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ABSTRACT

Non-breeding season survival is an important determinant of population growth rates of northern bobwhites (Colinus virginianus) and is
primarily influenced by hunter harvest, predation, and weather. The collective influence of these factors varies within and among years
and across the bobwhite range. Understanding factors that influence variation in survival is important to inform regionally-specific
management strategies for declining bobwhite populations. We radiomarked 311 bobwhites from 73 coveys to investigate temporal
variation in non-breeding season (Oct-Mar) survival of a declining bobwhite population on private land in southwestern Ohio during
2008–2011. We used the data bootstrapping feature in Program MARK to adjust for overdispersion caused by dependency of survival
among members of the same covey. Temporal variation in survival was best modeled (wi¼ 0.935) with weekly differences in survival
rates that varied within and between years. There was only slight dependency in survival due to covey affiliation between the 2 seasons
(median ĉ¼ 1.51). Non-breeding season survival was low (Ŝ2009–2010¼ 0.05, 95% CI¼ 0.03-0.11, Ŝ2010–2011¼ 0.12, 95% CI¼ 0.07-
0.20) in 2 years with data for the entire season. Survival during 10 December-31 March varied among the 3 years (Ŝ2008–2009 ¼ 0.45,
95% CI ¼ 0.29-0.61, Ŝ2009–2010 ¼ 0.11, 95% CI ¼ 0.05-0.21, Ŝ2010–2011 ¼ 0.25, 95% CI ¼ 0.17-0.34). There were 2 periods of low
survival; a short period in early fall that coincided with senescence of herbaceous vegetation and the hunting season, and during periods
with prolonged snow cover during winter. Late winter survival during periods of snow cover was most variable and winter severity
appeared to have the greatest influence on seasonal survival during our study. Management strategies to improve non-breeding season
survival in northern populations should focus on managing winter habitat to improve survival during periods of prolonged snow cover.
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INTRODUCTION

Life-history theory predicts changes in reproduction
are most important for short-lived species with high
fecundity and low survival (Stahl and Oli 2006).
However, survival generally has more influence on
growth rates of declining populations (Meats 1971).
Demographic analyses support the relationship between
survival and growth rates of declining populations of
northern bobwhites and have established that non-
breeding season survival is the most influential vital rate
(Folk et al. 2007, Link et al. 2008, Sandercock et al. 2008,
Gates et al. 2012). Variation in non-breeding season
survival of northern populations strongly influences
population viability (Guthery et al. 2000, Williams et al.
2003a), and management strategies need regional esti-
mates of survival rates upon which to base conservation
efforts (Brennan 1991, Cox et al. 2004).

Low non-breeding season survival is characteristic of
bobwhite populations in northern parts of their range, but

sources of mortality and seasonal variation in survival are
less well understood. Previous studies documented the
influence of regionally-varying factors such as hunter
harvest (Pollock et al. 1989b, Williams et al. 2004a,
Rolland et al. 2010) or seasonal variation in weather
(Roseberry and Klimstra 1984, Robel and Kemp 1997).
The influence of these and other factors that affect non-
breeding season survival vary across the species’ range
and under different management regimes (Williams et al.
2004b).

Seasonal and annual comparisons of survival require
understanding of the precision of estimators through time.
Variance of temporal survival estimates is affected by 2
factors: overdispersion and variability in sampling effort.
Dependency between individuals in survival analyses
produces overdispersion, which can misleadingly reduce
variance estimates (Schmutz et al. 1995). Previous
survival estimates reported for bobwhites from radio-
telemetry studies have not explicitly addressed depen-
dency in survival that arises from individuals in the same
covey sharing resources and exposed to similar mortality
factors (Williams et al. 2003b). Failure to address
dependency can potentially provide biased estimates of
variability in survival through the season (Schmutz et al.
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1995). Inconsistent sampling effort throughout a study can
also lead to imprecise variance estimates by confusing
process variation with sampling variation (Burnham et al.
1987, Gould and Nichols 1998). Survival analyses can
identify periods within seasons with low or highly
variable survival rates by first addressing confounding
influences of variation in sampling effort and non-
independence. That information can be used to focus
conservation efforts to improve survival and, ultimately,
growth rates of declining populations (Gould and Nichols
1998, Moynahan et al. 2006).

We investigated temporal patterns of variation in
non-breeding season survival of a bobwhite population
near the northern periphery of the species’ range. Our
objectives were to: (1) compare the fit of temporal models
to understand intra- and inter-seasonal non-breeding
season survival and identify periods of lowest survival,
and (2) test for overdispersion between covey members in
survival analysis to improve variance estimates.

STUDY AREA

We conducted our study within the core bobwhite
distribution in Highland and Brown counties (Spinola and
Gates 2008) in southwestern Ohio (centered on 398 040

59’’, 838 390 10’’; Fig. 1). Highland and Brown counties
were in the glaciated till plains physiographic region
(Ohio Division of Geologic Survey 1998). Primary land
use in the region was agriculture, including 39% row
crops and 17% pasture and hay (Homer et al. 2004). The

region was mostly rural (6% developed). Woodlots and
grasslands accounted for 33 and 3% of the landscape,
respectively.

We worked on 4 private land study sites (400-1,200
ha) where bobwhite coveys were consistently found
during the non-breeding season (Oct-Mar 2008–2011).
Composition of the study areas was primarily row crop
fields (55%) planted with soybeans and corn. Early
succession vegetation, including fields enrolled in the
Conservation Reserve Program (CRP), old fields, fence-
rows, and agricultural drainage ditches collectively
accounted for 19% of the area of the study sites. Grass
fields were dominated by fescue (Festuca spp.) or planted
warm season grasses, primarily Indiangrass (Sorghastrum
nutans), big bluestem (Andropogon gerardii), and switch-
grass (Panicum virgatum). Dominant forbs in grasslands
were goldenrod (Solidago spp.), Queen Anne’s lace
(Daucus carota), and partridge pea (Chamaecrista
fasciculata). Early succession woody vegetation was
primarily blackberry (Rubus allegheniensis) or black
raspberry (R. occidentalis). Woodlots accounted for
13% of the study area. Upland woodlots were dominated
by oaks (Quercus spp.) and hickory (Carya spp.) whereas
wet woodlots were characterized by ash (Fraxinus spp.)
and black walnut (Juglans nigra).

Weather during the study was variable and generally
more severe than long-term averages (Table 1). Timing
and severity of weather varied among the 3 study years.
The winter was relatively mild in 2008-09 with 2 short (7-

Fig. 1. Location of 4 private land study sites in Highland and Brown counties in southwestern, Ohio, USA.
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12 days) periods of snow cover . 5 cm; total daily
accumulation did not exceed 25 cm. The weather was
mild during December 2009-January 2010 but a pro-
longed period (22 days) of deep snow accumulation and
cold temperatures occurred during February 2010. Snow
accumulation during this period exceeded 25 cm for 9
consecutive days. There was consistent snow cover . 5
cm during December 2010-January 2011 and little snow
accumulation in February. The duration of snow cover
was prolonged but depth did not exceed 25 cm.

METHODS

We captured bobwhites with baited funnel traps
(Stoddard 1931) and targeted mist-netting (Wiley et al.
2012) during October-March 2008–2011. We attached an
aluminum leg band and recorded age, gender, and body
mass of each bird (Rosene 1969). We fit a subsample of
individuals weighing .165 g with 6.6-g (� 4% body
mass) necklace style radio transmitters (Advanced
Telemetry Systems, Isanti, MN, USA). Transmitters were
equipped with an 8-hr mortality sensor. All birds were
released at the capture site within 30 min. Trapping,
handling, and marking protocols were reviewed and
approved by the Animal Care and Use Committee at
Ohio State University (protocol # 2007A0228).

We tracked all radio-marked birds � 6 days/week by
homing and triangulation from short distances (, 25 m)
(White and Garrott 1990). We immediately located the
transmitter after detecting a mortality signal and identified
cause of mortality from field sign observed at the recovery
site (Einarsen 1956) and condition of the transmitter. We
recorded the cause of mortality as predation, hunter
harvest, investigator-caused (e.g., transmitter entangle-
ment, trap mortality), other (e.g., vehicle collision,
weather), or unknown.

We used the known-fates model with a logit link
function in Program MARK to estimate survival rates
(White and Burnham 1999). The known-fates model
calculates maximum likelihood estimates of survival and
allows comparisons of models with multiple parameters to
estimate their effect on survival (Murray 2006). We
generated encounter histories with daily intervals for all
birds that survived a 7-day post-capture exclusion period
to control for short-term acute effects of capture and
radiomarking (Guthery and Lusk 2004, Holt et al. 2009).

We excluded data from the first year of the study in the
primary survival analyses because there were few birds
radiomarked during 1 October to 9 December.

We compared a priori models to examine the
appropriate temporal scale for seasonal variation in
survival rates. Baseline temporal models tested for
weekly, bi-weekly, monthly, and constant variability
throughout the season. We also compared 2 models with
linear and quadratic trends through the season. We
evaluated each model (excluding the null model) with
an additive and an interaction year term because we had
no a priori prediction about differences in survival among
years. We used the information theoretic approach to
compare support for each model, based on Akaike
Information Criterion adjusted for small sample sizes
(AICc), and considered models with DAICc scores � 2.0
to have equivalent support (Anderson and Burnham
2002). We added additional parameters to the best fitting
temporal model to test for differences in age and gender
and reported the relative influence of each parameter
based on model coefficients and 95% confidence inter-
vals.

We calculated survival of individuals captured in the
first year of the study for a shortened interval (10 Dec-31
Mar) with the best fitting temporal model. We estimated
survival for the same interval in each of the 2 full years
with a shortened encounter history to make comparisons
among the 3 seasons.

We used an intercept only random effects model to
estimate process variance with the variance components
analysis in Program MARK (Burnham et al. 1987, Gould
and Nichols 1998, White et al. 2001). We compared the
ratio of sampling and process variances for the 2 years
and report the estimate of process variance. Sampling
variance is an estimate of variability in the parameter that
includes variation in sampling effort and natural process-
es. Process variance removes the sampling variability
from the estimate to provide a more precise estimate of
the true variation in the population parameter.

We used the bootstrap procedure in Program MARK
to estimate an overdispersion parameter (c) to test for
dependency in survival among covey members (Bishop et
al. 2008). Overdispersion parameters, or variance inflation
factors, adjust variance estimates to more correctly model
overdispersed data (Schmutz et al. 1995, Anderson and
Burnham 2002). The general approach for estimating c is
to divide the goodness-of-fit statistic of the model with the
most parameters by the degrees of freedom of that model
(Anderson and Burnham 2002). However, this approach is
sensitive to sample sizes and fails to explicitly consider
the cause of overdispersion.

Data bootstrapping can be used to estimate c when
the source of dependency is known (Bishop et al. 2008). A
common example of known sources of dependency is
siblings, where � 2 individuals in the survival analysis
have the same maternal resources and are exposed to
similar environments and mortality sources. The boot-
strapping procedure resamples from known groups (e.g.,
siblings or coveys), rather than by individual encounter
histories, to generate survival estimates. The overdisper-
sion parameter (ĉ) is calculated as ĉ ¼ SD(Ŝ)2/SE(Ŝ)2

Table 1. Non-breeding season (Oct-Mar) weather summary from

Dayton, Ohio, 90 km northwest of 4 private land study sites in

southwestern Ohio (NCDC 2011).

Winter

Mean temp

(8C)

Total snow

(cm)

Days

� 5 cma

2008–2009 9.2 48.5 16

2009–2010 8.5 101.6 31

2010–2011 8.5 67.3 41

30-year averageb 10.5 67.5 19.8

a Number of days within season with � 5 cm snow cover at the

time of observation.
b 1977–1978 through 2007–2008.
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where SD(Ŝ) is the standard deviation of bootstrapped
survival estimates and SE(Ŝ) is the standard error of the
survival estimate from the maximum-likelihood analysis
(Bishop et al. 2008).

We generated 10,000 estimates of Ŝ with the most
parsimonious temporal model (DAICc , 2 and fewest
parameters). Using the best fitting temporal model
removes variability that could be misinterpreted as
overdispersion. The procedure removed individuals from
randomly selected coveys and estimated Ŝ for the subset
of data during each iteration (Bishop et al. 2008). Total
sample size for each iteration depended on the number of
radio-marked individuals in each covey in the subset data.
Covey affiliation was specified as an individual covariate
in the encounter history. We used the median ĉ estimate
from the 2 years in the bootstrapping analysis to
approximate the variance inflation factor for the study
(Anderson and Burnham 2002). We considered over-
dispersion to be present in the data if the ĉ estimate was
.1.2 as an a priori rule (Bishop et al. 2008).

A covey was defined as � 2 individuals that were
together for � 7 consecutive days. Some investigators
have reported dynamic covey affiliation among individ-
uals through the non-breeding season (Yoho and Dim-
mick 1972, Williams et al. 2004a), but individuals rarely
changed covey affiliations during our study (Janke 2011).
We identified the resulting group when 2 formerly unique
coveys combined as a unique covey in the analysis, right-
censored individuals in the covey, and re-entered them in
the risk set as a new individual with the combined covey.

There was a 23-day hunting season with a 4 bird bag
limit during the last 3 weeks of November each year. We
did not restrict or influence hunter effort or access on any
of the sites. We distributed log books to hunters and
landowners on each site to monitor hunting effort and

success. We calculated a cumulative incidence function

(CIF) to estimate cause-specific mortality related to

hunter harvest to measure the contribution of harvest to

non-breeding season mortality (Heisey and Patterson

2006). The cumulative incidence function calculates the

relative influence of a specific mortality factor on survival

in a population exposed to multiple risk factors (in

addition to the factor[s] of interest, i.e., harvest.). This

approach uses the staggered entry design of the Kaplan

Meier estimator (Pollock et al. 1989a) to generate survival

estimates and cause-specific mortality rates sensitive to

problems of staggered entry (individuals that die early are

not available for capture later in the study and affect

differential survival rates through the season with variable

sample sizes). The CIF approach also respects the

property of ‘conservation of mortality’ raised by the

existence of multiple mortality sources (Heisey and

Patterson 2006: 1545). We used the wild1 package in R

to calculate the CIF for harvest with data from all

individuals surviving the 7-day exclusion period during

the last 2 years of the study (Sargeant 2011).

Table 2. Selection for candidate models to explain inter- and intra-seasonal variation in non-breeding season (Oct-Mar) survival of northern

bobwhites in southwestern Ohio, 2009–2011.

Model AICc
b DAICc

b wi
b kb

Week þ YearþWeek x Year 1585.479 0.000 0.935 52

BiWeek þ YearþBiWeek x Year 1590.822 5.343 0.065 26

Month þ YearþMonth x Year 1617.168 31.689 0.000 12

Week 1654.372 68.894 0.000 26

Week þ Year 1655.735 70.256 0.000 27

BiWeek 1674.825 89.347 0.000 13

BiWeek þ Year 1676.236 90.757 0.000 14

Month 1678.458 92.979 0.000 6

Month þ Year 1680.189 94.711 0.000 7

tt þ Yearþtt x Year 1680.235 94.757 0.000 6

t þ Yearþt x Year 1692.596 107.118 0.000 4

tt 1693.162 107.683 0.000 3

tt þ Year 1694.938 109.459 0.000 4

Constant 1697.542 112.064 0.000 1

Constant þ Year 1698.906 113.428 0.000 2

t 1699.384 113.906 0.000 2

t þ Year 1700.785 115.307 0.000 3

a Temporal effects modeled as constant through year, linear time trend (t), quadratic time trend (tt), and weekly, bi-weekly, and monthly

periods.
b AICc¼Akaike’s Information Criterion adjusted for small sample sizes, DAICc¼difference between AICc of best fitting and current model, wi

¼ Akaike’s weight, k ¼ number of parameters in model.

Table 3. Survival estimates from maximum likelihood and

bootstrapping procedures in the known-fates model in Program

MARK for radio-marked northern bobwhites during the non-

breeding season (Oct-Mar), 2009–2011.

Year

Maximum

likelihood Bootstrap

ĉaŜ SE(Ŝ) Ŝ̄ SDðŜ̄Þ
2009–2010 0.055 0.021 0.058 0.028 1.84

2010–2011 0.121 0.033 0.122 0.036 1.18

a Variance inflation factor; estimated by SD(Ŝ)2/SE(Ŝ)2.
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RESULTS

We included 311 bobwhites in survival analyses after
a 7-day exclusion period (55 in 2008–2009, 130 in 2009–
2010, and 126 in 2010–2011). The sample comprised 75%
juveniles with slightly more males (54%) than females
(46%). Five individuals were censored due to investigator-
caused mortalities and 27 were censored due to radio
transmitter failure. We included 256 individuals from 2
years (2009–10 and 2010–11) in the temporal analysis. All
daily intervals in the analysis had � 3 radio-marked birds
and the mean (6 SD) number of radio-marked individuals
per daily interval was 31 611.1 (range¼ 3–60).

We identified 73 coveys (15 in 2008–2009, 27 in
2009–2010, and 31 in 2010–2011). Two coveys joined
and were identified as a new covey on 2 occasions in
2009–2010 and 4 occasions in 2010–2011. The mean (6
SD) number of radio-marked individuals in each covey
was 4.6 6 2.3.The mean (6 SD) number of radio-marked
individuals/covey/day was 2.3 6 0.8.

The best fitting temporal model included weekly
effects and the interaction of week with year (Table 2).
There was little support for other temporal models, but the
high ranking of heterogeneous models (biweekly and
monthly models) with the annual interaction term
indicated there was substantial inter- and intra-annual
variation in survival. Additional covariates for gender and
age did not improve model fit and were not included in the
final model. There was no difference in survival between
genders (bFemale¼ 0.044, 95% CI¼ - 0.278-0.367). Adults
generally had higher survival than juveniles (bAdult ¼
0.286, 95% CI¼ - 0.093-0.665) although models without
age effects had equivalent support and the confidence
interval for the age coefficient contained zero. The ratio of
the standard error of process variance to observed
variance in weekly survival intervals was 1, indicating
the observed variation in survival was not attributable to
differential sampling effort across weeks. The boot-
strapping analysis revealed there was modest overdisper-
sion in the data due to dependency between covey mates
(Table 3; median ĉ¼ 1.51).

Non-breeding season survival estimates were low
each year (Ŝ2009–2010 ¼ 0.055, 95% CI ¼ 0.026-0.113,
Ŝ2010–2011¼ 0.121, 95% CI¼ 0.069-0.203). Survival rates
during 10 December- 31 March were variable among the
3 years (Ŝ2008–2009¼ 0.449, 95% CI¼ 0.295-0.613, Ŝ2009–
2010 ¼ 0.114, 95% CI ¼ 0.059-0.217, Ŝ2010–2011 ¼ 0.247,
95% CI ¼ 0.170-0.345). Daily survival rates consistently
declined through the non-breeding season and the lowest
estimates occurred during December-February (Fig. 2).
Periods of lowest survival coincided with increases in
regional snow cover. Fall survival (Oct-Nov) was lower
than other snow-free periods and the highest survival rates
occurred in March.

Fig. 2. Daily survival estimates (Ŝ) and 95% CI for northern
bobwhites over weekly intervals during the non-breeding season

(1 Oct–31 Mar) in Ohio, 2008–2011. The lower line represents
average snow depth (cm) from a regional weather station in

Dayton, Ohio (90 km northwest of the sites) for each weekly

 
interval (NCDC 2011). Daily snow observations within sites

during 2009–2011 correlated with regional observations from the
Dayton station, but were not available for the entire study period

(Janke 2011).
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Predation was the primary cause of mortality
(78.5%), and avian predators were implicated in a
majority of predation events (Table 4). Avian predators
were also suspected in a majority of mortality cases
recorded as unclassified predation, although evidence at
the recovery site was insufficient to directly implicate
avian predators. We confirmed predation by red (Vulpes
vulpes) or gray (Urocyon cinereoargenteus) fox, mink
(Neovision vision), feral cats (Felis catus), Cooper’s
(Accipiter cooperii), and sharp-shinned (A. striatus)
hawks. We documented 13 hunting parties during 2009–
2011 with hunter log books and observations in the field.
Only 8 (6 in 2009-10, 2 in 2010-11) of 105 (57 in 2009-
10, 48 in 2010-11) bobwhites radiomarked during the
season were harvested. The CIF for harvest related
mortality was 0.068 (95% CI ¼ 0.012-0.123).

DISCUSSION

Survival is an important determinant of growth rates
in bobwhite populations, and non-breeding season
survival has been identified as the most important vital
rate for populations near the northern extent of their range
(Folk et al. 2007, Gates et al 2012). Weekly survival rates
during our study were dynamic and appeared to be most
influenced by snow accumulation, which led to low non-
breeding season survival. The ratio of process variance to
sampling variance in our analysis indicated weekly
survival estimates were robust to variation in sampling
effort and the data bootstrapping procedure showed that
variance was not heavily influenced by dependency
among covey members.

Covey affiliation was mostly static during our study
(Janke 2011), which we predicted would result in high
dependency among individuals in the same covey
(Williams et al. 2003b). However, dependency among
individuals was modest, likely because of consistently
low survival rates documented across the entire popula-
tion, driven primarily by severe winter weather. Depen-
dency may be higher in populations subject to less
widespread mortality factors (e.g., local variation in
habitat quality, hunting pressure). The presence of ĉ .
1.2 does, however, show that covey-mates in our analysis

were not entirely biologically independent as assumed in
survival analyses. Thus, model selection in future
analyses may consider using the data bootstrapping
procedure to estimate ĉ (Bishop et al. 2008).

Comparison of temporal variation in survival assumes
that any bias associated with radio transmitters is constant
within and among seasons. Increased energy demands and
diminished food availability during winter may lower
body mass (Robel and Linderman 1966, Roseberry and
Klimstra 1971) and negatively affect survival of radio-
marked birds by increasing the proportional weight of
transmitters relative to body mass (Johnson and Berner
1980, Burger et al. 1991). Janke (2011) found that body
mass of radio-marked bobwhites in our study did not
consistently decline during periods of snow cover,
suggesting inferences from radio-marked birds during
periods of snow cover are likely not negatively biased
relative to other periods within the season or among years.
Comparisons among intervals in our study and with
previous radiotelemetry studies should still be valid,
despite the potential for a systematic bias caused by
transmitters (Guthery and Lusk 2004).

Variation in survival among years in our study was
consistent with the variable non-breeding season survival
estimates reported in an 11-year study in Oklahoma (Cox
et al. 2004). Thus, within-season variation in mortality
factors can have strong influence on seasonal survival
rates and, ultimately, population growth rates. Estimates
from the 3 seasons included in our analysis suggest
variation in winter severity was the primary factor
affecting non-breeding season survival. Winter survival
was highest during 2008–2009 when snow accumulation
and temperatures were closest to long-term averages,
while survival during the severe winter of 2009–2010 was
among the lowest estimates reported in the literature
(Sandercock et al. 2008). Weekly survival rates declined
considerably in association with snow accumulation in the
region. The influence of severe winter weather on inter-
seasonal population estimates was previously established
by Roseberry and Klimstra (1984) and Robel and Kemp
(1997) in Illinois and Kansas, respectively. Lohr et al.
(2011) used radiotelemetry to estimate survival in a
population near the northern portion of the bobwhite’s
range and reported comparatively high non-breeding
season survival during 2 mild winters (Lohr 2009). The
co-ocurrence of snow accumulation and low weekly
survival rates in our study corroborates the link between
winter severity and low non-breeding season survival in
northern populations.

Errington and Hamerstrom (1935) reported the 2
primary periods affecting non-breeding season survival of
bobwhites in northern populations were coincident with
senescence of herbaceous vegetation and crop harvest in
early fall and snow accumulation during winter. Winter
survival was most variable during periods of snow
accumulation in our study, and we documented a similar
decline in fall survival during the hunting season and crop
harvest. The co-occurrence of crop harvest and hunting
season limited our ability to separate influences of each on
observed survival. A high proportion of the study sites
was in corn and soybeans, which were harvested during

Table 4. Inferred mortality causes from evidence at recovery

locations of radio-marked northern bobwhites (n¼ 186) during the

non-breeding season in southwestern Ohio, 1 October–31 March

2008–2011.

Cause %

Hunter harvest 5.4

Investigatora 2.7

Other 1.1

Predation

Avian 23.7

Mammalian 16.1

Unclassified 38.7

Unknown 10.2

Weather 2.2

aCapture or transmitter-related mortality.
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mid to late fall; thus, significant changes in distribution of
suitable cover occurred over a short period. Bobwhites in
agricultural landscapes use crop fields through the
summer (M. R. Liberati, unpublished data; Potter et al.
2011) and crop harvest causes a rapid loss of usable
habitat (Errington 1934, Guthery 1997). Reduced avail-
ability of usable habitat combined with senescence of
herbaceous vegetation during this period likely contrib-
uted to the observed decrease in survival.

Hunting mortality has been identified as a primary
factor affecting non-breeding season survival of bob-
whites in Missouri (Burger et al. 1995), Oklahoma (Cox et
al. 2004), and Florida (Rolland et al. 2010). Harvest
during the short hunting season in our study appeared to
influence weekly survival rates, but our estimates of
cause-specific mortality for harvest-related mortality were
lower than previously reported rates in populations
exposed to hunting pressure (Burger et al. 1995, Cox et
al. 2004). The collective influence of low fall survival had
little influence compared to that exerted by severe winter
weather.

MANAGEMENT IMPLICATIONS

Management strategies directed at increasing bob-
white population growth rates in Ohio should focus on
increasing low non-breeding season survival because of
its disproportional influence on population growth rates
(Sandercock et al. 2008, Gates et al. 2012). Non-breeding
season habitat management should specifically focus on
microhabitats associated with increased survival during
periods of snow accumulation (Roseberry 1964). Further
research in northern portions of the bobwhite range should
investigate the specific influence of winter weather and
habitat quality on daily survival rates to identify
appropriate management actions to improve survival.
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