. Cronbach, et al., 1972). The results of a D-

Study are used to make relative or absolute decisions in addition to providing G-

Coefficients, similar to Cronbach’s alpha in classical test theory.  
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Relative decisions are those decisions made about individuals when compared to 

the performance of others (Shavelson & Webb, 1991). Relative decisions result in a G-

Coefficient defined as the ratio of the universe score variance to the expected observed 

score variance. The ratio produces scores ranging from 0 to 1 and indicates how likely the 

observation is to locate an individual relative to others in the population, for example, 

how well the measurement has ranked the objects of measure (Cardinet, et al., 2010; L. J. 

Cronbach, et al., 1972). This is similar to classical test theory reliability coefficients 

(Mushquash & O'Connor, 2006). 

Absolute decisions are used to classify individuals in some way based on 

performance standards or pre-determined criterion (L. J. Cronbach, et al., 1972). The G-

Coefficient, called the Index of Dependability under an absolute decision, indicates the 

extent to which accurate generalizations can be made from an individual’s observed 

scored relative to his or her universe score (Shavelson & Webb, 1991). The Index of 

Dependability is a “ratio of the universe score variance to itself plus relative error 

variance” (Brennan, 2001, p. 13). This coefficient indicates how accurately the measure 

can locate an individual on a scale without respect to others (Cardinet, et al., 2010).  

The information from the D-Study provides information to estimate the SEM and 

modify the measurement procedure in order to increase the reliability of the measure. 

Reliability may be increased by either modifying the number of facet levels sampled, 

eliminating atypical levels of certain facets, or changing the number and nature of the 

facets (Cardinet, et al., 2010). Any one or combination of these modifications, depending 

on the D-Study results, can create more reliable measurements in future studies. 
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Mathematics Curriculum-Based Measurement Item Types 

Even at the early levels, math skills are complex and multi-faceted; thus, the 

assessment of math skills can also be complex and multi-faceted. There have been 

various M-CBM item types developed with some being more promising than others. 

Therefore, it is important to take a closer look at the psychometric properties of specific 

item types. Below I describe some of those most commonly used.  

Math facts. Deno and Mirkin’s (1977) originally designed math probes were 

based on the assumption that mastering math facts, with addends to 19 and subtrahends to 

9, by the end of third grade was essential for success in mathematics. Subsequently, 

multiple studies have examined the technical adequacy of math-fact scores and other M-

CBM probes. Math facts consist of two types of tasks: single-skill and multi-skill probes. 

Single-skill probes refer to a set of items assessing one particular mathematical skill such 

as adding two numbers without carrying. A multi-skill probe includes item sets that 

assess more than one mathematical skill at once, such as two digit by two-digit addition 

with regrouping and three digit by three-digit addition without regrouping. A discussion 

of the reliability and validity demonstrated by these items follow. 

Studies have reported the alternate-form reliability of single-skill math-fact 

probes ranging from .48 to .72 (Tindal, Germann, & Deno, 1983). Addition and 

subtraction math facts have resulted in higher reliabilities (.70 to .72) than multiplication 

and division facts, .48 to .61 (Tindal, et al., 1983) . Test-retest reliabilities have ranged 

from .78 to .89 (Epstein, Polloway, & Patton, 1989; Tindal, et al., 1983) across single-

skill probes. Addition and subtraction math facts have resulted in similar reliabilities (.80 
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to .89) as multiplication and division math facts (.78 to .79). Inter-scorer agreements are 

typically high for math-facts items (.90 to 1.00; Epstein, et al., 1989; L. Fuchs, et al., 

2007; VanDerHeyden, Witt, & Naquin, 2003). 

A study by Connell (2006) examined the criterion related validity of single-skill 

math facts with the Woodcock-Johnson, Third Edition (WJ-III) broad math score (.45 to 

.70), and the Iowa Test of Basic Skills (ITBS; Hoover, Dunbar, & Frisbie, 2005) 

composite scores (.45 to .53). Multi-skill probes were also correlated with the WJ-III 

broad math score (.67 to .76) and the ITBS composite scores (.34 to .57). 

Shinn & Martson (1985) conducted the first study examining the discriminative 

validity of math-fact probes. Findings revealed a significant mean difference between 

scores of students who were normally achieving, mildly handicapped, and those who 

were Title 1 eligible. VanDerHeyden et al., (2003) extended the findings of Shinn and 

Marston (1985) by not only examining the ability of math fact probes to differentiate 

predetermined groups but to identify how well math fact probes were able to accurately 

classify children when used as a screening measure. VanDerHeyden and colleagues 

found that specificities ranged from .69 to .99 and sensitivity ranged from .33 to 1.00, 

depending on the criterion measure used. Specificity refers to the proportion of false 

positives and sensitivity refers to the proportion of true positives with respect to the 

identification of at-risk students. These results indicate a high degree of variability with 

respect to the decision-making utility of math-fact probes.  

Computation. Computation probes have also been the focus of much of the M-

CBM research. Computation probes include addition, subtraction, multiplication, and 
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division of multiple numbers of varying lengths. Estimates of reliability of computation 

probes have included estimates of internal consistency, alternate-form reliability, and 

generalizability. 

Adding to the reliability research base, Fuchs et al., (1994) reported internal 

consistencies (.94 to .98) across second, third, and fourth graders. The mean digits-

correct-per-minute was reported to range from 13.99 to 33.64 with the standard error of 

estimates from 4.04 to 5.81. Additional studies have reported the standard error of 

estimate of the slope ranging from .15 to .31 (Shapiro, Edwards, & Zigmond, 2005).  

The generalizability of single and multiple-skill computation probes was studied 

by Hintze, Christ, and Keller (2002) and Christ, Johnson-Gros, and Hintze (2005). 

Hintze, Christ, and Keller (2002) found that a single-skill computation form could be 

generalized across administrations of all single-skill computation probe forms. That is, 

scores obtained on one single-skill computation form may be reliably obtained on 

subsequent single-skill computation forms. Results were slightly different when 

administering a multiple-skill probe. A single-skill probe required the administrations in 

order to generalize results across all other probe forms. This difference was due to the 

variance in scores associated with the individual decreasing while variance for other 

factors, such as grade level, increased when given multiple-skill probes. A subsequent 

study by Christ, Johnson-Gros, and Hintze (2005) sought to determine the preferable 

administration time needed when administering grade-level computation probes in order 

to obtain a reliable and generalizable scores. The authors determined that when making 

norm-referenced decisions based on the data, a 1 min administration is sufficient when 
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making low-stakes decisions; however, 4 min was needed to make high-stakes decisions. 

When using criterion-referenced scores, 4 min was needed for low-stakes and 13 min for 

high-stakes decisions. The authors also examined the measurement error associated with 

computation probes. They determined that 64% to 68% of the variability in scores was 

due to measurement error. Additionally, variance in the scores associated with the 

individual ranged from 17% to 26%. Apparently, a substantial amount of variance is 

associated with measurement error relative to variance within the individual. Thurber, 

Shinn, and Smolkowski (2002) reported alternate form reliabilities ranging from .90 to 

.92. AIMSWeb, a commercially available M-CBM, has been reported to have alternate-

form reliabilities ranging from .90 to .98 across first, second, and third grades (National 

Center on Response to Intervention, 2010). The Discovery Education Predictive 

Assessment: Math (DEPA:M), a newly developed commercially available M-CBM, 

reports Cronbach’s alpha reliabilities for grades 3 through 10 with third-grade ranging 

from .76 to .90  (National Center on Response to Intervention, 2010). The DEPA:M also 

reports SEMs that range from 2.11 to 2.69 at third grade. 

 Shinn & Marston (1985) reported discriminant ability of computation probes, 

finding a statistically significant difference between the performance of normally 

achieving, mildly handicapped and Title 1 eligible students. Apparently, computation 

probes can discriminate between students with differing levels of math ability.  

Computation probes have demonstrated low to moderate criterion validity. Connell 

(2006) reported moderate correlations between both the WJ-III mathematics broad score 

and the ITBS composite scores, ranging from .57 to .76 among first through third graders. 
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The Problem Solving and Procedures of the Stanford Achievement Test: Ninth Edition 

have also demonstrated moderately strong correlations with computation probes, ranging 

from .50 to .66 (Jitendra, Sczesniak, & Deatline-Buchman, 2005). Computation probes 

have demonstrated the least correlation with a group-administered achievement test, 

TerraNova  (.45 to .51; Connell, 2006), and an individually administered achievement 

test, Wide Range Achievement Test Third edition (.34; L. Fuchs, et al., 2007). 

Discrimination. Quantity discrimination (e.g., identification of the larger of two 

numbers, placed side-by-side) and other discrimination tasks have demonstrated good 

reliability and moderate to good validity (Chard et al., 2005; Clarke & Shinn, 2004; 

Vanderheyden et al., 2004). These tasks yield good alternate form (.92 to .93) and test-

retest (.85 and .86) reliability. Clarke and Shinn (2004) reported correlations (.79 and .80) 

with the with Wood-cock Johnson, Revised Edition (WJ-R; Woodcock & Johnson, 1989) 

Applied Problems subtest and the Number Knowledge Test, respectively. Chard et al., 

(2005) examined the same quantity discrimination task for 486 kindergarten and 483 

first-grade students. They reported somewhat lower correlations between the Quantity 

Discrimination probes and the Number Knowledge Test for first-grade (.45 to .53) and 

kindergarten (.50 to .55) students. Although not quantity discrimination, VanDerHeyden 

et al., (2004) constructed a discrimination task wherein children had to choose one object 

from an array of four objects that did not belong. This task was reported to have good 

alternate-form reliability (.88) and moderate correlation with the Brigance Screens (.55; 

Brigance, 1985) and the Test of Early Mathematics Ability (.50; Ginsburg & Baroody, 

1990). 
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VanDerHeyden (2004) administered a series of probes requiring the examiner to 

say the name of a shape and the examinee to point to that shape. This discrimination task 

yielded moderate alternate form reliability of (.40) and poor criterion related validity (.06 

to .38). 

Missing number. Missing number task typically consists of a string of numbers 

presented with one or more numbers missing from the string. Students determine which 

numbers are missing, and write them in the blank. Clarke and Shinn (2004) and Chard et 

al., (2005) studied the use of  number sequences containing numbers from 1 to 20. Chard 

et al., (2005) reported strong alternate-form (.78 to 93) and test-retest (.79 to .81) 

reliabilities. Correlations with the Number Knowledge Test ranged from .61 to .74 and 

with the WJ-R Edition (Woodcock & Johnson, 1989) Applied Problems Subtest from .68 

to .69.  

Counting. Oral counting tasks, assessed via M-CBM, have demonstrated 

acceptable reliability although there is conflicting information about the validity of the 

measures. A variety of counting tasks have been studied, including orally counting 

numbers and counting objects (Clarke & Shinn, 2004; Vanderheyden, et al., 2004). These 

tasks have produced strong alternate-form reliabilities (.71 to .93). Clark and Shinn 

(2004) reported test-retest reliabilities ranging from .78 to .80 and inter-scorer agreement 

(.99).  

VanDerHeyden et al., (2004) reported moderate  to low correlations between 

counting tasks and the Brigance Screens (.44 to .56; Brigance, 1985) and the Test of 

Early Mathematics Ability (.19 to 49; Ginsburg & Baroody, 1990). Correlations with the 
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Number Knowledge Test (Okamoto & Case, 1996) have ranged from .38 to .55 at 

kindergarten and .07 to .70 at first grade (Chard, et al., 2005). Modest correlations have 

also been found between oral counting and M-CBM computation probes (.50) and the 

WJ-R Applied Problems subtest (.60; Clarke & Shinn, 2004).  

Number identification. Number identification tasks typically require the child to 

name a given number. The child is required to choose a specific number, to name a 

presented number, circle a number, or write a number. These tasks have been researched 

among pre-k through first grade students, typically as a screening measure. Number 

identification tasks have demonstrated strong alternate-form validity (.81 to .93; Chard, et 

al., 2005; Clarke & Shinn, 2004; Vanderheyden, et al., 2004; VanDerHeyden, Witt, 

Naquin, & Noell, 2001), while test-retest reliabilities have ranged from .76 to .85 (Clarke 

& Shinn, 2004). Number identification tasks have also shown moderate to strong 

correlations with criterion measures ranging from .44 to .70 (Chard, et al., 2005; Clarke 

& Shinn, 2004; Vanderheyden, et al., 2004; VanDerHeyden, et al., 2001). 

VanDerHeyden and colleges (2004; 2001) found somewhat higher correlations between 

teacher ranking of student performance and criterion measures (.30 to .91).  

Two studies examined identification of shapes in combination with identification 

of numbers as a method of screening children for math difficulties. VanDerHeyden et al., 

(2001) combined counting shapes with number identification. Students were required to 

count the number of circles on the left side of the page and match the quantity with the 

numerical value on the right side of the page by circling the correct number. The total 

score was determined by recording the number of correct choices in 1 min. Alternate-
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form reliabilities for kindergarten and first-grade students have been strong (.84) while 

criterion related validity with the Comprehensive Inventory of Basic Skills, Revised 

(Brigance, 1999)  has been slightly lower (.61). An alternate task required students to 

look at a number and draw the number of circles equal to the value of the number. This 

task resulted in alternate-form reliability of .70 and criterion-related validity of .44 

Fuchs et al., (2007) developed a number identification task that required students 

to fill in two numbers in an incomplete number sequence. These number identification 

tasks in early first grade demonstrated a significant relationship to end of second grade 

Wide-Range Achievement Test Arithmetic scores (.34). 

Concepts and applications. Concepts and Applications M-CBM items were 

developed by Fuchs and colleges, who recommend a multi-dimensional format for 

progress monitoring, rather than a mono-operational format (L. Fuchs, et al., 1994). 

Concepts and Applications in contrast to traditional time-limited M-CBM, uses a time 

unlimited format. This is important because the Concepts and Applications probes consist 

of items requiring students to calculate measurements, time, and count money in addition 

to solving applied computation and word problems. Concepts and Applications probes 

have demonstrated strong internal consistency (.94 to .98) and good criterion validity 

with the Comprehensive Test of Basic Skills (.64 to .81; CTBS; L. Fuchs, et al., 1994; 

MacMillan & McGraw-Hill, 1989). Studies have also reported student improvement 

slopes from .40 to .69 (L. Fuchs, et al., 2007; L. Fuchs, et al., 1994).  

Fuchs et al., (2007) advocated use of a range of mathematics skills when 

conducting screening and progress monitoring using M-CBM. Based on a Logistic 
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regression analysis using number identification, fact retrieval, M-CBM computation, and 

M-CBM Concepts and Applications tasks, specificity (79.6, 75.3) was greater than 

sensitivity (69.6, 70.8) in predicting both math disability calculation and word problem 

status with hit rates of 78.2% and 74.7%, respectively.  

The area under the receiver operator characteristic (ROC) curve was .85 for 

calculation and .81 for word problems. The ROC curve is a visual representation 

depicting the ranking of individuals along the x and y axes on two independent indicators 

of group inclusion (e.g., at risk or not at risk). These results suggest that a single screener 

that incorporates multiple item types such as mathematics Concepts and Applications 

may be useful for screening children at risk for math disability. This study represents one 

of the only studies to examine the degree to which M-CBM can accurately identify at risk 

elementary students. 

Problem solving. A final item type that has been explored for use as a M-CBM is 

problem-solving tasks. These are typically include word-problems and are used in higher 

grades. One study has examined their use among third-grade students. Jitendra and 

Sczesniak (2005) found internal consistencies of word problem solving range from .60 to 

.75, while criterion related validity ranged from .38 to .71. There is limited research 

pertaining to the use of problem-solving M-CBM among younger students. 

Statement of Purpose 

Within the RTI paradigm, it is typical to use a single M-CBM math-fluency 

measure (e.g., computation or math-facts) to screen and monitor the progress of students. 

These mono-operational math fluency measures have demonstrated adequate reliability 
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and validity, although sizeable variability exists with regard to decision-making accuracy 

(L. Fuchs, et al., 2007; VanDerHeyden, et al., 2003) because of considerable 

measurement error (Christ, et al., 2005). Of particular note, traditional computation-based 

M-CBM does not to take into account problem-solving skills, especially at the earlier 

grades. Some research has examined problem-solving M-CBM at higher grades (Jitendra, 

et al., 2005), although co-morbid deficiencies in reading and math make it difficult to 

distinguish whether poor reading or math skills is the cause of poor performance on 

word-based problem-solving tasks. The M-CBM probes in this study were designed to be 

an indicator of both math fluency and mathematic problem solving. These novel probes 

are designed to be more ecologically valid than typical M-CBM measures because they 

consist of a multi-dimensional array of mathematical tasks. They combine elements of 

traditional M-CBM such as math-facts,  computation  and discrimination  tasks, while 

adding less traditional tasks such as number sequences and shape patterns. The use of 

shape patterns has not been incorporated as an element of M-CBM, although the use of 

shapes has been investigated by VanDerHedyen, et al. (2001) in pre-kindergarten and 

kindergarten classrooms. The probes are consistent with end-of-grade outcomes while 

maintaining consistency across forms in order to reduce measurement error. Finally, 

because the current format includes items requiring a variety of response types including 

production and nonproduction responses error may be reduced. 

 The MAP:M was developed to overcome the limitations of existing M-CBM 

measures and requires validation as a M-CBM instrument. This study was designed with 

two primary objectives in mind: a) to establish the reliability of the MAP:M, and 
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relationship to the MBSP, using generalizability theory in addition to alternate-form  and 

test-retest reliability and b) establish concurrent and predictive validity of the MAP:M in 

relationship to the MBSP. Techniques from generalizability theory provide an overall 

estimate of reliability in addition to estimates of variability from a variety of sources 

including the examinee, the items (test scores), and residual error. Subsequently, the SEM 

of MAP:M and MBSP probes will be determined. A G-Study analysis is unusual and is 

available only in a limited number of M-CBM studies (Christ, et al., 2005; Hintze, et al., 

2002).  

To address the second objective scores obtained from the MAP:M will be 

compared to scores obtained from the Monitoring Basic Skills Progress: Computation (L. 

S. Fuchs, et al., 1999). The MBSP is the most researched and well-documented M-CBM. 

A high degree of correlation between the two measures will provide support for use of 

the MAP:M to measure math fluency. The degree to which the MAP:M and MBSP 

scores predict performance on a standard mathematics measure used by the school 

district, i.e., Star Math (Renaissance Learning, 2002), will also be conducted. Specifically 

this study explored the following questions: 

Research Questions 

1. What are the percentages of score variance accounted for by the following 

facets: person (p), items (i), and the residual (p x i, e) of the MAP:M, relative 

to a more traditional M-CBM, the MBSP? 
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2. What is the generalizability coefficient and SEM for relative decisions based 

on student’s raw scores across one, two, three, five, seven, and ten probes for 

the MAP:M versus the MBSP? 

3. What is the index of dependability and SEM for absolute decisions based on 

student’s raw scores across one, two, three, five, seven, and ten probes for the 

MAP:M versus the MBSP? 

4. What is the alternate-form reliability of the MAP:M versus the MBSP?  

5. What is the test-retest reliability of the MAP:M? 

6. What is the reliability of the slope of the MAP:M versus the MBSP? 

7. What is the concurrent validity of the MAP:M with the MBSP as determined 

by a correlation coefficient expressing the relationship between the two? 

8. What is the relative predictive power of the MAP:M and the MBSP when the 

criterion is STAR Math scores? 
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Chapter II 

Method 

The experimental mathematics curriculum-based measure (M-CBM) used in this 

study, Monitoring Academic Progress: Mathematics (Hopkins, et al., 2010), was 

developed by this author and Colleagues  for use in a local school district over one year. 

The development of the MAP:M included completion of a qualitative pilot study, 

collaboration with school district administrators (i.e., Literacy Leaders, Mathematics 

Consultant, Principals, and Teachers) and completion of two quantitative pilot studies, 

carried out by the research team (this author, another advanced doctoral student in School 

Psychology, a professor in School  psychology, and a professor in special education). The 

school district provided feedback and guidance throughout the process so that the 

MAP:M reflected the district’s needs and best practice. Following is a description of the 

instrument development process. 

Qualitative pilot study. The purpose of the first pilot study was to gather 

qualitative feedback from participants regarding the initial item content and structure of 

the MAP:M, in addition to collecting information about the instrument’s face and content 

validity. In addition, the study was useful in helping the authors determine the number of 

items needed to conform to a 3 min administration. Qualitative feedback was solicited 

from examinees to guide further MAP:M development. 

Participants and setting. The pilot study took place in a large room at the 

University of Tennessee and consisted of ten participants, six females and three males, 

four examinees in the third-grade, two in the second-grade, and four in the first-grade. 
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The examinees’ parents, who were students at the University, were also included in the 

study and provided feedback, based on observations of their children’s performance.  

Instruments. This first version of the MAP:M was designed to be group 

administered and to measure a combination of math fluency and math problem-solving 

skills for first through third grade students. The MAP:M consisted of three components 

and administration relied on a script for all three: Guided Practice (directions and items), 

Independent Practice (directions and items), and scored items. Guided Practice included 

items representing each item type. The examiner read the items aloud while 

demonstrating item completion using a script in the Guided Practice section. Next, the 

participants completed the Independent Practice section. This section included a sample 

item representing each item type. After the examinees completed the items on their own, 

the examiner provided the correct answers. 

The National Council of Teachers of Mathematics Curriculum Standards 

(National Council of Teachers of Mathematics, 2000) and the Tennessee State 

Curriculum Standards (Tennessee Department of Education, 2004) were consulted to 

determine item type and difficulty for each grade level. These sources contain content 

goals for the curricula used in many schools systems in Tennessee and around the 

country, and are the curriculum used in the participant’s district. The scored items 

included in the MAP:M were designed to assess end of grade-level skills and included 

three basic item types: quantity discrimination using words (QDW), quantity 

discrimination using symbols (QDS), and number sentence-quantity discrimination 

(NSQD). The test items consisted of four sets: early first-grade, later first-grade, second 
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grade, and third grade. There were two sets of first-grade test items to accommodate the 

substantial growth within the first-grade. 

Quantity Discrimination using Words. QDW items consisted of randomly 

assigned numerical values placed to the left and right of three vertically arranged phrases: 

“is more than”, “is the same as”, “is less than.” The examinee was required to indicate the 

relationship of the number on the left to the number on the right by circling one of the 

three phrases. Words were used instead of symbols to allow early first grade examinees 

to perform the quantity discrimination task prior to being taught the quantity 

discrimination symbols. Eight QDW items were included in early first-grade probes. In 

order to ensure a distribution of values, randomly selected values ranging from 1 to 50 

were assigned to each item. As a reminder, a legend was placed at the top of each page 

containing the words “is greater than”, “is equal to,” and “is less than”, paired with their 

respective symbols and circles of the respective size. 

Quantity Discrimination using Symbols. The QDS items consisted of randomly 

assigned numerical values to the left and right of three vertically arranged quantity 

discrimination symbols (i.e., <, > , =). The examinee was required to indicate the 

relationship of the number on the left to the number on the right by circling one of the 

three symbols. The QDS items were included in early first-grade probes. In order to 

ensure a distribution of values, randomly selected values, ranging from 1 to 50, were 

assigned to each item.  

Number Sentence-Quantity Discrimination. The NSQD task consists of 

horizontally presented number sentences, immediately followed by a quantity 
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discrimination task. The symbols (i.e., <, > , =) separated the number sentence answer 

from a randomly assigned number. Addition items included randomly selected addends 

while subtraction items included randomly selected minuends and subtrahends selected 

from values less than the minuend. Examinees were required to first write the answer to 

the number sentence, and then circle the symbol representing the relationship between the 

written answer and the random number. The NSQD items were included in all ending-

first through third-grade probes.  

Early first-grade probes included 14 NSQD items with addend, minuend, and 

subtrahend values ranging from 1 to 10. Items were equally divided between addition and 

subtraction. Quantity discrimination random numbers ranged from 1 to 10. Eight QDW 

items and six QDS items with random numbers from 1 to 50 were also included. 

Late first-grade probes included 32 NSQD items with addend, minuend, and 

subtrahend values ranging from 1 to 10. Items were equally divided between addition and 

subtraction. Quantity discrimination random numbers ranged from 1 to 10. 

Second-grade probes included 32 NSQD items with addend, minuend, and 

subtrahend values ranging from 1 to 20. Items were equally divided between addition and 

subtraction. Quantity discrimination random numbers ranged from 1 to 20. 

Third-grade probes consisted of 22 NSQD items with addend, minuend, divisors, 

dividends, factors, and subtrahend values ranging from 1 to 20. There were also seven 

multiplication and three division items with dividend, divisor, multiplicand, and 

multiplier values ranging from 1 to 10. All division items resulted in whole-number 

quotient. Quantity discrimination random numbers ranged from 1 to 30. 
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Procedures. The participants were divided into same-grade groups. One graduate 

student, trained in the administration of the probes, was assigned to each group as the 

examiner. First, the examiner explained the purpose of the test, and then proceeded to 

administer each grade-level probe to the group. Each administration included three parts: 

guided practice, independent practice, and finally completion of the scored test items. 

The examiner read a set of scripted directions prior to each part. The participants were 

given 3 min to complete the scored items at each grade-level. After the administration, 

participants were encouraged to provide feedback about the clarity of the directions and 

difficulty of the items.  

Results. All examinees demonstrated an ability to make progress on testing items. 

Examinees were able to complete all below level probe items prior to the end of 3 min 

but typically were unable to complete all above grade-level probe items before time 

expired. Thus, the length of the test and time allotted was determined to be appropriate. 

Qualitative feedback from the examinees indicated that the legend was not used during 

the test administration. Examinees in first-grade made a large number of errors on both 

quantity discrimination tasks (i.e., QDS & QDW), although successful progress was 

noted from some participants.  

School district collaboration. After completing the first pilot study, some items 

were modified. A number of additional MAP:M modifications were made based on 

feedback from school personnel. 

First school district meeting. The MAP:M was presented to eight literacy leaders 

for the participating school district for review. School district personnel found all item 
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types (i.e., QDW, QDS, and NSQD) to be acceptable but requested that items be included 

that assess counting in sequence and the use of geometric figures. The information from 

the school district was used to modify the MAP:M.  

 The requested modifications were made to the MAP:M and a second meeting was 

scheduled with school district personnel, including literacy leaders and principals. The 

modified MAP:M was presented to 30 school administrators at their district office. The 

purpose of the meeting was to gather qualitative feedback and recommendations 

regarding the appropriateness of item content, item format, and clarify of directions.  

Second school district meeting. The MAP:M presented to the school 

administrators during the second meeting had undergone  the following modifications. 

The MAP:M retained the original items but now included new Number Pattern and Shape 

Pattern items. The legend was removed from the first-grade probes based on examinee 

feedback during the qualitative pilot study. As a replacement, administration directions 

were modified to require the examiner to write the words and symbols on the Blackboard 

prior to administering the MAP:M. Early first-grade and late-first grade probes were 

combined into one first-grade probe to allow for growth estimates across the school year.  

Following is a description of the new Number Pattern and Shape Pattern items. 

The Number Pattern (NP) items consist of five numbers, presented horizontally and 

ordered from least to greatest. Items were randomly assigned and arranged according to 

grade specific criteria. First incrementing values for each grade level were placed in a 

Microsoft® Excel® worksheet (e.g., count by 1’s, 5’s, and 10’s). Next, the first number in 

the number sequence was assigned randomly with grade specific parameters. Finally, the 
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subsequent numbers in the five digit number sequence were assigned by having Excel 

count incrementally using the incrementing value. One (first grade) or two (second and 

third grade) numbers were left out of each sequence by having Excel®  randomly assign a 

value between one and four, indicating the first value to be substituted for a blank space 

for an examinee response. The examinees are instructed to write the missing number(s) in 

the sequence.  

The NP items were included in the first through third grade probes. First-grade 

probes included four NP items including counting by 1’s, 2’s, 5’s, and 10’s. Numerical 

values ranged from 1 to 99. The second-grade probes included six NP items: counting by, 

2’s, 3’s, 4’s, 5’s, 25’s, and 100’s with numerical values ranging from 1 to 999. Third-

grade probes included six NP items: counting by 1’s, 2’s, 4’s, 5’s, 10’s, and 25’s with 

values ranging from 1 to 999. The values, inclusion and presentation order of any given 

counting sequence was randomly selected. 

The Shape Pattern (SP) task was designed to measure mathematical problem 

solving while utilizing grade-level geometric knowledge. The SP items require 

identification of one missing shape from a shape pattern of varying length. Shapes used 

included squares, triangles, circles, pentagons, and hexagons. The shape patterns were 

presented horizontally with four possible shape choices to the right. The placement of the 

missing shape and the correct response was determined by random assignment. The 

answer was indicated by circling a shape from the four-shape choices to the right that 

completed the pattern. First-grade SP items included simple pattern sequences. Second-

grade SP items included more complex sequences and rotations, while third grade 
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incorporated flips and turns of the shapes in more complex sequences. All three grades 

include four SP items. 

Third school district meeting. After the completion of the second school district 

meeting, the feedback and recommendation were incorporated into the MAP:M. A third 

meeting was held wherein the MAP:M was again administered to same group of  school 

administrators in small groups, following the same format and sequence as the 

procedures in pilot study one. This version of the MAP:M included Math facts and 

Computation items in addition to modifications of the NSQD task. QDS, NP, and SP 

items were modified slightly as reflected in their descriptions below. Following the 

administration of the probes and open forum was provided for feedback and 

recommendations. Because of the meeting, minor changes in formatting were suggested 

in order to eliminate clutter on the page. It was also suggested that the QDW items be 

dropped from the first-grade items due to redundancy with QDS and NSQD items. 

Specific details of the modified MAP:M is as follows. First-grade probes included 

16 math facts items divided equally between addition and subtraction. Half of the 

addition items and half of the subtraction items were made up of random numbers from 1 

to 10 and the other half of each ranged from 11 to 20. 

QDS items were included in the first-grade probes and consisted of eight items 

with randomly assigned numerical values to the left and right of three vertically arranged 

quantity discrimination symbols (i.e., <, > , =). Using this format the examinee was to 

indicate the relationship of the number on the left to the number on the right by circling 

one of the three symbols. The QDS items were included in early first-grade probes. In 
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order to ensure a distribution of values, half the QDS items included random values from 

1 to 50 in four items and the other half from 51 to 99. Instead of the legend at the top of 

the page, the directions required the examiner to write the symbols, accompanied by the 

words corresponding to the symbols, on the dry erase or chalkboard in front of the room. 

The NSQD items were designed to combine elements of math-facts and quantity 

discrimination tasks in order to consolidate the two tasks into a single, more challenging 

mathematical task. The NSQD task consists of horizontally presented number sentences 

that were immediately followed by a quantity discrimination task. The symbols (i.e., <, > 

, =) separated the number sentence answer from a randomly assigned number. Addition 

items included randomly selected addends while subtraction items included randomly 

selected minuends and subtrahends selected from values less than the minuend. In this 

format, the examinee is required first to write the answer to the number sentence and then 

circle the symbol that represented the relationship between the written answer and the 

random number. The NSQD items were included in all first through third grade probes. 

Second-grade probes included 20 NSQD items with addend, minuend, and 

subtrahend values ranging from 1 to 999. Items were equally divided between addition 

and subtraction. Four addition and four subtraction items included digits ranging from 1 

to 18. Two addition and two subtraction items included numbers from 10 to 99. Finally, 

two addition and two subtraction items included numbers from 100 to 999. Quantity 

discrimination random numbers ranged from 1 to 999. 

Third-grade probes had 20 NSQD total items with addend, minuend, divisors, 

dividends, factors, and subtrahend values ranging from 1 to 999. Two addition, two 
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subtraction, two multiplication, and two division item ranged from 1 to 10. Two addition 

and two subtraction ranged from 10 to 99. Two addition and two subtraction ranged 

from100 to 999. There were also seven multiplication and three division items with 

dividend, divisor, and Quantity Discrimination random numbers ranged from 1 to 999. 

The Number Pattern (NP) items consisted of five numbers, presented horizontally 

and ordered from least to greatest. Items were randomly assigned according to grade 

specific criteria. First incrementing values for each grade level were placed in an excel 

worksheet (i.e., count by 1’s, 5’s, 10’s). Next, the first number in the number sequence 

was assigned randomly with grade specific parameters. Finally, the subsequent numbers 

in the five digit number sequence were assigned by having Excel count incrementally 

using the incrementing value. Two numbers were left out of each sequence by having 

Excel randomly assign a value between one and four, indicating the first value to be 

substituted for a blank space for an examinee response. After all NP items for each probe 

were generated, they were randomly assigned for inclusion in each grade-level probe. 

The examinees were required to write the missing numbers in the sequence. One point 

was given for each correct response with two possible points per item. 

The NP items were used included in first through third grade probes. First-grade 

probes included four NP items including counting by 1’s, 2’s, and 5’s. Numerical values 

ranged from 1 to 99. The second-grade probes included eight NP items: counting by 2’s, 

3’s, 4’s, 5’s, 10’s, 25’s, and 100’s with numerical values ranging from 1 to 999. Third-

grade probes included six NP items: counting by 1’s, 2’s, 4’s, 5’s, 10’s, and 25’s with 
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Figure 1 
Bi-Weekly Slope and Trend Line of First, Second and Third Grade MAP:M Scores Across Eleven Administrations. 
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