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Abstract
Background: The agouti protein is a paracrine factor that is normally present in the skin of many species of mammals.
Agouti regulates the switch between black and yellow hair pigmentation by signalling through the melanocortin 1
receptor (Mc1r) on melanocytes. Lethal yellow (Ay) and viable yellow (Avy) are dominant regulatory mutations in the mouse
agouti gene that cause the wild-type protein to be produced at abnormally high levels throughout the body. Mice
harboring these mutations exhibit a pleiotropic syndrome characterized by yellow coat color, obesity, hyperglycemia,
hyperinsulinemia, and increased susceptibility to hyperplasia and carcinogenesis in numerous tissues, including the liver.
The goal of this research was to determine if ectopic expression of the agouti gene in the liver alone is sufficient to
recapitulate any aspect of this syndrome. For this purpose, we generated lines of transgenic mice expressing high levels
of agouti in the liver under the regulatory control of the albumin promoter. Expression levels of the agouti transgene in
the liver were quantified by Northern blot analysis. Functional agouti protein in the liver of transgenic mice was assayed
by its ability to inhibit binding of the α-melanocyte stimulating hormone (αMSH) to the Mc1r. Body weight, plasma insulin
and blood glucose levels were analyzed in control and transgenic mice. Control and transgenic male mice were given a
single intraperitoneal injection (10 mg/kg) of the hepatocellular carcinogen, diethylnitrosamine (DEN), at 15 days of age.
Mice were euthanized at 36 or 40 weeks after DEN injection and the number of tumors per liver and total liver weights
were recorded.

Results: The albumin-agouti transgene was expressed at high levels in the livers of mice and produced a functional agouti
protein. Albumin-agouti transgenic mice had normal body weights and normal levels of blood glucose and plasma insulin,
but responded to chemical initiation of the liver with an increased number of liver tumors compared to non-transgenic
control mice.

Conclusions: The data demonstrate that liver-specific expression of the agouti gene is not sufficient to induce obesity
or diabetes, but, in the absence of these factors, agouti continues to promote hepatocellular carcinogenesis.
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Background
The wild-type agouti coat color exhibited by many mam-
mals consists of individual hairs that are black with a sub-
terminal band of yellow [1]. The mouse agouti gene prod-
uct is a secreted paracrine factor that regulates the alter-
nate production of black and yellow pigments produced
by hair-bulb melanocytes [2-4]. Binding of αMSH to the
Mc1r on the surface of hair-bulb melanocytes results in
the production of black pigment that is deposited in the
growing hair. The agouti gene is transiently expressed in
the skin during the mid-portion of the hair growth cycle.
At this time, the agouti protein binds to the Mc1r, thereby
excluding αMSH binding and causing a switch from black
to yellow pigment production by melanocytes, which
results in the appearance of the sub-terminal yellow band
in the otherwise black hair [5-10].

Recessive mutations in the agouti gene affect only the coat
color of mice, causing either a partial or complete loss of
yellow pigment in the hair [11,12]. The dominant agouti
mutations, lethal yellow (Ay) and viable yellow (Avy), affect
coat color by causing an increase in the amount of yellow
pigment in the hair. Additionally, these dominant muta-
tions cause mice to develop type II diabetes (peripheral
insulin resistance, pancreatic islet hypertrophy and hyper-
plasia, hyperinsulinemia, and hyperglycemia), obesity
(hyperphagia and increased adipose mass), increased
somatic growth (increased fat-free dry mass and slightly
longer bones), and increased susceptibility to hyperplasia
and carcinogenesis in numerous tissues [reviewed in refs.
[13-22]]. This syndrome is manifested in lethal yellow and
viable yellow mice because they carry regulatory mutations
in the agouti gene that cause the normal protein to be pro-
duced at abnormally high levels throughout the body [23-
26].

In addition to its normal role of regulating pigmentation
through Mc1r, agouti can also antagonize αMSH binding
to other melanocortin receptor family members [5,27-
31]. The ability of agouti to antagonize binding of αMSH
to the Mc4r is of particular relevance, as Mc4r is expressed
in the brain and mice lacking functional Mc4r are hyper-
insulinemic, hyperphagic, and obese [32]. Mutations in
human MC4R were also identified in dominantly inher-
ited forms of human obesity [33,34]. These results suggest
that the hyperinsulinemia, hyperphagia, and obesity in
lethal yellow and viable yellow mice is caused primarily by
agouti-induced antagonism of Mc4r in the hypothalamus,
a center of autonomic regulatory control in the brain [35].
In addition to a role in the central nervous system, agouti
expression in adipose tissue also appears to contribute to
the obesity syndrome. Transgenic mice with adipocyte-
specific agouti expression were shown to have significantly
increased fat mass compared to control mice, which was
accompanied by an increase in the protein levels of three

transcription factors (Pparg, peroxisome proliferator acti-
vated receptor gamma; Stat1, signal transducer and activa-
tor of transcription 1; and Stat3) in their adipose tissue
[36]. These three transcription factors were also upregu-
lated in mature 3T3-L1 adipocytes in culture following
treatment with recombinant agouti protein [36]. Addi-
tionally, recombinant agouti protein causes an increase in
fatty acid synthase expression and activity, and the accu-
mulation of triglycerides in cultured adipocytes [37].
Together, these results suggest that the obesity-related fac-
tors of the dominant agouti syndrome are mediated by
agouti expression in both the brain and peripheral
tissue(s).

Dominant mutations in the agouti gene also cause an
increase in the susceptibility to hyperplasia and carcino-
genesis in the liver [38-45], skin [46,47], lung [44,48-50],
mammary gland [38,39,51-54], and urinary bladder [55].
It is likely that agouti-mediated antagonism of melano-
cortin receptors is mainly responsible for the obesity and
diabetes of lethal yellow and viable yellow mice, but it is not
known if melanocortin receptors are involved in their
increased susceptibility to cancer. Whereas the obesity-
related factors may contribute to the increased predisposi-
tion to carcinogenesis, there is some evidence to support
the hypothesis that ectopic expression of the agouti gene
per se may promote carcinogenesis in the liver and lung,
even in the absence of hyperinsulinemia and obesity [44].

The liver is a primary site of insulin-mediated glucose dis-
posal and lipogenesis in the mouse. Based on this fact,
and on the previous reports of increased susceptibility to
hepatic carcinogenesis in dominant agouti mutant mice,
we were interested in determining if agouti expression in
the liver alone would be sufficient to induce any of the
phenotypes observed in lethal yellow or viable yellow mice.
For this purpose, we generated lines of transgenic mice in
which the wild-type murine agouti cDNA was expressed
only in the liver at levels similar to or greater than those
observed in lethal yellow or viable yellow mice. Transgenic
and control mice were compared with respect to body
weights, blood glucose levels, plasma insulin levels, and
tumorigenic responses to chemical initiation in the liver.

Results
The albumin promoter directs expression of the wild-type 
agouti cDNA to the liver in transgenic mice
The albumin promoter was used to direct liver-specific
expression [56] of the wild-type murine agouti cDNA in
transgenic mice. Three lines of transgenic mice were estab-
lished and two of these lines were characterized in detail:
FVB/N-Tg(Alb1-a)86R and FVB/N-Tg(Alb1-a)83R (hereaf-
ter referred to as alb-agouti 86 and alb-agouti 83, respec-
tively). As expected, agouti expression was detected only in
the liver of the transgenic mice after an agouti cDNA probe



Molecular Cancer 2004, 3 http://www.molecular-cancer.com/content/3/1/17

Page 3 of 10
(page number not for citation purposes)

was hybridized to Northern blots containing ~2.5 µg of
poly (A)+ RNA from adult muscle, liver, small intestine,
brain and white adipose tissue. The expression level of
agouti in the liver of an alb-agouti 86 mouse is compared
to that of a BAPa20 mouse (FVB/N-TgN(BAPa)20Rpw) in
Figure 1. BAPa20 is a line of transgenic mice in which the
wild-type agouti cDNA is under the regulatory control of
the human β-actin promoter and enhancer. It was previ-
ously demonstrated that BAPa20 mice express the agouti
gene in a ubiquitous manner and, consequently, become
hyperinsulinemic and obese [57]. As seen in Figure 1, alb-
agouti 86 mice express the agouti cDNA in the liver at a
higher level than do BAPa20 mice.

The expression levels of agouti in the livers of alb-agouti
86 and 83 transgenic mice was next estimated by densit-
ometry and compared to the levels of agouti expressed in
the livers of BAPa20, lethal yellow (Ay/a), and viable yellow
(Avy/a) mice (Fig. 2). Viable yellow mice have coat colors
ranging from completely yellow (y) to mottled yellow and
agouti (m) to pseudoagouti (p), and the amount of yel-
low pigment in the coat is correlated with the level of
agouti expression throughout the body and the severity of

the obesity, diabetes, and neoplasia that they display [16].
The alb-agouti 86 mice express agouti in the liver at ~13.7
times the level in lethal yellow liver, and at a level that is
also substantially greater than in BAPa20 liver and the liv-
ers of all three phenotypic classes of viable yellow mice. In
contrast, the alb-agouti 83 mice express agouti in the liver
at ~0.8 times the level in lethal yellow liver, at approxi-
mately one third the level in BAPa20 liver, but still at a
greater level than in the livers of all three classes of viable
yellow mice. Thus, under the hypothesis that expression of
agouti in the liver alone is sufficient to induce the obesity

Northern blot analysis of agouti expression in BAPa20 and alb-agouti 86 transgenic miceFigure 1
Northern blot analysis of agouti expression in 
BAPa20 and alb-agouti 86 transgenic mice. A North-
ern blot containing ~2.5 µg of poly (A)+ RNA per lane was 
hybridized with a radiolabeled agouti cDNA probe. The blot 
was stripped and rehybridized with a radiolabeled glyceralde-
hyde-3-phosphate dehydrogenase (Gapd) cDNA probe to 
control for mRNA loading and quality. The agouti gene is 
expressed only in the skin of wild-type mice [2]. Therefore, 
the agouti mRNA detected in these BAPa20 and alb-agouti 86 
tissues is transgene-specific.
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alb-agouti 86, alb-agouti 83, BAPa20, lethal yellow 
(Ay/a) and viable yellow (Avy/a) mice. A Northern blot of 
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olabeled agouti cDNA probe, then stripped and rehybridized 
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mRNA relative to Gapd mRNA levels were quantified for 
each sample by densitometric analysis (see Methods). The 
level of agouti mRNA expression in lethal yellow mice was 
assigned the value of 1.0, and the expression levels in viable 
yellow mice and transgenic mice were normalized relative to 
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and diabetes of viable yellow mice, both lines of alb-agouti
transgenic mice express the wild-type agouti cDNA in the
liver at levels that should be adequate to induce these
effects.

alb-agouti transgenic mice produce functional agouti 
protein in the liver
Recombinant murine agouti protein inhibits the binding
of [125I]-NDP-αMSH to the Mc1r in B16F10 murine
melanoma cells. This assay was used as previously
described [58,59] to determine if the alb-agouti transgene
produces a functional agouti protein in the liver of the
transgenic mice. Prior to the assay, an S Sepharose chro-
matography procedure was used to enrich for agouti pro-
tein in liver homogenates from alb-agouti 86 transgenic

mice. Liver homogenates from non-transgenic control
mice and liver homogenates from non-transgenic control
mice spiked with recombinant agouti protein were treated
in the same manner. Relative inhibition of [125I]-NDP-
αMSH binding to the Mc1r for each of the three samples
is displayed in Figure 3. The alb-agouti 86 sample inhib-
ited [125I]-NDP-αMSH binding in the assay almost as
effectively as the control sample spiked with recombinant
agouti protein, whereas the control sample from non-
transgenic mice did not significantly affect αMSH
binding.

alb-agouti transgenic mice have normal body weight, and 
normal levels of plasma insulin and blood glucose
To determine if expression of the agouti gene in the liver
alone is sufficient to induce obesity and diabetes, the
body weight, and levels of blood glucose and plasma insu-
lin were analyzed in the alb-agouti transgenic mice and
compared to those of non-transgenic siblings. There were
no significant differences (p > 0.05) in body weight
between transgenic and control mice fed a diet containing
11% fat by weight (Fig. 4). Levels of plasma insulin and
blood glucose did not differ significantly (p > 0.05)
between the alb-agouti transgenic mice and the non-trans-
genic controls, whereas both insulin and glucose levels
were significantly elevated in BAPa20 mice (positive con-
trols) as expected (Table 1). Therefore, these data indicate
that expression of the agouti gene in the liver alone is not
sufficient to induce obesity or diabetes.

alb-agouti transgenic mice respond to chemical initiation 
of the liver with an increased number of tumors per liver
To determine if the presence of agouti in the livers of alb-
agouti 83 and 86 transgenic mice promotes liver carcino-
genesis in the absence of obesity and diabetes, a single
intraperitoneal injection of the liver carcinogen, DEN (10
mg/kg body weight), was administered to transgenic and
control male mice at 15 days of age. Body weights of all
injected mice were recorded from 4–42 weeks of age, and
there were no significant differences (p > 0.05) between
either of the transgenic lines and their non-transgenic lit-
termates at any time point (data not shown). Three mice
from each of the transgenic and control groups were euth-
anized at various times after DEN injection, and it was
determined that 36 and 40 weeks post-injection were the
most appropriate times for sampling the mice, because
tumors at those ages were macroscopically visible and had
not yet coalesced (data not shown). Therefore, separate
groups of transgenic and control mice (n = 18–20 per
group) were euthanized at 36 weeks or 40 weeks post-
injection, and their tumor numbers and liver weights were
recorded (Fig. 5).

At 36 weeks after DEN injection, the number of tumors
per liver was 2.3 ± 0.4 (mean ± one standard error of the

Analysis of functional agouti protein in the liver of alb-agouti 86 transgenic miceFigure 3
Analysis of functional agouti protein in the liver of 
alb-agouti 86 transgenic mice. Functional agouti protein 
was assayed by its ability to inhibit binding of [125I]-NDP-
αMSH to the Mc1r in murine melanoma B16F10 cells. The 
livers from three alb-agouti 86 mice were excised, pooled, 
homogenized, and enriched for agouti protein. The livers 
from three non-transgenic control mice were treated in the 
same manner (see Methods). The B16F10 cells were incu-
bated for 2 hr at room temperature with 0.1 nM [125I]-NDP-
αMSH plus increasing amounts of either partially purified 
liver homogenate from control mice (control), liver homoge-
nate from alb-agouti 86 mice (alb-agouti 86), or liver 
homogenate from control mice spiked with recombinant 
agouti protein (control+agouti). Bound radioactive ligand was 
measured and plotted (y-axis) against the amount of liver 
homogenates used in the assay (x-axis).
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mean) for the controls, 3.5 ± 0.7 for alb-agouti 83, and 4.0
± 0.9 for alb-agouti 86 (Figure 5A). Both lines of trans-
genic mice had a greater number of liver tumors than did
the controls at 36 weeks, but these differences were not
statistically significant (Tukey-Kramer multiple-compari-
son test at α = 0.05). At 40 weeks after DEN injection, the
mean number of tumors per liver for the controls, and the
alb-agouti 83 and 86 mice was 4.1 ± 1.1, 6.8 ± 1.6, and
10.4 ± 2.5, respectively (Figure 5A). At this time, the mean
number of tumors for the alb-agouti 86 mice differed sig-
nificantly (p < 0.05) from the controls, but not from the
alb-agouti 83 mice. The mean number of tumors for the
alb-agouti 83 mice did not differ significantly from the
controls (p > 0.05). At both 36 and 40 weeks, the number
of tumors per liver for the transgenic mice was positively

correlated with the level of agouti expression in the liver.
Whereas transgenic mice had more tumors per liver than
did the control mice, the size distribution of tumors was
similar in transgenics and controls (data not shown). The
fact that alb-agouti 86 mice have normal body weights
and levels of blood glucose and plasma insulin, but
responded to DEN with significantly more liver tumors
than did the non-transgenic mice demonstrates a more
direct effect of agouti in the promotion of liver
carcinogenesis.

Total liver weight was also recorded at 36 and 40 weeks
after DEN injection. Both lines of transgenic mice had
greater average liver weights than did the control mice (Fig
5B). The differences in liver weights between alb-agouti
86 mice and controls were significant (p < 0.05) at both 36
weeks (1.95 g ± 0.06 vs. 1.63 g ± 0.07) and 40 weeks (1.97
g ± 0.08 vs. 1.67 g ± 0.03) after DEN injection, whereas the
differences between alb-agouti 83 mice and controls were
not significant (p > 0.05). Unlike the livers from obese
lethal yellow and viable yellow mice, where visual examina-
tion reveals an excessive amount of fat deposition in the
liver (E. J. M., personal observations), the livers from lean
alb-agouti 83 and 86 mice did not appear to be different
from control livers in terms of fat content (data not
shown). This suggests that the heavier livers in DEN
injected alb-agouti transgenic mice resulted from agouti
protein-induced hyperplasia and/or greater tumor bur-
dens, not of an increased triglyceride content of the liver.

Discussion
The current investigations were undertaken to determine
if agouti expression in the liver of transgenic mice could
recapitulate any aspects of the dominant pleiotropic syn-
drome (i.e., obesity, hyperglycemia, hyperinsulinemia,
and/or liver cancer) observed in lethal yellow and viable yel-
low mice. To address this question, lines of transgenic
mice were generated in which the wild-type agouti cDNA
was ectopically expressed only in the liver under the regu-
latory control of the albumin promoter. Different lines of
transgenic mice were shown to express the agouti gene in
the liver at levels that were similar to or greater than the
levels detected in the livers of mice that express agouti
ubiquitously and exhibit the pleiotropic syndrome (lethal
yellow, viable yellow, and BAPa20 mice).

Although the liver is a key lipogenic tissue in the mouse
and a major site of glucose disposal (conversion to glyco-
gen), the finding that body weight, blood glucose and
plasma insulin did not differ significantly between the
alb-agouti transgenic and control mice demonstrates that
agouti expression in the liver alone is insufficient to induce
obesity, hyperglycemia or hyperinsulinemia. However,
expression of agouti in the livers of the transgenic mice did
cause an increase in the susceptibility to DEN-induced

Growth rates of alb-agouti transgenic mice and wild-type lit-termate controlsFigure 4
Growth rates of alb-agouti transgenic mice and wild-
type littermate controls. Body weights of alb-agouti 86 
(A) and alb-agouti 83 (B) mice were recorded once every 
four weeks from 4–36 weeks of age and compared to litter-
mate control mice. Shown are the means ± one standard 
error of the mean (for many of the means, the standard 
errors are too small to see the error bars). Sample sizes 
range from 6–22 for each mean. The weights of transgenic 
and control mice did not differ significantly (p > 0.05) at any 
time.
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liver carcinogenesis. The total tumor burden in the livers
of the exposed mice was estimated by considering both
the numbers of tumors visible on the surface of the livers
and the total weights of the livers. Thus, whereas the alb-
agouti 86 transgenic mice had significantly more liver
tumors than control mice at 40, but not 36, weeks after
injection, the transgenic livers were significantly heavier
than the control livers at both time points (Fig. 5). Taken
together, these results indicate that the agouti protein
stimulated a significant increase in liver hyperplasia and/
or tumor burden of the alb-agouti 86 transgenic mice at
the earlier time point (36 weeks) as well.

The present observation that agouti has a primary role in
promoting liver carcinogenesis, independent of obesity
and diabetes, is in agreement with previous findings on
viable yellow mice [44]. Viable yellow mice express the
agouti gene in a ubiquitous manner, but exhibit a wide
range in the level of expression of the gene and the associ-
ated phenotypes. At one end of the spectrum are
individuals with very high levels of ubiquitous agouti
expression; these mice have completely yellow coats, and
they are obese and hyperinsulinemic. At the other end of
the spectrum are mice with very low levels of ubiquitous
agouti expression; these mice have coat colors that appear
almost normal (called pseudoagouti), and they have nor-
mal body weights and levels of circulating insulin. Mice in
the middle of the spectrum exhibit a moderate level of
ubiquitous agouti expression, have coats that are a patch-
work of yellow and agouti hairs (i.e., mottled), and are
likely to become obese and hyperinsulinemic. Wolff and
colleagues [44] fed viable yellow mice and control mice a
diet supplemented with lindane (γ-hexachlorocyclohex-
ane) for 24 months, then examined the mice for the devel-
opment of tumors. They found that both the yellow mice
(obese and hyperinsulinemic) and the pseudoagouti mice
(lean and normoinsulinemic) had a higher prevalence of
chemically initiated liver and lung tumors (i.e., a greater
number of mice with tumors) than did control mice.
Tumor prevalence, however, was highest in the yellow
mice. Thus, a key discovery of these experiments, and of
particular relevance to this study, was that a very low level
of ubiquitous agouti expression did not cause obesity or

hyperinsulinemia, but was sufficient to promote carcino-
genesis in some tissues. The higher prevalence of liver
tumors in pseudoagouti mice than in control mice
suggested that the tumor promoting effect of agouti was a
direct consequence of agouti expression in the liver. How-
ever, because pseudoagouti mice express the agouti gene in
a ubiquitous manner, albeit at a low level, it remained a
possibility that this low-level ubiquitous expression of
agouti may have elicited some other physiological
response that was in turn responsible for the tumor phe-
notype. The fact that a low level of constitutive agouti
expression in the skin of pseudoagouti mice is sufficient to
cause a subtle alteration in coat color [60] lends credence
to this possibility. The alb-agouti transgenic mice pre-
sented here have agouti expressed only in the liver and,
although they are lean and normoinsulinemic, are
predisposed to an increased number of liver tumors. In
fact, the number of tumors per liver in the transgenic mice
was correlated with their level of agouti expression in the
liver. These results demonstrate that agouti expression in
the liver is sufficient to promote liver carcinogenesis,
independent of any other apparent agouti-mediated phys-
iological effects.

The molecular mechanism underpinning the role of the
agouti protein in promoting liver carcinogenesis is cur-
rently unknown. Whether agouti promotes carcinogenesis
by antagonizing a melanocortin receptor in the liver, or by
acting in a melanocortin-independent manner remains to
be determined. In this regard, it is interesting to note that
the only melanocortin receptor currently known to be
expressed in a widespread manner, including in the liver,
is Mc5r [61-63], but agouti protein appears to have little
to no effect on antagonizing the binding of αMSH to Mc5r
[5,64]. Whether agouti antagonizes the interaction of a
different ligand with the Mc5r is not known. The data pre-
sented here set the stage for future studies aimed at eluci-
dating the mechanism of action of the agouti gene in the
promotion of hepatocellular hyperplasia and neoplasia.

Conclusions
In summary, we have demonstrated that liver-specific
expression of the agouti gene in transgenic mice was insuf-

Table 1: Circulating glucose and insulin concentrations in transgenic and control micea

Blood glucose (mg/dl) Plasma insulin (µU/ml)
Line controls transgenics controls transgenics

alb-agouti 83 116 ± 8 (5) 115 ± 7 (5) 32 ± 3 (10) 28 ± 3 (6)
alb-agouti 86 115 ± 12 (5) 112 ± 7 (5) 26 ± 3 (6) 32 ± 3 (11)
BAPa20 122 ± 12 (5) 241 ± 37 (8)* 31 ± 6 (5) 197 ± 33 (9)*

aData are presented as the mean ± one standard error of the mean. Numbers in parentheses indicate sample sizes. Asterisks denote significant 
differences between transgenic and control mice (p < 0.05).
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ficient to alter body weight, blood glucose level, or plasma
insulin level, but it did promote DEN-initiated liver
carcinogenesis. Because alb-agouti transgenic mice devel-
oped more liver tumors than did the control mice, the
expression of the agouti gene in the liver alone, in the
absence of obesity and diabetes, is sufficient to promote
the development of liver tumors in mice. These data sug-
gest that the increased susceptibility of lethal yellow and

viable yellow mice to carcinogenesis in a variety of tissues is
mediated, at least in part, by the tumor promoting effect
of agouti expression in the target tissue, rather than being
just a secondary consequence of the obesity-related
factors.

Methods
Agouti expression construct
An agouti expression construct (plasmid AlbPE-a) contain-
ing the murine albumin promoter and enhancer, the wild-
type murine agouti cDNA, and the simian virus 40 (SV40)
polyadenylation sequences was generated as follows. A
ClaI fragment containing the agouti cDNA and SV40 poly-
adenylation sequences was isolated from plasmid clone
BAPa [57]. The ClaI ends were filled in with Klenow and
SalI linkers were ligated to the fragment [65]. The SalI frag-
ment was then cloned into the SalI site of plasmid NB0.3
alb [56], downstream of the albumin promoter and
enhancer to generate the plasmid AlbPE-a. This expression
construct was verified by DNA sequencing. The AlbPE-a
plasmid was digested with SacI and KpnI to excise the 3.5-
kb expression cassette from vector sequences for microin-
jection into fertilized mouse eggs.

Transgenic mice
The pronuclei of fertilized eggs from a random-bred
closed-colony stock of FVB/N mice were microinjected
with the AlbPE-a expression cassette, along with a tyrosi-
nase minigene expression cassette [66] (at a total DNA
concentration of 3 ng/µl in 10 mM Tris-HCl, 0.1 mM
EDTA, pH 7.5), to generate lines of transgenic mice as
described [67].

The tyrosinase expression cassette [66] produces pigmen-
tation in the hair of albino FVB/N mice. Cointegration of
the AlbPE-a and tyrosinase expression cassettes permits
visual identification of the alb-agouti transgenic mice by
their coat color. Genomic DNA was obtained by tail
biopsy and all mice were genotyped for inheritance of the
AlbPE-a transgene by probing Southern blots of BamHI-
digested DNA with an agouti cDNA probe, as described
[2]. Transgenic founder mice were mated to wild-type
FVB/N mice to establish independent transgenic lines,
and mice were maintained hemizygous for the transgene
by mating transgene carriers to FVB/N mice and genotyp-
ing the offspring by Southern blot analysis. For those lines
in which the AlbPE-a transgene was shown to cosegregate
with coat color, the mice were thereafter genotyped by
coat color with confirmation by Southern blotting a few
mice at each generation. All experiments involving mice
in this study were conducted under approved Institutional
Animal Care and Use Committee protocols.

Mean number of tumors per liver and total liver weights in control and alb-agouti transgenic mice following chemical ini-tiation with DENFigure 5
Mean number of tumors per liver and total liver 
weights in control and alb-agouti transgenic mice fol-
lowing chemical initiation with DEN. Control, alb-
agouti 83, and alb-agouti 86 male mice were each given a sin-
gle intraperitoneal injection of DEN (10 mg/kg) at 15 days of 
age. Mice were euthanized at either 36 or 40 weeks after 
DEN injection and the mean number of tumors per liver (A) 
and mean total liver weights (B) were determined for each 
group. Shown are the means ± one standard error of the 
mean. Sample sizes range from 18–20 for each group. Aster-
isks indicate significant difference from the controls (p < 
0.05).
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Northern blot analysis
Isolation of total RNA and poly (A)+ RNA, preparation of
Northern blots, radiolabeling of hybridization probes,
and hybridization conditions were as described [68]. In
order to quantify levels of agouti expression in the livers
of various strains of mice (Fig. 2), a Northern blot con-
taining ~2.5 µg of poly (A)+ liver RNA per lane was first
hybridized with an agouti cDNA probe. The hybridization
signals were detected with a FUJIX BAS 1000 phosphorim-
ager and quantified with MacBAS software (Fuji Medical
Systems). The blot was then stripped and rehybridized
with a glyceraldehyde-3-phosphate dehydrogenase
(Gapd) probe and the Gapd transcript levels were quanti-
fied as described above to control for the amount of RNA
loaded for each sample. For each mRNA sample, the level
of agouti expression was reported as the ratio of agouti over
Gapd mRNA signals. The level of agouti mRNA expression
in lethal yellow mice was assigned the value of 1.0, and the
expression levels in viable yellow mice and transgenic mice
were normalized relative to this value.

Assay for functional agouti protein
Non-transgenic control mice and transgenic mice were
euthanized by cervical dislocation and the livers were
quickly excised, washed in ice-cold phosphate buffered
saline, pH 7.4 (PBS), homogenized, and stored at -80°C.
Three livers from each genotype were pooled prior to
homogenization. Liver homogenates were enriched for
agouti protein as follows. Liver homogenates (2 ml of 20
mg/ml protein) from non-transgenic control mice (nega-
tive control), from non-transgenic control mice spiked
with 33 nM recombinant agouti protein (positive
control), and from alb-agouti 86 mice, each containing 10
mM phosphoramidon, were incubated on a Nutator (4°C
for 1 hr) with 2 ml of S Sepharose cation exchange resin
equilibrated in PBS. The resin was washed with 0.5 M
NaCl in 20 mM HEPES, pH 7.5 and eluted with 1.0 M
NaCl, in 20 mM HEPES, pH 7.5. The eluants were desalted
on a PD-10 column (Pharmacia) equilibrated in PBS.

The presence of functional agouti protein in the livers of
the transgenic mice was assayed by measuring the ability
of enriched liver homogenates to inhibit the binding of
αMSH to the Mc1r. Murine melanoma B16F10 cells were
cultured and used in the [125I]-NDP-αMSH binding assay
as previously described [58,59]. B16F10 cells were incu-
bated for 2 hr at room temperature with 0.1 nM [125I]-
NDP-αMSH plus increasing amounts of each of the
enriched samples described above. Cells were washed
twice with ice-cold PBS to remove free ligand before the
addition of 125 µl of scintillation cocktail. Bound radio-
active ligand was measured using a Wallac 1650
Microbeta counter.

Body weight, plasma insulin, and blood glucose analyses
Transgenic and control mice were fed a diet containing
11% fat by weight (Rodent laboratory diet 5015, PMI
Feeds), weaned at three weeks of age, and weighed every
four weeks from 4–36 weeks of age. Blood samples were
collected by retro-orbital sinus puncture from anesthe-
tized, nonfasted, 40–50 week old male mice between 9–
11 a.m. Plasma insulin levels were measured in duplicate
by radioimmunoassay according to the manufacturer's
recommendations (ICN Biomedicals) with porcine insu-
lin as a standard. Glucose concentrations were measured
with the One-Touch glucose determination system (John-
son & Johnson).

Mice used in the carcinogenesis studies were fed a diet
containing 4.5% fat by weight (Rodent laboratory diet
5001, PMI Feeds), weaned at three weeks of age, and
weighed every two weeks from 4–42 weeks of age.

Liver tumor analysis
Diethylnitrosamine (DEN) was purchased from Sigma
Chemical Co. A single intraperitoneal injection of DEN
(10 mg/kg) was administered to fifteen-day-old trans-
genic and control male mice. Groups of animals were
weighed, euthanized by cervical dislocation at 36 or 40
weeks after injection, and necropsied. The livers were
removed, weighed, and examined for visible lesions,
which were counted and measured (diameter).

Statistical analyses
All statistical analyses were performed with the JMP com-
puter software package (SAS Institute Inc.).
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gene; DEN, diethylnitrosamine; Gapd, glyceraldehyde-3-
phosphate dehydrogenase; Mc1r, melanocortin 1 recep-
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