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Abstract 
 

Part 1: Visitation of potential pollinators to Cornus florida and C. kousa flowers was 

assessed in East Tennessee in 2008 and 2009.  Data regarding insect visitation rates to multiple 

trees per location were gathered throughout the flowering period.  Diurnal and seasonal 

variations in visitation were recorded.  Pollen coverage was assessed on portions of captured 

insect exoskeletons that were most likely to contact the stigma. Eleven families in four insect 

orders were collected from C. florida and 26 families in five orders from C. kousa.  The most 

important pollinators in eastern Tennessee were bees in the Andrenidae and Halictidae.  The 

most common visitors to C. kousa flowers were scarab, cerambycid and cantharid beetles. 

Halictid bees were also frequent visitors to C. kousa. 

Part 2: Dispersion of flowering dogwood pollen in an orchard was evaluated by 

performing parentage analysis on open pollinated seedlings collected from a single maternal tree.  

Pollen source for 45 seedling trees were established using three polymorphic simple sequence 

repeat (SSR) loci.  The expected leptokurtic distribution was not seen.   Although the majority of 

paternal trees were within the 12 m radius of the study area, the trees most likely to donate pollen 

were some of the furthest away.   Unusual pollen movement may be a product of lack of 

synchronization of flowering times between the mother tree and potential pollen donors in the 

area.  Additionally relative proportions of certain pollinating insects (andrenid and halictid bees) 

may have moved pollen further than expected. 

Appendix 1: Pollen from 6 species in the genus Cornus was analyzed with Fourier 

Transform Infrared (FTIR) Spectroscopy to determine the utility of this tool to identify pollen 
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grains to species.  Although there were differences visible in the spectra, principal components 

analysis coupled with cluster analysis could not consistently identify pollen grains. 

Appendix 2:  Floral volatile emissions from 6 species of Cornus were collected in a 

headspace chamber and analyzed with gas chromatography-mass spectrometry to determine if 

differences between emitted volatiles of C. florida and C. kousa explain differences in floral 

insect visitation.  The relationship between floral volatile emission and the phylogeny of Cornus 

was also examined. 
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Pollinators are vital for a variety of crops.  The demand for pollinators is growing in the 

United States even as agricultural intensification and urbanization may be reducing the numbers 

of wild pollinators (Kremen et al., 2002; Torchio, 1990).  Estimates of the value of insect 

pollination of agricultural crops in the United States range from $150 million paid for pollination 

services to $14.5-$18.9 billion in total crop value (Levin, 1983; Morse and Calderone, 2000; 

Rucker et al., 2005). Of this, native bees may contribute about $3 billion annually (Losey and 

Vaughn, 2006).   

Beginning in October 2006, beekeepers began reporting unexplained colony death 

(Review Colony Collapse, 2007).  Thirty to ninety percent losses in beekeeping operations 

across the United States have continued through the next three winters (CCD working group 

summary).  This syndrome was termed colony collapse disorder (CCD) and characterized as a 

rapid loss of adult bees from a colony without dead bees found inside or nearby the colony 

(Oldroyd, 2007; Stokstad, 2007).  Possible causes of this disorder include the following: novel 

complexes of mites or pathogens, pesticides, or stress on colonies produced by ‘migratory 

beekeeping’ (Review Colony Collapse, 2007). 

The largest losses of resulting from CCD were in honey bee populations managed for the 

purposes of commercial pollination.  This has fueled interest in utilizing of wild bees for 

pollination.  Management and culture of formerly wild bees has had success.  The alfalfa leaf 

cutter bee (Megachile rotundata) has been an effective pollinator of alfalfa (Peterson et al., 

1992).  Several mason bees (Osmia lignaria, O. cornifrons, O. cornuta) are valuable pollinators 

in orchards (Bosch and Kemp, 2002).   However, little is known about the biology of native bees 

and information about their floral preference and seasonal pattern of activity may aid the 
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eventual utilization of these bees for agricultural purposes.  A survey of visitors to Cornus 

florida and C. kousa, flowering in April and May respectively, may reveal insects useful in 

pollinating important food crops flowering at a similar time, such as cherries, plums, pears and 

apples.  

Cornus florida and C. kousa are members of the genus Cornus, and the Cornaceae.  The 

trees, shrubs and few herb forms of Cornus have opposite or alternate, simple, entire, exstipulate 

leaves.  Flowers are actinomorphic, 4 or 5 merous and may be unisexual or bisexual.  

Inflorescences are composed of cymes, panicles or heads and may have large bracts. 

Inflorescences of C. florida and C. kousa are composed of fifteen to thirty flowers sharing a 

capitate inflorescence subtended by four large bracts (Britton and Brown, 1970; Smith, 1977; 

Zomlefer, 1994).  

Cornus florida produces fruit in the form of a drupe, which has high fat and calcium 

content and provides nourishment to many birds and mammals.  Fruit is readily eaten by game 

birds, including wild turkeys, ruffled grouse and quail, as well as songbirds like cardinals, 

grosbeaks, robins, brown thrashers and cedar waxwings.  Both the browse and the fruit are very 

important food items for white-tailed deer.  Other mammals, including rabbits, foxes, black 

bears, chipmunks and squirrels often eat the fruit.  (Eyde, 1988; Halls, 1977; Stiles, 1980).   

Flowering dogwood is also considered a soil builder.  The leaves have very high calcium 

content (2-3.5%) and decompose rapidly making these minerals quickly available (Hepting, 

1971; Thomas, 1969).   Positive impact on soil fertility is enhanced by its capacity to achieve 

maximum photosynthetic rate at low light levels found in the understory (Kramer and Decker, 

1944).  
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In addition to its importance as a component in eastern forests, their interesting habit, 

attractive foliage and bracts has made C. florida a common part of the landscape in temperate 

regions of the country.  The majority of dogwoods used in the landscape are produced in 

Tennessee with an estimated farm gate value of about 6.18 millions of dollars in 1998 (USDA-

NASS, 1998). Unfortunately these receipts have been impacted negatively in recent years by the 

following two diseases caused by fungi: dogwood anthracnose and powdery mildew. 

Since the late 1970s, dogwood anthracnose has affected C. florida (Daughtrey and 

Hibben, 1983).  In 1991, Discula destructiva Redlin, was identified as the fungus responsible for 

the disease (Redlin, 1991). This fungus was suggested to be an introduced pathogen to the 

United States (Trigiano et al., 1995), but the origin of the pathogen has not been determined.  

Limb and trunk cankers, necrotic spots on leaves and bracts, and twig blights characterize the 

disease (Hibben and Daughtrey, 1988). Mortality in the wild can be as high as 97% (Mielke and 

Langdon, 1986). 

Anthracnose, along with other causes like canopy closure and environmental stress, has 

caused significant recent decline in populations of native dogwoods in the northeastern US and 

along the Appalachian Mountains and associated highlands as far south as Alabama. An 

estimated 36% decline in total individuals in populations has occurred from 1990 – 2000 

(McEwan et al., 2000).  

Powdery mildew caused by Erysiphe pulchra (Cook & Peck) is another disease that has 

adversely affected dogwood production in Tennessee.  Shriveled, discolored leaves, dead 

branches and stunted growth characterize this disease.  Infection makes trees more susceptible to 
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other stresses such as drought or insect problems.  Severe infections may kill the tree (Windham 

and Witte, 1998). 

Cornus kousa Hance is another economically important member of this genus.  This 

small tree is native to China, Japan and Korea and grows up to 30 feet high and 40 feet wide, 

with many low horizontal branches.  Cornus kousa is considered to be the Asian counterpart to 

C. florida, and like flowering dogwood there are many ornamental cultivars available (Cappiello 

and Shadow, 2005).  Though C. kousa is not nearly as popular as C. florida in the landscape, it 

does display resistance to anthracnose and powdery mildew (Holmes and Hibben, 1989; Ranney 

et al., 1995). 

Both C. florida and C. kousa have simple, open flowers that provide minimal nectar 

reward to arthropod pollinators.  Grant (1949) suggested that dogwoods could fall into a category 

of bee pollinated plants, bee and long tongue fly pollinated plants or promiscuously pollinated 

plants.  Lacking any floral impediment to nectar or pollen, a large diversity of insect visitors 

have been observed including, honey bees, native bees, syrphid flies, as well as other Dipterans, 

butterflies and beetles (Mayor et al., 1999; Barrett and Helenurum, 1987; Douglas, 1983; Lovell, 

1898; Lovell, 1915; Gunatilleke & Gunatilleke, 1984).   

The diversity of visitors engendered by the lack of floral complexity reduces the 

likelihood that a visit will result in fertilization (Schemske and Horvitz, 1984).  Though these 

flowers may attract a large variety of visitors, only a few of these visitors will forage in a way 

that pollinates the plant (Lindsey, 1984).  The relative importance of different species as 

pollinators is not clear.  However, Andrenid and Halictid bees appear to be the primary 

pollinators of C. florida and beetles and flies are of secondary importance (Eyde 1988).  Since C. 
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kousa is resistant to the major diseases of C. florida, an interspecific cross may be an effective 

way to produce a resistant cultivar.  And so knowledge of insect visitors across a range of 

Cornus species may help produce this interspecific cross. 
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Abstract 

Visitation of potential pollinators to Cornus florida and Cornus kousa flowers was 

assessed in East Tennessee in 2008 and 2009.  Data regarding insect visitation to multiple trees 

per location were gathered throughout the flowering period and across a range of environmental 

conditions.  Diurnal and seasonal variations in visitation were recorded.  Pollen coverage was 

assessed on portions of captured insect exoskeletons that were most likely to contact the stigma.  

In total, eleven families in four insect orders were collected from C. florida and 26 

families in five orders from C. kousa.  Although there was considerable variation in visitor 

assemblage for C. florida across sites and years, the most important pollinators in eastern 

Tennessee were bees in the Andrenidae and Halictidae.  The most common visitors to C. kousa 

flowers were scarab, cerambycid and cantharid beetles. Halictid bees were also frequent visitors. 

 
 

Introduction 

Flowering dogwood trees, Cornus florida L., are an important native plant component in 

the woodland ecology of eastern North America.  Flowering dogwood fruit and foliage feed 

many birds and mammals (Eyde, 1988; Halls, 1977; Stiles, 1980).  Leaves of flowering dogwood 

have very high calcium content (2-3.5%) and decompose rapidly, making these minerals quickly 

available to other plants (Hepting, 1971; Thomas, 1969).   Soil fertility is further enhanced by the 

capacity of flowering dogwood trees to achieve maximum photosynthetic rate at low light levels 

found in the forest understory (Kramer and Decker, 1944).  

In addition to the ecological importance of flowering dogwood to eastern forests, the 

interesting growth habit, attractive foliage and ornamental bracts have made it a common part of 
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managed urban landscapes across temperate regions of the United States.  Unfortunately, 

commercial production of flowering dogwood trees has been adversely affected in recent years 

by widespread outbreaks of the following two significant diseases caused by fungi: dogwood 

anthracnose and powdery mildew (Klingeman et al., 2001; Windham et al., 2005). 

Chinese dogwood, C. kousa (Buerger ex Miq.) Hance, which is native to East Asia, is 

considered to be the Asian counterpart to C. florida (Cappiello and Shadow, 2005).  Although 

both trees flower in spring, C. florida flowers in mid- to late- April and C. kousa flowers about a 

month later in Tennessee (Windham et al., 2005). 

Cornus kousa is also an economically important member of this plant genus.  Like 

flowering dogwood, many ornamental are cultivars commercially available (Cappiello and 

Shadow, 2005).  However, C. kousa is not nearly as common as C. florida in managed urban 

landscapes, but the species does display resistance to dogwood anthracnose and powdery mildew 

(Holmes and Hibben, 1989; Ranney et al., 1995; Windham, et al., 2005).  

Flowers without any impediments to floral nectar or pollen, like those of dogwoods, may 

be visited by a diverse array of insect species, including those that are ineffective as pollinators 

or that function as floral herbivores (Waser et al., 1996).  In past survey efforts, many insects  

have been observed in association with Cornus species including honey bees, native bees, 

syrphid flies and other dipterans, butterflies and beetles (Barrett and Helenurum, 1987; Douglas, 

1983; Gunatilleke and Gunatilleke, 1984; Lovell, 1915; Lovell, 1898; Mayor et al., 1999).  

Diversity of visitors has been suggested to reduce likelihood that a floral visit results in 

fertilization (Schemske and Horvitz, 1984).  For example, although flowers of Thaspium and 

Zizia, herbaceous perennial species in the Apiaceae, may attract a large variety of arthropod 
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visitors, only a few visitors forage in a way that pollinates the plant (Lindsey, 1984).  Indeed, 

pollination effectiveness is a complex function of floral visitor shape, relative pollinator 

abundances, and their interactive behaviors. Thus, relative effectiveness of each visitor should be 

assessed independently (Fishbein and Venable, 1996; Johnson and Steiner, 2000).  By failing to 

do this, the most important pollinators risk being misclassified and a specialized pollination 

system may be interpreted as general (Fenster et al., 2004; Lindsay, 1984; Sugden, 1986).    

A recent survey of insects interacting with C. florida  (Mayor et al., 1999) reported large 

numbers of andrenid and halictid bees associated with trees, but did not differentiate between 

insects that were merely in close proximity to trees (e.g., to encounter a potential reproductive 

mate) from those that were true floral visitors.  Furthermore, no data were gathered regarding 

diurnal or seasonal fluctuations in visitation of these potential pollinators (Mayor et al., 1999).  

Knowledge of floral visitors to C. florida is important both to better understand the ecology of 

flowering dogwood within its native range and to facilitate commercial and academic breeding 

of these popular urban landscape trees to increase disease resistance characteristics.  Indeed, 

observing insect visitors across a range of economically important Cornus species may facilitate 

interspecific crosses that combine benefits of both of their positive attributes.  To date, however, 

efforts to breed novel cultivars of C. florida resistant both to dogwood anthracnose and powdery 

mildew have been hindered, in part, by the intense labor requirements for producing a controlled 

cross.  Effective hand pollination of flowering dogwood requires one to touch each stigma at 

least twice (Reed, 1999).  Honey bees in screen cages have been used to cross pollinate 

dogwoods, although a solution containing sucrose and queen mandibular pheromone must be 

placed on the bracts to attract the honey bees to flowers, which produce very little nectar 
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(Craddock et al., 1997; Wadl et al., 2009).  Natural pollinators may be more efficient because 

they seek pollen rather than nectar as a food, thus requiring no supplemental encouragement to 

forage.  Therefore, the objective of this study was to determine which native pollinators are the 

most frequent visitors to flowering and Chinese dogwood trees in our region and which may be 

most efficient for purposes of controlled cross breeding. 

 

Materials and Methods 

Insect visitors to C. florida trees at three eastern Tennessee locations and visitors to C. 

kousa trees maintained at the University of Tennessee Forest Resources Research and Education 

Center Arboretum (UT Arboretum) in Oak Ridge, TN were captured during flowering periods in 

2008 and 2009, identified, and assessed for pollen. Sampling of visitors commenced as soon as 

flowers began to open and continued until there were no unopened flowers on any of the trees 

included in each of the study sites.   

 

Study Sites 

Site 1. The University of Tennessee Forest Resources Research and Education Center 

Arboretum (UT Arboretum) (Lat. 35° 59.8” N, Long. 84° 13” W) is a 250-acre facility that 

manages over 2,500 native and exotic woody plant specimens representing 800 plant species, 

varieties and cultivars.  These ornamental plantings are surrounded by native temperate 

woodlands.  There are extensive plots of species and named cultivars of both C. florida and C. 

kousa trees.  Trees used for sampling insect visitors were between 10 and 20 years old and had 

been planted in an orchard configuration on five meter centers.   
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Site 2.  The historic Island Home subdivision is located in south Knoxville, TN (Lat. 35° 

57.5” N, Long. 83° 53” W).  This suburban neighborhood contains many mature hardwoods and 

diverse ornamental plant species in mature landscapes.  Insect visitors were sampled from mature 

15- to- 35- year old flowering dogwood specimens located within a park-like median strip on a 

lightly traveled residential road.  

Site 3. Ijams Nature Center (Lat, 35° 57.4” N, Long. 83° 52.2” W) is a woodland park 

located in southeastern Knox County on the perimeter of urban Knoxville.  Trees sampled were 

approximately 20-30 years old and were adjacent to the wooded border of 0.25-0.5 acre mown 

grass fields. 

 

Monitoring Insect Visitors 

In 2008, all arthropod visitors to flowers that could be captured were collected whereas in 

2009, a subset of visitors were captured for identification and others were observed without 

capture.  The technique was changed to accommodate much higher rates of floral visitation in 

2009.  Observation was chosen over capture to prevent distortion of diurnal and seasonal 

variation in visitation caused by sampling bias.  As a consequence, the subset of visitors captured 

in 2009 was similar in number to the entire collection taken in 2008. 

Whether engaged in collection or observation, a single data period averaged 45 minutes.  

To assess diurnal variation in activity by location, individual trees were sampled at all times of 

the day and in all weather conditions that permitted insect flight. Time and location of visitation 

was recorded and captured insects were stored individually in glass vials and placed on ice, to 

prevent pollen transfer between individuals.   
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 Insects were identified using keys in ‘Bees of the Eastern United States’ (Mitchell, 1960), 

‘Bees of the World’ (Michener, 2000), ‘Discover Life’ 

(http://www.discoverlife.org/mp/20q?search=Apoidea ) and with the assistance from Adriean 

Mayor (Taxonomic curator, Great Smoky Mountains National Park Collection).   

 

Analysis of pollen coverage on floral visitors 

Due to the small size of individual dogwood flowers, small size of many insect visitors 

and brief time spent at each flower, foraging behavior could not be adequately characterized at 

the time of visitation.  In both years, the wide variety of potential vectors and low rates of 

visitation made single visit pollination efficiency impractical.  Pollination efficacy was therefore 

measured by evaluating coverage of pollen on insects captured on those body regions most likely 

to contact the stigma (Beatty, 1978).  This evaluation tool is a good proxy for more direct 

measurements of pollination efficacy due to the open geometry of dogwood flowers and the fact 

that anthers and stigma are held at similar orientations and at a similar height above the 

inflorescence surface.  If an insect visitor contacts an anther when foraging, it is likely that they 

will contact the stigma as well.   

 Insects were observed under a dissecting scope and pollen coverage was evaluated by 

estimating pollen grain densities on the head, lower thorax, leg and lower abdominal regions of 

each insect. Pollen coverage on each region was ranked as no pollen (0) or few scattered pollen 

grains (1) to high coverage (5) on each sampled insect body region (data not shown). Estimates 

were then pooled to create a per-species or per-family value designed to represent the pollination 

efficiency of that species or family (Table 1.1) (after Beattie, 1978).  
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Results 

Insect visitation to Cornus florida flowers  

Insect representatives of five orders and 15 families were collected from C. florida 

flowers with hymenopterans accounting for nearly 70% of floral visitors.  Andrenid and halictid 

bees were the two most common families captured and visitation by members of these two 

families combined comprised more than 50% of total visitation at all sites.  Flies and cerambycid 

beetles were also frequently encountered (Table 1.1).   

Andrenid bee visitors to C. florida included 18 species with 10 represented by a single 

specimen.  The two most common andrenid visitors to C. florida were Andrena fenningeri 

Viereck and A. miserabilis Cresson.  Although andrenid visitation was higher in 2009, species 

diversity was lower.  Fifteen different species were gathered in 2008 whereas only nine species 

were collected in 2009 (Table 1.2).  

Sweat bee (Hymenoptera: Halictidae) species diversity was similar in both 2008 and 

2009 (Table 1.2).   Nine species were captured.  Eight individuals could only be categorized as 

belonging to the taxonomically contentious Lasioglossum viridatum group, in which L. 

perspicuum Knerer and Atwood, L. admirandum Sandhouse, L. paradmirandum Knerer and 

Atwood, and L. viridatum Lovell are generally considered to be indistinguishable.  Regardless, 

the most common halictid bee visitor to C. florida was L. imitatum Smith in both years of the 

study (Table 1.2).  
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Table 1.1: All visitors to flowers of C. florida and C. kousa at 3 sites in east Tennessee in 2008 and 2009.  
     Insect visitation by site and year* 
 Family, genus          2008   C. florida    2009      C. kousa Pollen 
Order or subfamily ar ij ih ar ij ih 2008 2009 Coverage† 
Coleoptera Cantharidae - - - - - - 67 150 0.9 
 Cerambycidae 1 5 - 1 8 2 17 231 1.4 
 Cleridae - - - - - - - 2 0 
 Coccinellidae - - - - - - 2 - 0 
 Curculionidae - - - - - - - 5 0.5 
 Elateridae - - - - - - - 5 0 
 Trichiinae - - - - - - - 91 0 
 Mordellidae - - - - - - - 4 0 
 Scarabaeidae - - - - - - 129 399 1.45 
 Unknown  5 2 1 - - - - 49 - 
Diptera Anisopodidae - - - - - - 3 1 0 
 Anthomyiidae - - - - - - 1 - 0 
 Bombyliidae 5 - - 40 17 2 - - 0.6 
 Calliphoridae - - - 1 - - - 7 0.3 
 Dolichopodidae - - - - - - 2 - 0 
 Phoridae - - - - - - - 3 0 
 Sarcophagidae 1 1 - - - - 52 20 0.2  
 Scathophagidae 3 - 3 - - - - - 0.73 
 Sciaridae - - - - - - 3 - 0 
 Syrphidae 7 - 1 41 10 2 20 1 0.62 
 Tachinidae - - - - - - - 1 0 
 Unidentified 2 - - 34 11 25 - 52 - 
Hemiptera Miridae - - - - 2 1 - 42 0.3 
  Reduviidae - - - - - - 12 - 0.4 
 Unknown - - 1 - 1 - - - - 
Hymenoptera Braconidae - - - - - - - 2 0 
 Chalcididae - - - - - - - 1 0 
 Crabronidae - - - 2 11 - - 4 0.8 
 Halictidae 25 2 3 431 53 25 29 163 1.1 
 Megachilidae 5 - - 20 1 - - - 3.1 
 Andrenidae 14 6 10 168 99 36 1 6 1.5 
 Apis 3 - - 3 26 - 1 - 1.5 
 Bombus - - - 11 4 1 1 - 1.7 
 Colletidae 1 - - - - - 2 2 1 
 Xylocopidae 2 1 - - 5 - - - 0.8 
 Unknown 4 - - - - - - - - 
Lepidoptera Hesperiidae 1 - - - - - 7 4 0 
 Papilionidae - - - - - - - 2 0 
 
Total insects observed 77 17 19 752 248 94 348 1247 
Total Orders observed 4 3 4 4 5 5 5 5 
Total Families observed 11 5 5 11 13 8 16 22 
Total observation hours 18 4.6 5.4 17 7.2 2.5 18.5 25.5 

*For this table data on collection and observation are combined.  Each specimen collected or observed visiting is considered one visit. 
Average visitation per hour 4.4 3.1 3.7 44 35 38 19 48.9     

† Pollen coverage was assessed on the head, legs, lower portions of the thorax and abdomen on a scale of 1-5 with 1 = few scattered 
grains; 2 = less than 20% coverage of area; 3 = between 20% and 70% coverage 4 = greater than 70% coverage and 5 = total coverage 
with pollen many layers deep.  Scores were averaged for portions of the body and for all visitors. 
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Table 1.2: Hymenopteran visitors to flowers of Cornus florida and C. kousa at three sites in east Tennessee 
in 2008 and 2009.   
 
        Number collected       Number collected 

C. florida  C. kousa 

Andrenidae Andrena barbara  1 0 0 0   
 Andrena  confederata 1 0 0 0 

Family  Species  2008 2009 2008  2009   

 Andrena crateagi 1 1 0 0 
 Andrena cressonii 1 3 0 0 
 Andrena erythroni 0 1 0 1 
 Andrena fenningeri 5 7 0 0 
 Andrena  fragilis 1 0 0 0 
 Andrena hilaris 1 0 0 0 
 Andrena hirticincta 1 0 0 0 
 Andrena ilicis 1 0 0 0 
 Andrena illini 0 2 0 0 
 Andrena imatatrix 1 0 1 0 
 Andrena miserabilis 5 4 0 0 
 Andrena nasoni 1 0 0 0 
 Andrena nivalis 1 1 0 0 
 Andrena personata 1 0 0 0 
 Andrena sayi 1 1 0 0 
 Andrena vicina 0 2 0 0 
Apidae Apis mellifera 3 2 1 0 
 Bombus griseocollis 0 0 1 0 
 Ceratina calcarata 3 4 0 0 
Colletidae Hylaeus mesillae 1 0 0 0 
Halictidae Augochlora pura 0 2 0 1  
 Augochlorella persimilis 0 0 1 2 
 Augochlorella striata 2 1 1 0 
 Augochloropsis metallica 0 2 0 0 
 Halictus confusus 1 0 0 2 
 Halictus rubicundus 1 1 0 0 
 Lasioglossum fuscipenne 2 1 0 0 
 Lasioglossum imitatum 18 29 14 34 
 Lasioglossum versatum 2 0 6 0 
 Lasioglossum viridatum* 1 7 7 3 
Megachilidae Osmia georgica 3 0 0 0 
 Osmia lignaria 2 0 0 0 
 
* L. perspicuum, L. admirandum, and L. paradmirandum are considered indistinguishable, thus 
are referred to collectively as L. viridatum group 

Osmia opumila 0 1 0 0   
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Overall visitation was much higher in 2009 than in 2008.  Insect visitation to C. florida 

flowers was highest around mid-day between 11:30 and 14:00 hours, due in large part to an 

increase in activity by bee species (Figs. 1.1, 1.2).  The peaks of activity of Bombus spp. 

visitation are staggered against the higher activity periods of andrenid and halictid bees (Fig. 

1.2).  Beetles, flies, and butterflies were most active on flowers later in the day, between 14:00 

and 15:00 hours. By contrast insects in the Syrphidae, Cerambycidae, Apidae, Scathophagidae, 

and Andrenidae did not share an early afternoon visitation peak, but were more evenly 

distributed throughout the day (data not shown).  Although diurnal visitation to C. florida in 

2009 did have greatest intensity between 11:00 and 13:00 hours, there was greater visitation 

throughout the afternoon finally drooping off at about 17:00 hours. Seasonal variation in 

visitation to C. florida closely followed temperature, with dips in temperature clearly reflected in 

lower visitor abundance (Figs. 1.3, 1.4).   This is especially true for the smaller halictid bees that 

made up a large part of the assemblage of visitors. 

Andrenid visitors to C. florida were not affected as much by variations in temperature 

(Fig. 1.3).  Though visitation by syrphid flies was low, these insects did not seem affected by 

changes in temperature.  With variations in temperature taken into consideration, visitation was 

relatively constant throughout the flowering period on C. florida. 

 

Insect visitation to Cornus kousa flowers  

Insect visitors to the flowers of C. kousa comprised five  orders and 30 families; a more 

diverse assemblage of insect visitors than to C. florida (Table 1.1).  A single species of scarab 

beetle, Macrodactylus subspinosus F. (Coleoptera: Scarabaeidae), and soldier beetle, 
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Time 

Figure1.1: Diurnal variations in visitors to Cornus florida in east Tennessee in 2008 

 

 
Time 

Figure 1.2: Diurnal variation of visitors to Cornus florida in east Tennessee in 2009 
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Date 

Figure 1.3: Variation in visitation of potential pollinators to Cornus florida during seasonal 
flowering period at the UT Arboretum in east Tennessee in 2008; by family with temperature. 

 
 

 
Date 

Figure 1.4: Variation in visitation of potential pollinators to Cornus florida during its 
seasonalflowering period for three sites in east Tennessee in 2009; by family with temperature.   
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Chauliognathus marginatus F. (Coleoptera: Cantharidae) were extremely abundant on Chinese 

dogwood flowers.  Insects in the Halictidae, Sarcophagidae, Syrphidae, and Cerambycidae were 

also frequent visitors (Table 1.1).  From the C. kousa trees, 29 halictid specimens were taken 

representing at least seven species.  As in C. florida, the most common halictid bee was L. 

imitatum.  Representatives of the L. viridatum group were also well represented, which are most 

likely to be L.  admirandum and L. viridatum bee species. 

Overall diurnal variation in visitation to C. kousa followed a similar pattern to visitation 

on C. florida.  Activity peaked at roughly 13:00, despite the warmer temperatures.  Flesh flies 

and soldier beetles, which, while common on C. kousa, were absent from C. florida, had peaks of 

activity between 14:00 and 16:00 hours with both families were active until 16:00 hours. The 

most common visitor to C. kousa flowers, Macrodactylus subspinosus (Scarabaeidae), was most 

active just after noon, with another apparent period of activity after 16:00 hours (Fig. 1.5).  As in 

C. florida, visitation in 2009 continued at greater intensity throughout the afternoon with several 

later peaks (Fig. 1.6). 

Seasonal variations in visitation to C. kousa are also, to some extent, affected by 

temperature (Fig. 1.7).  Visitation by most families is lower after a temperature decrease.  The 

period of highest visitation by the rose chafer is in the middle of the flowering period for C. 

kousa and did not seem to depend closely on temperature.  Many of the other groups 

(Sarcophagidae, Scarabaeidae, other Diptera) had higher rates of visitation during the latter half 

of the flowering period.   
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Time 

Figure 1.5: Diurnal variation of visitors to Cornus kousa in east Tennessee in 2008 
 
 

 
Date 

Figure 1.6: Variation in visitation of potential pollinators to Cornus kousa during its seasonal 
flowering period at one location in east Tennessee in 2009 by families with temperature.    
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Date 

Figure 1.7: Variation in visitation of potential pollinators to Cornus kousa during seasonal 
flowering period at one site in east Tennessee in 2008; by family with temperature 
 

 

Visitation by cerambycid beetles and Macrodactylus subspinosus to C. kousa did not 

follow increased temperature during the first half of the flowering period in 2009 (Fig 1.6).  

Visitation by halictid bees this year seems divergent from temperature.  As noted before, fly 

visitation has little relationship with temperature. 

 

Analysis of pollen coverage on floral visitors 

Generally, bees carried more pollen than all other insect visitors and hymenopteran visitors were 

more likely to carry more pollen than dipteran visitors (Table 1.1).  Among visitors to C. florida, 

megachilid bees carried much more pollen than any other family of visitors.   In general, visitors 
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to C. kousa flowers tended to carry less pollen than visitors to C. florida, yet, coleopteran visitors 

to C. kousa tended to carry nearly as much pollen as bees (Table 1.1).   

 

Discussion 

Variations in visitation 

Composition of floral visitors can change dramatically with differences in both time and 

space (Herrera, 1988), so differences between different years and sites observed in visitor 

assemblage and rates of visitation were expected.  A decline in visitation and reductions in 

diversity are sometimes attributed to low temperatures or to drops in temperature just before or 

during the time of flowering (Boyle and Philogene, 1983; Buide, 2006; Navarro, 2000).  

However, low temperatures recorded at the UT Arboretum do not explain lower visitation that 

was observed in 2008.  In 2008, the mean temperature for the 17 days preceding flowering was 

13.8°C with no significant drops in the 2 weeks before flowering.  In 2009, temperatures 17 days 

pre-flowering averaged 11.4°C with a freeze just before flowers opened, the opposite of what 

would be suggested by visitor abundance.  Similarly, average daytime temperature during 

flowering was 18.8°C in 2008 and 19.3°C in 2009, a seemingly negligible difference.  Instead, 

we hypothesize that visitor abundance was lowered in 2008 due to three days of hard freezing 

weather following several weeks of warm temperatures.   Indeed, freezing weather following 

warm weather has been cited as a cause of local annual extinction of pollinating insects 

(Navarro, 2000).    These local extinctions or reductions in population size may be related to 

availability of floral resources (Bowers, 1985).   The freeze of 2008 destroyed the flowers of 
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Acer species, present at all sites.  Both andrenid and halictid bees are known to forage on Acer 

species and this plant may be a very important early season resource (Krombien et al., 1979).   

There were also large differences in visitor composition between sites, which have often 

been reported (Dorr, 1981; Kearns and Inouye, 1994; Lindsay, 1984; Miller, 1978; Spears, 1987; 

Willson et al., 1979).  In 2008, diversity of visitors to flowers at site 1 was greater than at sites 2 

or 3.  In 2009, Sites 1 and 3 had high levels of diversity whereas diversity at site 2 was still quite 

low.  Such differences may result either from increased habitat degradation or fragmentation at 

site 2, which lowers habitat diversity (Kremen et al., 2002; Tomimatsu and Ohara, 2003).  

Additionally, many visitors to C. florida and C. kousa may be generalists foraging on 

convenient plant resources.  Community-wide surveys of seasonal variation in bee abundance 

revealed that spring populations of pollinators in California and Ithaca, New York tend to be 

composed mostly of Andrenid, Dialictus, Osmia,  and Calcarata bee species (Ginsberg, 1983; 

Wojcik et al., 2008).  The varying assemblage of floral visitors at different sites may also be a 

product of differing habitat preference (Tomimatsu and Ohara, 2003). 

 

Pollen coverage 

Pollen coverage scores combined with visitation rate indicated that andrenid and halictid 

bees are the most important pollinators of C. florida in east Tennessee.  As previous work has 

suggested, bees tend to carry the most pollen among floral visitors (Galloni et al., 2008; Talavera 

et al., 2001), a trend also observed on C. florida.  

While megachilid bees were most likely to carry copious amounts of pollen, low floral 

visitation rates by this family made them mostly irrelevant as pollinators of C. florida at sites 
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where sampling took place.  Similarly, while visitation by syrphid, scathophagid and bombyliid 

flies was moderately high, low amounts of pollen carried by these visitors suggest they are 

inefficient pollinators.  Andrenid and halictid bees are both numerous enough and carry enough 

pollen to be considered important pollinators of C. florida in east Tennessee.  

 

Diurnal visitation 

Foraging by insects on Cornus species was influenced by time of the day. The activity of 

the halictid bee, L. imitatum, has been observed to decrease in the afternoon (Michener and 

Wille, 1966). Moreover, these bees were less likely to collect pollen in the afternoon.  Because 

C. florida flowers produced little nectar, species of Halictidae may have moved to another plant 

by early afternoon (Batra, 1966; Michener and Wille, 1966).  Peaks of visitation occurring at 

mid-day have been noted before for trees and shrubs (Döll et al., 2007; Voigt et al., 2004).  In 

contrast, an afternoon resurgence of floral visitors has also been reported (Brown and McNeil, 

2009; Tangmitcharoen et al., 2006). 

 

Seasonal visitation 

Most visiting families experienced drops in visitation corresponding to drops in 

temperature.  The relationship between temperature and overall visitor abundance is well 

established (Figueroa-Castro and Cano-Santana, 2004; McCall and Primack, 1992).  Flies, 

beetles and andrenid bees seem to be less influenced by temperature.  Flies forage in cooler 

weather (Ngamo, 2005).  Given the early spring flight season of Andrenid bees, this lack of 

influence of temperature on visitation rate should have been expected.   
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Conclusions 

Andrenid and halictid bees are the most consistent and important pollinators of Cornus 

florida in east Tennessee.  They were frequent visitors both years at every site and carried pollen 

on parts of their bodies likely to contact the stigma and deposit pollen.  In some, though not all 

years, cerambycid beetles may have played an important role in pollination of this tree.  Flies 

visited frequently in one year, although the amount of pollen carried by them tended to below 

compare to the bees. The assemblage of visitors varied substantially by site for C. florida though 

the presence of andrenid and halictid bees was consistent across all sites.   

 Halictid bees are also effective pollinators of C. kousa, but their importance is eclipsed by 

greater visitation by beetles.  Scarab, soldier, and in one year, cerambycid beetles, functioned as 

substantial pollinators. However, we caution about making inferences regarding the relative 

importance of the beetle species as pollinators we observed on C. kousa trees. Additional 

research will be needed to quantify the presence of this beetle at multiple sites external to the UT 

Arboretum and the efficacy by which they transfer pollen to floral structures. Flies were also 

common visitors one year, but the lack of pollen found on their bodies implied that they probably 

function poorly as pollinators.   
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Measure Pollen Flow in an Orchard of Flowering 

Dogwood 
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Abstract 

Dispersion of flowering dogwood pollen in an orchard was evaluated by performing parentage 

analysis on open pollinated seedlings collected from a single maternal tree.  Pollen source for 45 

seedling trees were established using three polymorphic simple sequence repeat (SSRs) loci.  

The expected leptokurtic distribution, where the likelihood pollen transfer will occur between 

trees decreases quickly with distance, was not seen.   Although the majority of paternal trees 

were within the 12 m radius of the study area, the trees most likely to donate pollen were some of 

the furthest away.   Unusual pollen movement may be a product of lack of synchronization of 

flowering times between the mother tree and potential pollen donors in the area.  Additionally 

relative proportions of certain pollinating insects (andrenid and halictid bees) may have moved 

pollen further than expected. 

 

Introduction 

Dogwoods (Cornus species) have interesting growth habits, attractive foliage and bracts 

making them popular landscape trees in the United States, Europe and Japan.  Although several 

dogwood species are important to the nursery industry (C. elliptica, C. kousa, C. mas, C. 

nuttallii, C. sericea and (formerly C. angustata), flowering dogwood (C. florida) is by far the 

most popular.  In 1998, total U.S. sales of flowering dogwood exceeded 26 million dollars with 

Tennessee producing more trees than any other state (USDA-NASS, 1998).  

Flowering dogwood is a medium- sized tree growing 8 to 12 m tall.  Leaves are 

acuminate, cuneate or rounded near the base, may be 7.5 to 15 cm long and offer deep red to 

purple fall coloring.   Cornus florida is self-incompatible (Reed, 2004; Wadl et al., 2009).  
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Insects, not wind, are primary movers of pollen (Personal observation).  In a previous experiment 

various C. florida cultivars sequestered together in screen insect exclusion cages failed to set 

fruit.  Cages containing an insect vector (honey bees) had high rates of fruit set, suggesting wind 

is an ineffective vector for pollen transfer (Trigaino and Wadl pers. com.).   

Inflorescences of flowering dogwood are composed of 15 to 30 flowers contained within 

an umbel 2 cm across that is typically subtended by four large bracts.  True flowers are 6-9 mm 

in length, may be yellow or green are rarely fragrant to humans (Cappiello and Shadow, 2005), 

but emit distinctive floral volatiles that may attract insect pollinators (Zhuang et al., 2008).  

Regarding floral development and pollen maturation, an individual flower within a C. florida 

inflorescence has a bloom sequence that may be divided into five stages.  At stage one, flowers 

are green and unopened.  At stage two, anthers have dehisced under unopened yellow–green 

petals.  Stage three begins as the flowers open; anthers are erect and covered in pollen.  At stage 

four, the anthers are empty and the petals have recurved.  By stage five, the petals and anthers 

have abscised.   Stigmas are receptive to pollination at any stage, but fertilization and fruit set is 

slightly more likely if pollination occurs in stages three and four. Time required for an individual 

flower to pass from stage three to stage five is temperature dependent.  In 1996, when ambient 

air temperatures averaged 16.9 C, about 1.8 days were needed for flowers to progress from stage 

3 to stage 5.  In 1997, when ambient air temperature means were 11.9 C, the progression from 

stage 3 to stage 5 took about 3.7 days (Malueg, 1998). 

Costs associated with nursery production of dogwoods have increased in recent years 

because of the following two diseases caused by fungi: dogwood anthracnose and powdery 

mildew (Klingeman et al., 2001; Windham et al., 2005). Cultivars have been introduced that are 
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resistant to either anthracnose or powdery mildew (Windham et al., 2003; 1998; Windham, 

1996).  However, efforts to breed C. florida cultivars resistant to both these diseases are hindered 

in part by the labor intensive nature of performing controlled crosses.  Traditional plant breeding 

involves sequestering trees from unwanted sources of pollen by bagging flowers, placing entire 

trees in screened cages and, if necessary,  emasculating flowers, to prevent self-pollination by 

removing anthers prior to anthesis.  Pollen is then collected from the anthers of one tree and 

applied to the stigma of another tree typically using a paint brush or q-tip, although an 

eyedropper, straw, syringe, or other tool may be used on some plants.  Effective pollination of 

flowering dogwood by hand requires the breeder to touch each receptive stigma at least twice 

with viable pollen (Reed, 1999).   

Insect-mediated pollination offers an alternative to hand-pollination.  Honey bees in 

screened cages are commonly used to cross trees for breeding purposes and have been successful 

in controlled crosses involving flowering and kousa dogwoods (Wadl et al., 2009; Wang et al., 

2009).  Naturally foraging honey bees seldom visit inflorescences of C. florida because of the 

miniscule nectar reward offered by the flower.  To overcome this limitation a solution containing 

sucrose and honey bee queen mandibular pheromone can applied to the base of bracts to entice 

honey bees to visit the flowers (Craddock et al., 1997).  Native bees may be more efficient for 

pollinating flowers of dogwood because they seek pollen rather than nectar as food and therefore 

do not need encouragement in the form of pheromones and sugars to forage. Regardless, 

techniques have not been developed for culture and utilization of andrenid and halictid bees, 

which are the most likely flowering dogwood pollinators (Mayor et al., 1999; See Part 1). 
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Prior data suggest pollen movement in a natural setting is typically limited to very short 

distances.  In a previous study on C. florida, DNA amplification fingerprinting [DAF (Caetano-

Anollés et al., 1991)], was used to determine the parentage of seedlings taken from a single 

maternal tree.  Eighty-seven percent of the seedlings were the result of pollen originating from 

the nearest tree, located less than 3 m from the recipient plant (Ament et al., 2000). 

Natural pollen transfer is widely considered to occur over short distances. Distance of 

pollen movement in plants has been estimated by evaluating the distance pollination vectors 

travel between flowers and by more direct genetic analysis of seedlings to determine parentage.  

Insects are more likely to move between flowers that are close together (Beattie, 1976; Heinrich, 

1979; Levin and Kerster, 1969ab; Olesen and Warncke, 1989; Pyke, 1978; Richards, 1997; 

Schaal, 1980; Schmitt, 1980; Waddington, 1981; Wilson, 1983).  Genetic analysis of actual gene 

movement within populations has indicated a similar pattern in which the likelihood of pollen 

transfer decreases quickly as dispersal distance increases. Long distance dispersal events are 

more rare. Isozyme, allozyme and SSR markers have been common ways to assess gene 

movement by determining parentage (Fenster, 1991; Jackson and Clarke, 1991; Karron et al., 

1995; Krauss, 1994; Rust, 1980; Schaal, 1980; Smyth and Hamrick, 1987). 

SSR markers have been developed for a variety of fruit and ornamental plants such as 

apple (Liebhard et al., 2002), rose (Esselink et al., 2003), almond (Mnejja et al., 2005; Shiran et 

al., 2007), peach (Chen and Huang, 2009; Dirlewanger et al., 2002; Sosinski et al., 2000), grape 

(Gaspero, 2000; Thomas and Scott, 1993), and kiwi (Zhen et al., 2004). SSRs markers are useful 

in determining parentage for a number of reasons.   Most importantly SSR markers are co-

dominant, meaning at a certain locus one allele is derived from each parent.  This makes parental 
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determination much easier.   Additionally, SSRs often display high polymorphism between 

individuals.  Although SSRs libraries are difficult to make initially, once developed SSRs are 

relatively cheap and easy to use, requiring only small amounts of moderate quality DNA.   

The goals of this study were to identify the pollen sources for seedlings obtained from a 

single tree and determine whether native pollinators in an open orchard setting carry pollen only 

short distances. This information will validate the utility of using open pollination to perform 

controlled crosses in flowering dogwood. 

 

Materials and Methods 

Parentage analysis of flowering dogwood seedlings was conducted on seeds harvested 

from a single tree growing in the Dogwood Clonal Orchard at the University of Tennessee Forest 

Resources Research and Education Center’s Arboretum in Oak Ridge, Tennessee (N 36.01526, 

W 84.18993).  The orchard contains many cultivars of several Cornus species that range in age 

from five to 20+ years (Fig. 2.1).  Most flowering dogwood trees ranged from 4-5 m tall and 3-4 

m wide, except ‘Double White’, which was about 2 m tall and 1.5 m wide, and ‘Pygmy’ which 

was about 1.5 m tall and 1 m wide. The study site was limited to an area encompassing a 15 m 

radius from the maternal tree, ‘Sweetwater Red’.  The numbers of inflorescences on trees 

surrounding ‘Sweetwater Red’ were similar except for ‘Pygmy’ and ‘Double White’, which had 

fewer inflorescences.  Though essentially overlapping, the flowering period was not identical for 

each tree in the study area.   

To find unique alleles for the putative parents, unopened flower buds were collected from 

C. florida cultivars (Fig. 2.1) during the fall of 2008.  Flower buds were crushed with tweezers, 
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placed into 1.5 ml microcentrifuge tube containing 2.3 mm silica beads (Biospec Inc., 

Bartlesville, OK, USA), frozen in liquid nitrogen and homogenized using a fastprep FP 120 at 

speed four for 20s (ThermoSavant, Holbrook, NY, USA).  Genomic DNA was isolated using a 

DNeasy extraction kit (Qiagen,Valencia, CA, USA) following manufacturer’s instructions.  

Three SSR primer pairs [CF 213, CF 585 and CF 581 (Wang et al. 2008; Wadl et al. 2008)] were 

used in this study (Table 2.1). The final 10 µl polymerase chain reaction (PCR) contained 1µl 

25mM MgCl2 (Applied Biosystems, Foster City, CA, USA), 1µl 10× buffer, 1µl 2.5mM dNTPs 

1µl 2.5 mM of each primer, 1µl DNA (4 ng), 0.06µl (0.3 units) Taq DNA polymerase (Applied 

Biosystems), and 4.94µl sterile water.  The PCR conditions consisted of an initial denaturation at 

94 °C for 10 min, followed by 35 cycles of 94 ºC for 40 sec, annealing at 56 ºC for 40 sec, 72 ºC 

for 30 sec and finally 72 ºC for 4 min. The amplified PCR products were separated and 

visualized on the QIAxcel Capillary Electrophoresis System (Qiagen).  SSR regions amplified 

with PCR primers were screened for polymorphisms between the cultivars included in Fig. 2.1.  

A 25 bp size marker was used to determine the size of the amplicons. 

For parentage analysis, 85 single-seeded fruits were collected in fall 2008 from 

‘Sweetwater Red’ and the fleshy exocarp removed manually. Cleaned seeds were placed into re-

sealable zipper storage bags containing a moist peat moss and sand mixture in a ratio of 1:1.  

These seeds were stratified at 4°C until germination, which occurred after four to seven months.   

Germinated seeds were planted into 7.5 cm2 pots containing peat moss (Sun Grow Horticulture, 

Bellevue, WA, USA) between March and May 2009. Seedlings were kept in a greenhouse with 

ambient photoperiod and fertilized weekly with 150 ppm nitrogen using a liquid 20N-8.7P-16.6K 

fertilizer solution (J.R. Peters Inc. Allentown, PA, USA).  The third pair of true leaves was   
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Figure 2.1.  Schematic of the study area in the Dogwood Clonal Orchard at the University of 
Tennessee Forest Resources Research and Education Center’s Arboretum in Oak Ridge, TN.  
Trees are planted on 5-m centers. Other than C. kousa, nearby species of Cornus include: C. 
amomum, C. drummondii, C. mas, C. racemosa, or C. kousa × florida.   

 

 
Table 2.1. Genbank accession numbers and sequences for the primers used to amplify Simple 
Sequence Repeat regions and determine parentage of 45 Cornus florida seedlings. 

Primer 
Genbank 
accession 
number 

Primer sequence forward  Primer sequence reverse 

CF 213 ED651874 5′TTC TTG CAA ATG GTT 
ATT GAT TG 3′ 

5′ATA GGC GTC CAT TTG 
TTT CC 3′ 

CF 581 ER870603 5′GGG GCA GTA AGA 
AAA CAC ATT C 3′ 

5′TGT AAC CTG CAC 
ATA GAC AGC A 3′ 

CF 585 ER870607 5′AAC GAA GCA AGC 
AAA ACA ATC 3′ 

5′ACC CCA CCA CTT CAT 
CTC TCT 3′ 
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harvested for DNA extraction.  Leaves were placed into 1.5 ml centrifuge tube containing 70% 

ethanol for at least 24 h to remove chlorophyll prior to DNA extraction. Leaves were then 

removed from the ethanol and dried completely before tissue homogenization, as previously 

described.  DNA was then extracted using the DNeasy extraction kit following the 

manufacturer’s instructions except that 1.5% (w/v) polyvinylpyrrolidone (PVP) (Acros Organics, 

Geel, Belgium) was added to the AP1 buffer.   

Seven seedlings were completely consumed by rodents and could not be analyzed. 

Although 16 other seedlings were damaged, DNA was recovered from the hypocotyls and 

remnants of the cotyledons.  Following elution, 7.5µl of 5M NaCl was added for every 100µl of 

elute to limit co-precipitation of polysaccharides.  DNA was than precipitated using 100% 

ethanol, the pellet was washed using 80% ethanol and then re-suspended in 0.1 TE (Tris-EDTA) 

buffer. All SSR loci were amplified using PCR with the primers listed in Table 2.1.  PCR was 

performed in a 10µl reaction as listed above except primer concentration was increased from 2.5 

µM to 5 µM and DNA concentration was decreased from 4 ng/µl to 2 ng/µl.  The cycling 

conditions were identical to those listed above.  PCR products were separated and visualized 

using a QIAxcel Capillary Electrophoresis System (Qiagen). SSR amplicon sizes in the seedlings 

were compared to those of the putative parents (Table 2.2).  Parental exclusion was used to 

determine parentage or conclude that the pollen came from a foreign source.  
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Results  

Sixty-seven (79%) of the 85 seeds harvested from ‘Sweetwater Red’ in fall 2008 

germinated by June 2009. Post germination mortality attributed to rodent injury, thrips, and 

damping off disease left 45 seedlings from which DNA was extracted.  Genotyping confirmed 

that 29 seedlings (65%) shared alleles with nine pollen donors that were located within 12 m of 

‘Sweetwater Red’.  Although the parentage of nine seedlings (20%) could not be conclusively 

determined with the SSR primers used, the parentage of these nine seedlings could be assigned to 

two or three other possible pollen donors located within 12 meters. Thus, in all cases it is likely 

pollen was donated from trees located nearby. Genotyping of the remaining seven (15%) 

seedlings demonstrated that pollen was carried in from dogwood trees located beyond the 

perimeter of the study area.  Some trees were more likely than others to be pollen donors (Table 

2.3).  More than half of the seedlings tested were attributed to two trees.    ‘Pygmy’ sired no 

seedlings.  Between one and three seedlings were associated with each of the remaining trees at 

the study site.  

 

Discussion 

The majority of pollen was donated from trees located within the delineated study site, 

supporting prior evidence natural movement of C. florida pollen occurs over distances of 3 m or 

less (Ament et al., 2000).  However, the most common pollen donors were over 11 m away.  

Two possible contributing factors may explain this result.  The first possibility is that the stage of 

flowering of the pollen donor was more synchronized with stigma receptivity of ‘Sweetwater 

Red’ than the other potential pollen donors.  Flowering times for dogwood trees used in this 
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study were not identical.  Asynchronous flowering between self-incompatible pear cultivars may 

reduce seed set (Sharifani and Jackson, 2001).  Additionally, differences in flowering phenology 

can increase distances pollen is moved (Kitamoto et al., 2006).  The trees most likely to donate  

pollen were those whose flowering period lagged slightly behind that of the maternal tree.  In our 

study, difference in flowering period may be a contributing factor to successful pollen donation 

due to the protandrous nature of C. florida flowers.  At the time petals open, anthers have already 

dehisced and are thick with pollen.  Within a few hours pollen will be removed from the anthers 

by foraging insects and weather, though the stigma may remain receptive for several days 

(Malueg, 1998).  So the period each tree is receptive to fertilization lasts longer than the period 

during which it has copious amounts of pollen to donate.  Therefore, trees most likely to donate 

pollen to a breeding tree target are those that flower shortly after the maternal tree. The second 

possible source of discrepancy between observed pollen movement in this study as opposed to 

the previous study may be due to behavior and biology of potential pollinators of the tree at the 

study site.  The most important pollinators of C. florida are probably andrenid and halictid bees 

(Mayor et al., 1999; See Part 1).  Although these two families of bees are common visitors to 

flowering dogwood in east Tennessee, the proportions of these two families vary across locations 

(See Part 1).    Halictid bees are more likely to display social behavior, which may lead to 

transfer of pollen between foraging individuals.  For example, Lasioglossum imitatum, a very 

common visitor to the trees at the study site, is known to have multiple foraging females sharing 

the same nest (Michener and Wille, 1961).  By contrast, Andrenid bees are very rarely social. A 

single solitary female typically excavates and provisions her own nest, rarely coming into contact 

with other conspecifics (Osgood, 1989).  Bees sharing a communal nest may pass 
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Table 2.2. Alleles used in primary identification and expected size of amplicon produced by 

three simple sequence repeat loci in ten individuals of Cornus florida.   

Cultivar Locus 
CF 213 CF 581 CF 585 

‘Sweetwater Red’ 168 159 177:191 
Unnamed 157:175 159 178:194 

‘Red Beauty’ 160:167 159 184 
‘Hog 2’ 152:152 159 180:193 

‘Cherokee Daybreak’ 169:177 150:158 171 
‘Cherokee Princess’ 156:156 159 171 

‘Double White’ 168:168 152:159 178:194 
‘Appalachian Spring’ 165:188 150:163 177:191 

‘Green Glow’ 168 159 171 
‘Pygmy’ 168 159 182:194 

 
 
 
 
 
Table 2.3. Numbers of Cornus florida progeny attributed to each possible father, their relative 
flowering state and the distance from the mother plant.    

 

 

 

 

 

 

 

 

 

 

  

Tree 
Number of 
attributed 
progeny 

Flowering state 

Distance (m) 
from 

‘Sweetwater 
Red’ 

‘Sweetwater Red’ Mother tree Just past peak 0 
Unnamed 10 Peak 11.2  

‘Red Beauty’ 6 Peak 11.2  
‘Hog 2’ 3 Early peak 11.2  

‘Cherokee Daybreak’ 3 Past peak 7.1  

‘Cherokee Princess’ 3 Beginning 
flowering 10  

‘Double White’ 2 Early peak 5  

‘Appalachian Spring’ 1 Beginning 
flowering 5  

‘Green Glow’ 1  Well past peak 5  
‘Pygmy’ 0 Well past peak 10  
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pollen between individuals through direct and indirect contact (Dag et al., 2001; Degrandi-

Hoffman et al., 1992).  Halictid bees were more common at the UT Arboretum than any other 

site surveyed (See Part 1).  Thus, pollen collected from the paternal tree may be transported back 

to the communal nest by one bee and then moved to the maternal tree by another bee, having 

picked it up from her nest mate.  The relative lack of highly social halictid bees at other sites may 

limit distance of pollen flow. 

 Although less numerous than andrenid and halictid bees, cerambycid beetles also visited 

the flowers of C. florida at this site, (See Part 1).  Pollen carried by bumble bees (Bombus spp.) 

has been shown to have lower genetic diversity than pollen carried by flower beetles 

(Mordellidae), possibly because of the grooming action of bees (Matsuki et al., 2008). Bumble 

bees often groom their bodies during foraging, packing pollen into transport structures on their 

hind legs and making it unavailable for pollination (Thorp 2000).  The relatively higher 

populations of cerambycid beetles may contribute to greater distances of pollen movement 

observed in this study. 

Thirty-five percent of pollen donations were from two paternal trees reflects the short 

duration in which ‘Sweetwater Red’ was receptive to fertilization due to high temperatures 

(averaging 16.6 ºC) that occurred during flowering.  In a previous study involving flowering 

dogwood, the flowering period was shortened from 23 to 10 days when temperatures were 

increased from 11.9 ºC to 16.9 ºC The length of time individual flowers remained receptive also 

decreased (Malueg, 1998).  As a consequence of higher temperatures, trees that provided newly 

opened flowers at a time just after the peak flowering time for the maternal tree are the most 

physiologically probable pollen donors.  
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The distance pollen moved was greater in this study than recorded in previous work 

(Ament et al., 2000) and can be attributed to differences in flowering period between trees at the 

site and differences in pollinator assemblage. Despite the complications suggested by this report, 

using ‘open pollinated controlled crosses’ to breed flowering dogwood may be preferable to 

current alternatives.  This method could be used by selecting trees for a controlled cross and 

sequestering them away from other sources of dogwood pollen.  Most, if not all of the trees 

produced by this union will be the desired cross.  The self-incompatiblity of C. florida makes this 

practice feasible because far fewer seedlings will need to be discarded, even without 

emasculating flowers.   Successful utilization of this method will require the breeder to account 

for the relative flowering period between the trees to be crossed.  Flowering time should be as 

close to overlapping as possible and seedlings should be taken from the first tree to flower.   If 

possible, pollinators should be surveyed and a site chosen with a low abundance of halictid bees.   
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Andrenid and halictid bees are the most consistent and important pollinators of Cornus 

florida in east Tennessee.  They were frequent visitors both years at every site and carried pollen 

on parts of their bodies likely to contact the stigma and deposit pollen.  In some, though not all 

years, cerambycid beetles may have played an important role in pollination of this tree.  Flies 

visited frequently in one year, although the amount of pollen carried by them tended to below 

compare to the bees. The assemblage of visitors varied substantially by site for C. florida though 

the presence of andrenid and halictid bees was consistent across all sites.   

 Halictid bees are also effective pollinators of C. kousa, but their importance is eclipsed by 

greater visitation by beetles.  Scarab, soldier, and in one year, cerambycid beetles, functioned as 

substantial pollinators. However, we caution about making inferences regarding the relative 

importance of the beetle species as pollinators we observed on C. kousa trees. Additional 

research will be needed to quantify the presence of this beetle at multiple sites external to the UT 

Arboretum and the efficacy by which they transfer pollen to floral structures. Flies were also 

common visitors one year, but the lack of pollen found on their bodies implied that they probably 

function poorly as pollinators.   

The distance pollen moved was greater in this study than recorded in previous work 

(Ament et al., 2000) and can be attributed to differences in flowering period between trees at the 

site and differences in pollinator assemblage. Despite the complications suggested by this report, 

using ‘open pollinated controlled crosses’ to breed flowering dogwood may be preferable to 

current alternatives.  This method could be used in this way: trees could be selected for a 

controlled cross and sequestered away from other sources of dogwood pollen.  Most, if not all of 

the trees produced by this union will be the desired cross.  The self-incompatiblity of C. florida 
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makes this practice feasible because far fewer seedlings will need to be discarded, even without 

emasculating flowers.   Successful utilization of this method will require the breeder to account 

for the relative flowering period between the trees to be crossed.  Flowering time should be as 

close to overlapping as possible and seedlings should be taken from the first tree to flower.   If 

possible, pollinators should be surveyed and a site chosen with a low abundance of halictid bees 

Utilizing native bees for an open pollinated controlled cross of dogwoods may be feasible.    
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Appendix A: Using Fourier Transform Infrared 
(FT-IR) Spectroscopy to Identify and 

Characterize Pollen from Six species of Cornus 
 

Introduction 

Identification of pollen may be useful for a variety of reasons including forensics, 

(Horrocks et al., 1999) plant taxonomy, (Erdtman, 1952), allergy studies, paleontology and 

paleoclimatology (Jacobs, 1985), melissopalynology (Louveaux et al., 1978) as well as 

pollination biology (O’Rourke and Buchmann, 1991). 

The pollen exine, or outer shell, has a wide range of shapes, sizes and sculpturing.  

Examination of morphology by light microscopy, sometimes supplemented with SEM, is the 

traditional method of pollen identification.  Features of the exine that may be used to identify 

pollen include, apertures, or pores in the wall, sculptural elements or texture of the surface of the 

pollen, overall shape, size and presence and arrangement of furrows.  A dichotomous key is used 

for tentative identification followed by comparison with a known sample for positive 

identification.  The strong points of visual identification are the low cost of implementation, and 

general efficacy.  However, it requires a great deal of skill and experience to use such 

identification keys properly and even when employed by a skilled operator, unknown pollen is 

often only resolvable to family or genus.  Environmental conditions can make pollen grains 

shrink or swell, obscuring features used for identification.  Even with the addition of expensive 

and time consuming high-resolution SEM images, many species may not be differentiated using 

visual methods. 
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There are three concentrically arranged layers to the angiosperm pollen grain.  The 

central or deepest part is the protected living cell that germinates on the stigma.  The middle part 

is known as the intine.  It envelops the entire central cell in a sheath of consistent thickness.  

There is contention as to the composition and structure of the intine, though it is generally 

thought to consist of cellulose, callose, pectin, other pollysacharides, protein and small amounts 

of lipids and enzymes. (Fang et al., 2008; Castells et al., 2003) The protective, outer layer is 

known as the exine.  The exine is exceptionally resistant to degradation and will frequently 

outlast the intine and cellular cargo within.  Different species of pollen have varying, but 

extraordinary resistance to heat as well as concentrated acids and bases.   

The substance responsible for this resistance of the exine is known as sporopollenin.  

Sporopollenin is an oxygenated hydrocarbon with a chemical composition between C90H134O20 

and C90H150O33 (Zetzsche et al., 1937).  Though the incredible resistance of this substance has 

aroused curiosity for quite some time, the actual structure and formation of sporopollenin 

remains a mystery.  There is evidence that sporopollenin could be formed by oxidative 

polymerization of carotenes and carotene esters (Brooks and Shaw, 1968).  However, inhibiting 

carotinoid biosynthesis in Curcubita pepo had little effect on the sporopollenin coat (Prahl et al., 

1985). Regardless of the structure and formation of sporopollenin, it has been demonstrated 

through 13C NMR that sporopollenin is a class of substances and not a single unique molecule 

(Guilford et al., 1988).  Differing levels of resistance to corrosion may be a product of differing 

qualities of sporopollenin like differing proportions of different monomers or different degrees of 

polymerization.  It is the structure and composition of the exine that is represented in FTIR 

spectra.  Unique spectra suggest unique structures and compositions. 



 

59 
 

Laucks et.al. (1999) made the first attempts to chemically characterize pollen grains using 

Raman spectroscopy.  Pollen electrodynamically trapped from the atmosphere may be 

differentiated using a 785nm laser to reveal differences in the 400-1600 cm-1 range.  Pappas et al. 

(2003) were the first to use Fourier Transform Infrared Spectroscopy (FT-IR) to identify 

unknown samples based on library spectra collected from known pollen.  When compared to 

traditional morphological identification techniques, spectroscopy offers the benefits of easier, 

cheaper sample preparation and higher throughput sample analysis with similar accuracy.    

The first attempt to identify pollen using Raman spectroscopy identified broad, obvious 

differences in the spectra, easily visible to the eye.  As differentiation was attempted between 

larger sets of more similar spectra, two broad approaches have been used to elucidate and 

characterize this data.  One method is to use a computer program to give a direct estimation of 

which spectra is the closest match to the unknown (Gottardini, 2007; Pappas, 2003) and the 

second approach is the use of principal components analysis (PCA) in conjunction with 

hierarchical cluster analysis (HCA) (Dell’anna, 2009; Ivleva, 2005; Schulte, 2008).   

It is unknown if different species within the genus Cornus may be differentiated using 

FT-IR spectroscopy in conjunction with PCA and cluster analysis.  Furthermore it’s possible the 

chemical construction and composition of the pollen exine will reflect the phylogeny of the 

genus and may be more similar in closely related species.   

 

Materials and Methods 

In the spring of 2009, flowers were gathered as blooming occurred from 6 species of 

dogwoods and 19 individuals from the following three locations:   
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The UT arboretum is a 250-acre facility that has over 2,500 native and exotic woody 

plant specimens representing 800 species, varieties, and cultivars.  This facility is on the outskirts 

of Oak Ridge, TN.  Woodlands with mixed hardwoods surround the ornamental plantings.  There 

are extensive plots of C. florida, C. kousa and C. mas.  The trees used for sampling were 

arranged in an orchard configuration on five meter centers.   

The UT Gardens are a collection of a wide variety of ornamental plants spread out over 7 

acres on the Agriculture Campus of the University of Tennessee in Knoxville, TN.  Semi-urban 

areas as well as woodlands surround the gardens.   

The Urban Landscape and Nursery Research (ULNR) facility, also on the Agriculture 

campus of the University of Tennessee in Knoxville, houses container grown dogwood 

specimens.  The ULNR compound is a one-half acre production facility comprised of bow 

houses, enclosed greenhouses and open ground.  In addition to dogwoods used in breeding 

efforts, a variety of woody ornamental and perennial plant species are grown here.  Dogwood 

trees from which inflorescences were collected were being grown in a 100 percent pine bark 

soilless substrate in three gallon (11.4L) nursery containers under 70 percent shadecloth and 

irrigated as needed by overhead irrigation. 

After sampling, flowers were placed in a desiccator and left there for 5 days until dry.  

Flowers were then sealed and stored at -20°C until spectra were gathered.  Samples were frozen 

to inhibit fungal growth that can occur, even at low temperatures.  (Baxter and Illston, 1980) 

  



 

61 
 

Microscopic Analysis 

Samples of pollen were viewed on a light microscope to compare their shape, size and 

other morphological features such as pore placement and exine sculpturing.  Pollen was taken 

from unopened but nearly mature flowers.  Flowers were opened with forceps and the pollen was 

allowed to fall onto a clean glass microscope slide.  A drop of silicon oil was used as a matrix for 

embedding.  Pollen was photographed at 400x. 

FT-IR sampling 

FT-IR spectra were gathered on a Spectra One (Perkin Elmer; Waltham, MA) equipped 

with the ‘golden gate’ sampling accessory.  Stored flowers were allowed to come to room 

temperature before opening.  Pollen was taken from unopened flowers exhibiting a range of 

developmental states, though flowers nearest opening produced much more pollen.  To sample 

pollen, flowers were removed from inflorescences.  Petals were then peeled back with forceps 

and the pollen was tapped into the sampling chamber.  A 10x hand lens and a single hair brush 

were used to remove any debris from the pollen such as shards of petals and anthers.  

Absorbance in the 4000-650cm-1 range was sampled.  Eight scans were averaged top produce 

each spectra.  A minimum of five spectra were gathered for each individual.  

Data transformation and analysis was done using Unscrambler computing software 

(Camo, Princeton, NJ).  Data were normalized using mean normalization.  Scatter effects were 

then removed using multiplicative scatter correction.  Individual spectra were than observed 

visually and anomalous spectra were removed from further analysis.  PCA was then performed 

on the remaining spectra.  
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Results 

Microsopic observation 

Figure A.1 displays photographs of dry pollen from six Cornus species averaging about 

40x30 microns.   All species are tricolporpate (three elongated-round apertures situated 

equatorially) and subtringular in polar view, oval compressed (prolate) in equatorial view.  

Sculpturing was not visible at this magnification.  There is a clear similarity between pollen 

grains of morphologically similar dogwood species. 

FT-IR Spectroscopic study 

FT-IR spectra produced by averaging all samples for a given species are displayed in 

figure A.2.  Though they are similar, differences are evident in several peaks (Table A.1).  

Differences between species may be a product of differences in relative abundance or structure 

of various precursors to sporopollenin or differing degrees of polymerization.    

Though differences in average spectra are evident between species of Cornus, individual 

sample variation was quite high.  Therefore differences in peak intensity, visible in the graph 

above, were not useful in differentiating the spectra of one species from another.  Furthermore 

the visual aspects of average spectra are not more similar in closely related species.  

PCA and Cluster Analysis 

Principal components analysis was performed on spectral data to determine if any subtle, 

consistent differences in spectra could be elucidated.  Sample separation was greatest on PCs 1, 2 

and 5 (Figure A.3).  There was some clustering by both species and morphologic group. 

However, hierarchical cluster analysis did not present any real meaningful groupings.  (data not 

displayed)  This may suggest the chemical composition and construction of the exine is broadly 
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similar across the genus Cornus. It is also possible individual sample variation was too high for 

cluster analysis to work; possibly because samples were taken from trees growing differently in 

different places.  Disease pressure, nutritional discrepancies, and environmental differences 

could have all affected the pollen in ways that could have changed the spectra.   
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Figures and Tables 

         
C. amomum     C. asperfolia var. drumondii 
 

 
C. florida      C. kousa  

 
C. mas       C. officianalis 
 
Figure A.1. Microscopic photographs of pollen from the six Cornus species (400x). 
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Figure A.2. Spectra representing an average of all samples for a given species of Cornus  
 
 
Table A.1.  Regions where differences were detected in spectra of dogwood pollen and the 
chemical bonds attributed to differences in spectra. 
Regions of interest Chemical bonds possibly responsible  
1740-1730 C=O 
1660-1600 C=C 
1554 Aromatic rings or conjugated bonds 
1514 C-C 
1447-1358 C-H; methyl or methylene  
1060-980 C-O 
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Figure A.3. Scores for principal components 1, 2, and 5 by species of Cornus. 
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Appendix B: A Survey of Floral Volatiles Emitted 
From Six Species of Cornus 

 

Introduction   

Floral scent, which is expressed in the form of volatile chemicals, is known to affect 

insect visitation to flowers (Faegri and van der Pijl, 1979; Pellmyr, 1986).  Even plants with no 

discernible scent to human olfaction may emit volatiles in large enough quantities to be detected 

by a potential pollinator (Chen et al., 2003; Zhuang et al., 2008). 

Floral scent is an extremely variable aspect of the plant phenotype with flowers emitting 

from a very few to over one hundred volatile compounds.  Despite this chemical diversity, 

emitted compounds all presumably share the same function of attracting pollinators (Knudsen 

and Gershenzon, 2006). 

Volatile chemicals originate from epidermal cells of various floral parts, especially 

petals. In the case of snapdragon (Antirrhinum) there is evidence that concentrations of volatiles 

increase along the path that bees follow to reach a nectar source, suggesting one possible role 

scent plays in guiding pollinators (Pichefsky and Gershenzon, 2002). 

When different plant species exploit the same group of pollinators, convergent evolution 

is thought to produce similar floral features.  Floral scent is seen as a component, along with 

floral color and shape, of the pollination syndrome that is characteristic of a particular pollinator 

group. A pollination syndrome is the unique combination of floral features attractive to a certain 

group of pollinators (Faegri and van der Pijl, 1979).  Differences in volatiles emitted may help 

explain the taxonomic differences in floral visitors to C. kousa and C. florida. 
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Within the genus Cornus, floral volatiles have only been sampled from C. florida. 

Nothing is known about volatiles from C. kousa or other Cornus species.  Six major compounds 

(E-beta-ocimene, linalool, decanal and nonanal, ketoisophrone, and 3-formyl-pyridine) were 

found emanating from floral units of C. florida.  Floral units include flowers, bracts, pedicles, 

peduncle and a portion of the stem (Zhuang et al., 2008).   

Decanal and Nonanal, compounds most likely produced by stem cells, have been found 

in a narrow variety of plants (Knudsen et al., 1993).  E-beta-ocimene and linalool are very 

common constituents of floral volatiles, found in many bee, beetle and butterfly pollinated plants 

(Raguso and Pichersky, 1999). Ketoisophrone, and 3-formyl-pyridine have not been previously 

recorded as flower volatiles (Knudsen et al., 1993). 

The genus Cornus includes about 45 species of trees, shrubs and herbaceous plants.  This 

genus, commonly referred to as dogwoods, is distributed primarily throughout eastern Asia, 

North America and Central America.  Two species are native to the Andean region of South 

America and one species may be found in the mountains of East Africa (Dale and Greenway, 

1961; Macbride, 1929). The species of this genus contrast remarkably similar floral and foliar 

morphology with widely varied growth habits and inflorescence structure (Murrell, 1993). 

Both molecular and morphological evidence support the monophyly of the genus but the 

relationships of subgroups within the genus has been the subject of some contention (Eyde, 

1988; Murell, 1993; Xiang, 2001; 1998; 1993).  Most have divided dogwoods into a number of 

subgenera, but some have split Cornus into several distinct genera (Eyde, 1987).  The four main 

morphological divisions in the genus are Blue- or White-Fruited Dogwoods, Cornelian Cherries, 

Big-Bracted Dogwoods and Dwarf Dogwoods.   
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To date, nothing is known about volatile compounds produced by C. kousa flowers or 

flowers of other ecologically important Cornus species.  In order to address this knowledge gap, 

and to obtain a better understanding of how these chemical volatiles might interact with key 

arthropods that affect pollination and fruit set in dogwoods, we selected species representative of 

the Blue or White fruited Dogwoods (C. asperifolia Michx. var. drummondii C.A. Mey, C. 

amomum Mill. and C. sericea L.), Big Bracted dogwoods (C. kousa (Buerger ex Miq) Hance) 

and Cornelian Cherries (C. officinalis L.  and C. mas L.).  Flowers of these key dogwood species 

were sampled to determine how phylogenetic distance based on genetic and morphological 

evidence are related to emitted volatiles 

Floral volatiles were sampled from 6, previously unsampled, species of Cornus in order 

to better understand the function scent has in shaping the pollinator assemblage of Cornus florida 

and C. kousa and to examine the role phylogenic similarity has on the volatile profile. 

 

 
Materials and Methods 

Floral and stem volatiles were collected in 2009, from inflorescences of 6 species using 

24 individual plants at 3 locations in eastern Tennessee.   

Flowers of C. mas C. amomum, C. asperfolia var. drummondii and C. kousa were 

collected from at the UT Arboretum in Oak Ridge, TN (lat 35.9975 lon -84.2197). The UT 

Arboretum is a 250-acre facility housing more than 2,500 native and exotic woody plant 

specimens, representing 800 species, varieties, and cultivars as well as native woodlands 

comprised of mixed hardwood trees surrounding the ornamental plantings.  There are extensive 
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plots of C. florida and C. kousa and C. mas.  Trees used for sampling were arranged in an 

orchard configuration with five-meter centers.   

Cornus officianalis and C. mas and C. asperfolia var. drummondii flowers were collected 

from the UT Gardens, on the Agriculture Campus of the University of Tennessee in Knoxville, 

Tennessee. (lat 35.9446; lon -83.9383) These gardens house a wide variety of ornamental plants 

spread out over 7 acres.  Semi-urban areas and woodlands surround the gardens.   

Cornus amomum, C. asperifolia var. drummondi, and C. sericea flowers were collected 

from container grown specimens, maintained in the Urban Landscape and Nursery Research 

(ULNR) facility also on the Agriculture campus of the University of Tennessee in Knoxville.  

The ULNR compound is a one-half acre production facility comprised of bow houses, enclosed 

greenhouses and open ground.  In addition to dogwoods used in breeding efforts, a variety of 

woody ornamental and perennial plant species are grown here.  Dogwood trees from which 

inflorescences were collected were being grown in a 100 percent pine bark soilless substrate in 

three gallon (11.4L) nursery containers under 70 percent shadecloth and irrigated as needed by 

overhead irrigation. 

Inflorescences, along with associated stems, were cut between 8:00a.m. and 9:00a.m., 

placed in flasks containing 250ml of distilled water and transported to the laboratory for volatile 

analysis.  Each inflorescence contained 15-30 flowers, depending on species.  At the time of 

collection about half of the flowers in each inflorescence were open.   Approximately 8cm of 

stem tissue was included in every replicate.  Samples of Cornus amomum, C. drumondii, and C. 

sericea included leaves in addition to the stem and floral units; C. kousa included bracts and 

leaves.   
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Emitted volatile compounds were collected in an open headspace sampling system 

(Analytical Research Systems, Gainesville, FL).  The headspace collection system consisted of a 

30cm tall by 10cm wide glass cylinder with a sealed removable lid.  Charcoal purified air entered 

the chamber at 0.8L/min from the top through a Teflon hose.  Volatiles were collected in four-

hour periods by a SuperQ volatile collection trap (Analytical Research Systems, Gainesville, FL) 

that was attached to the outlet from the headspace collection chamber. At the conclusion of the 

collection period, the volatile collection trap was eluted into a vial with 100µl Methylene 

Chloride with 1-Octanol added as an internal standard.   

  GCMS analysis was done with a Shimadzu (Kyoto, Japan) 17A gas chromatograph 

coupled to a Shimadzu QP5050A quadrupole mass selective detector.  The associated software 

tentatively identified any compounds detected. (GCMS operational SPECS) 

 

Results and Discussion 

Although there was considerable variation in the assemblage of chemical volatile 

compounds detected among individuals of the same species, only compounds detected in all or 

nearly all of the individuals sampled are listed (Table A.1).  

Floral volatiles may be divided into seven broad categories based on their supposed 

biosynthetic origin.  Five of the seven chemical classes were represented in the dogwood species 

sampled.  Of these five, benzenoids, terpenoids and aliphatics were the best represented and 

presented the greatest diversity of compounds. Dominance of these three classes is typical as the 

vast majority of floral volatiles isolated in all plants fall into one of these three classes (Knudsen 

and Gershenzon, 2006). 
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Regardless, one chemical class will often compose the majority of floral volatile 

emission.  This dominance of a certain chemical class is often different, not only between 

species, in a genus but often among sub-species and varieties (Dobson, 2006). 

Terpenoids and Aliphatics were the only chemical classes to be found in every species 

sampled.  Dominance of terpenoids in floral scent is common among bee pollinated plants as 

well as among flowers of plants preferred by some fly species (Dobson, 2006; Knudsen et al., 

2001). 

Dogwoods are considered to have an essentially generalist pollination strategy, flowers 

are readily available to any visitor and do not require any special behavioral adaptations or 

physical manipulations that influence some plant/pollinator strategies.  However, bees seem 

more important as visitors to dogwood and may drive selection for scent chemistry more 

strongly. (See Part 1)  Among bee pollinated plants, terpenoids and occasionally benzenoids tend 

to dominate floral scent (Dobson, 2006).  In this respect the blue- and white-fruited and big-

bracted dogwoods are unusual.  In these dogwoods, bees appear to contribute significantly to 

pollination, yet only C. kousa emits a terpinoid/benzinoid mixture typical of bee pollinated 

plants.  

Of all flowers from the species sampled, Cornus mas and C. officianalis flowers shared 

the most emitted compounds.  All eight of the primary volatiles emitted by C. mas are shared by 

C. officianlis and 66% of the compounds found emanating from C. officianalis are shared by C. 

mas, more compounds than any other species.  These two species were very similar in the 

assemblage of volatiles emitted as well as the compounds dominating floral scent.  The largest 

component of floral volatiles emitted from both C. officianalis and C. mas is the terpenoid 
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farnesene.  Farnesene is a very common component of volatile emissions, often found in 

generalist pollination systems (Dobson, 2006).  The aliphatic compound, pentatonic acid was 

also consistently present is significant amounts.   

The similarity of the emitted floral volatiles between Cornus officinalis and C. mas may 

reflect their phylogenetic and geographic proximity. Fossil and molecular data analyses suggest 

the split between C. mas and C. officinalis was relatively recent (Xiang et al., 2006).  Additional 

similarities in morphology, genetic sequences of 26s rDNA, rbcL and matK, suggests these two 

species are closely related; more so than any other pair of species examined (Xiang et al., 2006; 

Xiang et al., 1998; Fan and Xiang, 2001). 

 In contrast, differences in the assemblage of emitted volatiles do not reflect 

phylogeographic and phylogenetic similarity as clearly for the other five species sampled.  This 

may be because none of these species are as closely related as C. mas and C. officianalis.  Both 

ITS and matK sequence data place all the remaining species rather far apart with regard to 

phylogeny (Xiang et al., 2006).  Although C. asperfolia, C. serecea and C. amomum are all 

North American species, they belong to distinctly different clades within the larger subgenus 

Kraniopsis.  Similarly, C. florida and C. kousa are considered counterpart species and both fall 

into the ‘Big-Bracted’ division of Cornus, they also belong to separate subgenera and ITS and 

matK sequences are not overwhelmingly similar (Capiello and Shadow 2005, Xiang et al., 2006). 

The collection of individual compounds do not serve to separate the blue-fruited and 

white-fruited dogwoods, however, there are consistent trends demonstrated within the classes of 

compounds emitted at the highest concentrations.  All three of the white-fruited species emitted 

high volumes of an aliphatic compound.   In C. sericea and C. amomum, 2-heptanol was the 
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largest constituent of floral volatile emission.  In most individuals of C. asperifolia var. 

drummondii, the closely related compound nonanol was emitted at very high concentrations, 

while in other individuals 3-Formyl-Pyridine was emitted at higher rates.  

The phylogenic distance between C. florida and C. kousa is greater than any other 

grouping in this study (Xiang et al., 2006).  This is clearly expressed in the volatile profiles of 

the two species for which there is little overlap of individual emitted compounds.  Even when 

looking at compounds with high rates of emission, the only commonality is found in the 

terpenoids.  Frequently, the most important emitted compounds in a species are entirely absent 

from its counterpart. 

  In conclusion, floral volatiles may change more quickly than other morphological 

features of the plant.  Species very close together phylogenetically may share many volatiles but 

the volatile profile can quickly diverge, even in species where other aspects of the phenotype 

remain strikingly similar.   

It’s unknown what role volatile emission plays in the different pollinator assemblages 

found visiting C. florida and C. kousa.  However, given the markedly different volatiles emitted, 

it’s possible this does serve to encourage or discourage certain visitors. 
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Table B.1. A list of emitted compounds found in seven species of dogwoods growing in eastern 
Tennessee.  Grey shading indicates compounds emitted in significantly higher amounts. 

  C. officinalis C. mas C. sericea C. amomum C. drummondii C. kousa C. florida 

Aliphatics Y Y ___Y___ ___Y___ ___Y___ Y Y 
Pentanoic acid   Y Y N N N N N 
2-Pentadecyn-1-ol (CAS)  Y N N N N N N 
7-Tetradecenal, (Z)-  Y N N N N N N 
Pentadecane Y Y N N N N N 
Pentanoic acid  Y Y N N N N N 
Hexadecane Y Y N N N N N 
Eicosane  Y Y N N N N N 
2-Heptanol  N N ___Y___ ___Y___ Y N N 
Nonanol  N N Y Y ___Y___ Y Y 
Decanal (CAS) N N N Y Y Y Y 
(E)-4,8-Dimethyl-1,3,7-
nonatriene  N N N N N Y N 
        

Benzenoids Y Y Y Y Y ___Y___ N 
Benzoic acid Y Y N N N N N 
Benzaldehyde N N Y Y N N N 
Homomenthyl salicylate N N Y N N ___Y___ N 
1,2-Benzenedicarboxylic acid N N Y Y Y N N 
Benzeneethanol N N N Y N N N 
2-Ethylhexyl salicylate  N N N N N ___Y___ N 
Benzene, 1,3,5-trimethoxy-  N N N N Y N N 
        
Nitrogen containing 
compounds Y Y N N ___Y___ N ___Y___ 
L-Isoleucine, methyl ester  Y Y N N N N N 
3-Formyl-Pyridine  N N N N ___Y___ N ___Y___ 
2-Propenamide Y Y N N N N N 
        
Terpeniods ___Y___ ___Y__ Y Y Y ___Y___ ___Y___ 
Sabinene Y N N N N N N 
Farnesene ___Y___ ___Y__ N Y N ___Y___ N 
d-Nerolidol  Y N N N N N N 
2,6,10,14,18,22-
Tetracosahexaene N N Y N Y N N 
1,3,6-Octatriene, (Trans-
Ocimene)  N N N Y N ___Y___ Y 
Linalool  N N N N N Y ___Y___ 
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  C. officinalis C. mas C. sericea C. amomum C. drummondii C. kousa C. florida 
Miscelanous cyclical 
compounds N N N Y Y N ___Y___ 
alpha.-Cubebene  N N N Y N N N 
Trans(.beta.)-Caryophyllene N N N N Y N N 
alpha.-Humulene   N N N N Y N N 
Ketoisophorone N N N N N N ___Y___ 
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