
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative

Exchange

The Harlan D. Mills Collection Science Alliance

11-1988

Bringing Software Under Statistical Quality
Control
Harlan D. Mills

J. H. Poore

Follow this and additional works at: http://trace.tennessee.edu/utk_harlan

Part of the Software Engineering Commons

This Article is brought to you for free and open access by the Science Alliance at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in The Harlan D. Mills Collection by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more
information, please contact trace@utk.edu.

Recommended Citation
Mills, Harlan D. and Poore, J. H., "Bringing Software Under Statistical Quality Control" (1988). The Harlan D. Mills Collection.
http://trace.tennessee.edu/utk_harlan/35

http://trace.tennessee.edu?utm_source=trace.tennessee.edu%2Futk_harlan%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
http://trace.tennessee.edu?utm_source=trace.tennessee.edu%2Futk_harlan%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
http://trace.tennessee.edu/utk_harlan?utm_source=trace.tennessee.edu%2Futk_harlan%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
http://trace.tennessee.edu/utk-scialli?utm_source=trace.tennessee.edu%2Futk_harlan%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
http://trace.tennessee.edu/utk_harlan?utm_source=trace.tennessee.edu%2Futk_harlan%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=trace.tennessee.edu%2Futk_harlan%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu


Bringing Software 
Under Statistical Quality Control 

The clean room 
method of 
development 
offers several 
benefits. 

by Harlan D. Mills 
and J.H. Poore 

A
S WITH EVERY OTHER AREA OF BUSINESS, 

management must question old methods 
and past performance in software. The time 
has come to hold software to exacting 
standards. As long as management is 

willing to have sympathy for shortcomings and 
failures, the software industry has little incentive 
to reform. Software development and 
procurement must be brought under the same 
scrutiny as other aspects of the business. Software 
deserves serious management attention. 

Statistical quality control is one of the tools 
being used by aggressive companies seeking to 
improve quality and cut costs . Bringing software 
under SQC starts with management expectations 
about the software's performance and how the 
performance will be measured. 

There are many dimensions of software qual
ity in which local concepts and standards are 
important. 1 These riches notwithstanding, if the 
buyer can specify performance, function, and 
features, and if a scientifically auditable measure 
can be agreed upon, then the essentials exist for 
bringing software under SQC. All that is needed 
is a process for software development that can 
be modified and that responds to variable 
standards of performance. The clean room proc
ess of software development has several parts. 
This method offers the ability to: 
• cast the design process in increments. 
• test each increment statistically. 
• generate data that can prove that the process 

is producing the expected product. 

Statistical testing of software 
Statistical testing, as contrasted with anecdotal 

testing, supports scientific statements concerning 
software. Exhaustive testing constitutes proof of 
correctness or population testing rather than 
testing samples. But because exhaustive testing 
is usually impossible, extensive and ingenious 
software testing methods have evolved that 
emphasize debugging. Such testing is called 
anecdotal testing because, at most, one can say 
that such-and-such cases work, or that all paths 
were tested at least once, or that certain boundary 
cases worked. The anecdote can be quite 
extensive and impressive, but when the number 
of possible inputs is astronomical, even the most 

52 QualitY ~/November 1988 

extensive anecdotes are not compelling. 
Anecdotal testing has something of the flavor of 
UFO sightings. Statistical testing shifts the 
emphasis away from testimony and toward 
scientific measurement. 

Bringing software under SQC depends on both 
a controllable, auditable process of software 
development and the ability to statistically analyze 
performance. Two forms of statistical testing are 
used, one of which is generally applicable to any 
software however developed, and one that is 
modeled specifically for clean room. Both forms 
have the same basis and can be driven by the same 
testing process, but differ in the statistical model 
to which the testing outcomes are passed for 
calculation. The basics of statistical testing 
include: 
• a characterization of the intended use of the 

software, and the ability to sample test cases 
randomly from this usage environment. 

• the ability to know whether each input test case 
produced an output that was right or wrong. 

• a statistical model of interest. 
In addition, there are other necessities that 

include the ability to automate the process of 
generating test cases, the availability of a test 
harness to conduct the tests, and the availability 
of an automated ''oracle'' to judge each test case 
right or wrong. Statistical testing of software is 
not well-developed, either in theory or in practice. 
However, recent research2 is showing it to be a 
powerful technique and an emerging rival to 
conventional testing. 

Hypotheses that are simple to state, simple to 
test, and quite revealing characterize statistical 
testing in its most basic form. For example, one 
might wish to test the accuracy of a subroutine 
that calculates the sine function for a new personal 
computer mathematical software package, and to 
issue a warranty for the subroutine. In this 
example the input space is understood, random 
samples can be easily generated, and a trusted 
algorithm running on a trusted scientific computer 
can be used as the oracle. 

Both the fundamentals and the practical 
necessities are easy in this example. The hypoth
esis might be: ''Seventy-five percent of the output 
of the sine function will be correct to the eighth 
decimal place." One sets the confidence level, 



determines the sample size, generates the sample, runs the test 
recording the number of outputs right and the number wrong, 
performs calculations of the statistical model, and, let's say, 
is willing to make the following warranty: ''ABC, Inc. warrants 
with 95 % confidence that the sine subroutine will produce output 
that is correct to eight decimal places for at least 75% of its 
inputs." (Don't judge this a weak warranty without first 
statistically testing your favorite sine routine.) 

It can be hard to test complex software systems because it 
is hard to ensure the assumptions to the statistical models. 
Furthermore, if one seeks high confidence that the number of 
failures is very low, the sample size required will become large, 
which increases the cost of making and testing cases. Indeed, 
clean room strives for zero defects, which means that errors 
become rare events in the statistical sense. 3 Still, the effort and 
cost are worthwhile because the result is an auditable scientific 
statement about how the software will perform. While such tests 
are of great value, the goal goes beyond testing the efficacy of 
existing software. 

If software is to be brought under SQC, the process by which 
it is made must itself be revisable in light of statistical evidence. 
In the clean room method, there are various points at which 
it can be determined whether the process is in control within 
the development of an increment (i.e., to ensure that clean room 
standards are being met at intermediate points). However, re
search and experience to date have dealt only with the final 
certification of the increment. Results of random tests become 
data to the certification model of reliability. 

The clean room development method 
The clean room software development method has three main 

attributes: a set of attitudes, a series of carefully prescribed 
processes, and a rigorous mathematical basis. 

Cultivating attitudes is management's job. Meaningful 
management control must prevail throughout the process steps. 
Clean room developments are done by teams and the manager 
must be a full participant. Team size varies from five to eight 
members, and some members of the team might specialize in 
certain skills used in the steps of the process. However, the man
ager must point out that all successes are team successes and 
all failures are team failures. Clean room teams strive for zero 
defects, so every member of the team must have first-hand 
successes and know that such a goal is not only possible, but 
that its achievement is expected. 

Clean room teams maintain total intellectual control over the 
development. That is, each member of the team must confidently 
understand each step the team takes and attest to its correctness. 
In this day of sophisticated software engineering tools, the main 
clean room tool is the wastebasket. The team leader must see 
that this tool is used without hesitation whenever the team lacks 
full confidence and intellectual control over the work. 

Finally, the manager must protect the team attitudes, the se
ries of processes, and the clean room standard within the 
organization. In clean room, code is not written until very late. 
There is no debugging, no integration, no overtime, no panic, 
and the workers don't behave like typical programmers when 
the end is near. These differences can be disturbing to the 
surrounding organization. 

Clean room Qrocesses are O!lite SQecific and lend themselves 
to process control and statistical measures. The Box Structure 
analysis and design process4 allows the contract between 
customer and developer to be made precise. Further analysis 
and design identify the increments that are crucial to the final 
statistical certification. At this juncture the process forks and 
usage analysis, followed by test case preparation, can proceed 

concurrently with efforts leading to code production. Still further 
Box Structure work sorts out common services, settles the 
correct organization of the system, and breaks out independently 
verifiable modules. Ultimately, pseudo code is derived from 
the specification. 

Functional verification5 of the pseudo code is a critical step 
in the process. The extent to which functional verification 
succeeds or fails indicates whether the process is in control. 
Functionally verified pseudo code is then transliterated into the 
target language for the application. Code walk-throughs at this 
point again produce evidence of whether the process is in 
control. 

The test data development and the code now come together 
at the computer for certification. With no debugging, clean room 
teams expect their codes to pass the statistical tests and to be 
delivered in full compliance with the contract. 

Clean room software engineering uses mathematical 
verification to replace program debugging before release to 
statistical testing. This mathematical verification is done by 
people, based on rigorous software engineering practices. 5 We 
have found that: 

The main clean room tool is the 
wastebasket. 

• human verification is surprisingly synergistic with statistical 
testing. 

• mathematical fallibility is very different from debugging 
fallibility. 

• errors of mathematical fallibility are much easier to find in 
statistical testing than are errors of debugging fallibility. 
The method of human mathematical verification used in clean 

room is called functional verification. This method is quite 
different from the method of axiomatic verification usually 
taught in theoretical computer science. It reduces software 
verification to ordinary mathematical reasoning about sets and 
functions as directly as possible. The motive for doing so is 
the problem of scaling up. Producing a product in a high-volume 
factory is very different from making a single item by hand in 
laboratory. The key difference is that of scale. A similar 
phenomenon exists with software. Systems of thousands and 
millions of lines of code are intellectually different from small 
programs of 40 or 60 lines of code. Success with large systems 
depends on behaviors and techniques that are provably correct 
in small programs and that scale up to very large systems . 
Techniques that do not scale up reliably are very harmful in 
large systems. 

Introducing verification in terms of sets and functions 
establishes a basis for reasoning that scales up. Large programs 
have many variables , but only one function. Functional 
verification works well for both million-line systems and 60-line 
programs. 6 

The feasibility of combining human verification with statistical 
testing was the motive for defining a new software engineering 
process under SQC. 7 For that purpose, it was necessary to define 
a new software development life cycle of several incremental 
releases according to a structured specification of function and 
statistical usage. A structured specification is a formal 
specification, a relation, with a decomposition into a hierarchy 
of subsets, that provides a specification for each release that 

Quality Progress J November 1988 



Bringing Software Under 
Statistical Quality Control cont. 

includes those of all previous releases. That is, a structured 
specification defines not only the final software, but also a re
lease plan for the implementation and statistical testing of each 
increment of the specification. As each release becomes 
available, statistical testing provides statistical estimates of its 
reliability. 

Software process analysis and feedback can be used to meet 
prescribed reliability goals, e.g. , by increased verification or 
more intermediate specification formality for later releases. As 
errors are found and fixed during certification, the growth in 
the reliability of the accumulating system can also be estimated. 
Thus, a certified reliability estimate of the system-tested final 
release can be provided. 

What makes this work? The mathematical character of the 
entire process. It begins with the attitudes that are 
mathematically sound; namely, that the task is undertaken with 
the _ai~ of understanding it thoroughly, doing it correctly, and 
venfymg the result. Box Structure analysis and design is in the 
best mathematical tradition of taking small creative steps and 
then verifying them. It involves repeated analysis and synthesis 
until the basics are clear and the correct definitions, lemmas, 
and theorems are articulated. Functional verification is 
constructive set theoretical proof. Finally, statistical analysis 
allows one to make scientific, rather than anecdotal, statements 
about the software and the process. 

A key process in the clean room methodology is the 
~ormation system analysis and design. At the highest level, 
this process rationalizes the specification of any ambiguities or 
deficiencies. At the lowest level, it produces pseudo code 
meeting the strictest standards for structured programming.5 At 
intermediate levels, the intricate technical details that make the 
difference between a robust system and a trouble-ridden system 
must be settled. 

Certifying statistical quality In software 
Software under clean room development requires a 

mathematical model that mirrors two key aspects of the proc
ess:8 

1. With each clean room increment, results of statistical testing 
might indicate software changes to correct errors. 

2. With the release of each clean room increment, new 
untested software will be added to software already under test. 

Each set of changes to correct failures within a release creates 
a new software product much like its predecessor, but with a 
mathematically different reliability measure. Each of these 
increm~n!s will be subjec_t to a measure of statistical testing 
before 1t 1s superseded by 1ts successor. Statistical estimates of 
reliability will be of a certain confidence. Therefore, to 
aggregate the testing experience for an increment release, a mod
el of reliability change with parameters M,R, was defined in 
reference 7 for the mean time to failure (MTTF) after a number 
c of software changes, of the form 

MTTF = MRc 
where 

M is the initial MTTF of the release. 
R is the ratio of change in MTTF for one software change. 
Although various technical rationales are given for this 

'certification" model in reference 7, it should be considered 
a contractual basis for the eventual certification of the finally 
released software by the developer to the customer. 

54 Quality Progress j November 1988 

The data from statistical testing can be organized as a sequence 
of pairs: 

((tJ,cJ), (t2,Cz), ... , (tn,cn)) 
in which t~> t2 , ••• , tn are the consecutive fail-free intervals 
(i.e., failures were detected at timet~> t1 + t2 , ••• , and interval 
tn might or might not have terminated with a failure), and ci 
is the cumulative number of changes made to the software by 
the end of the interval 1j_. If the model were absolutely correct 
for parameters M,R, and there were no statistical variations, 
these intervals and changes would satisfy the equations 

t1 = MRc1, t2 = MRCz, . .. , 
and M and R could be solved for these equations with the test 
data. 

Of course, there is no way to know that the model is absolutely 
correct, and there will be statistical variation. Thus, statistical 
estimators were defined for M,R in terms of the test data. The 
choice of these estimators is based on statistical analysis, but 
should also be a contractual basis for certification. 

The results of these two contractual bases- a reliability change 
model and statistical estimators for its parameters- give buyer 
and seller an objective way to certify the reliability of the de
livered software. The certification is a scientific statistical 
inference obtained by a prescribed computation on test data 
warranted by the developer to be factual and auditable. Such 
a certification is little different from the certification of the net 
worth of a business, defined by a prescribed computation of 
fmancial data warranted to be factual and auditable. Of course, 
not all software aspects are covered by this certification (e.g., 
maintainability, transportability, etc.), any more than all aspects 
of a business (e.g., goodwill, growth potential, etc.) are covered 
by its financial audit. 

However, this contractual basis for certifying the reliability 
of software provides a foundation for SQC. This is little different 
~rom SQC for producing items to any prescribed measurements, 
m that both buyer and seller must agree to a common set of 
measurements, and to statistical estimators based on test data. 

The estimators given in reference 7 for software reliability 
are, in principle, no more than a sophisticated way of averaging 
the interfail times, taking into account the change activity called 
for during statistical testing. As test data materialize, the 
reliability can be estimated, even change by change. With 
successful corrections, the reliability estimates will improve with 
further testing, as objective quantitative evidence of the 
achievement (or not) of prescribed reliability goals. 

This evidence is itself a basis for management control of the 
software development process to meet reliability goals. For 
example, process analysis might reveal unexpected sources of 
errors, such as poor understanding of the underlying hardware, 
too much fallibility in verification, etc., with appropriate 
corrections in the process itself for later increments. That is, 
intermediate rehearsals of the final certification provide a 
feedback basis for management to meet final goals. 

The treatment of separate increment releases should also be 
part of the contractual basis between developer and user. Per
haps the simplest treatment is to treat separate increments 
independently. However, more statistical confidence in the fmal 
certification will result by aggregating testing experience across 
increments. The reliability change model has the property that 
any software change can be used as a new point of departure, 
since for (c+d) changes, 

MRc+d = (MRc)Rd 
thus, MRc serves as a new "initial" MTTF. A simple aggrega
tion could be used to complement separately treated increments 
with management judgment. 



There are other reliability models besides the certification 
model. However, a recent comparative study9 shows the 
certification model to have distinct advantages when used with 
high-quality software. Among the advantages are that the model 
uses least squares estimators rather than the more complex 
maximum likelihood estimators. This in turn avoids differential 
equations that lack analytical solutions and avoids numerical 
methods that fail to converge at points of interest. In short, the 
least squares estimators are easily understood and computed. 

Also, the software development process more nearly satisfies 
the assumptions of the model and testing readily provides the 
data needed to drive the model. Finally, the certification mod
el is better behaved in predictive qualities than competing 
models. Again, the model assumes high-quality software, which 
means that interfail times will grow geometrically, that errors 
are corrected with great assurance that more good than harm 
will be done, and that statistical testing will expose early those 
errors that will be most common in usage. 

Clean room software experience 
The clean room methodology is an evolutionary step in the 

development of software engineering. It is evolutionary in 
eliminating debugging because over the past 20 years program 
design has been emphasized in languages that must be verified 
rather than executed. So the relative effort in debugging, 
compared to verifying, among advanced developers is now quite 
small, even in nonclean room development. It is evolutionary 
in statistical testing because with higher-quality programs at the 
outset, user representative testing is correspondingly a greater 
fraction of the total testing effort. And, as already noted, a strong 
synergism exists between human verification and statistical 
testing. People are fallible with human verification, but the 
errors they leave behind for system testing are much easier to 
find and fix than those left behind for debugging. 

Experience to date 
Clean room experience includes three commercial projects, 

an IBM language product of 80,000 lines of code (80 KLOC), 
an Air Force contract helicopter flight program (35 KLOC), 
and a NASA contract space transport planning system (45 
KLOC). The major finding in these projects is that human 
verification can replace debugging in software development. 
Human verification can produce software robust enough to go 
to system test without debugging. Typical increments are 5 to 
15 KLOC; with experience and confidence, such increments 
can be expected to greatly increase in size. All three projects 
showed productivity equal to or better than expected for ordinary 
software development. 

In a controlled experiment at the University of Maryland, 
students developed a project in message processing (1 to 2 
KLOC). The results indicate better productivity and quality with 
clean room than with interactive debugging and integration, even 
on first experience.1o 

A team at the University of Tennessee has achieved the clean 
room level of performance. Students continue to participate in 
clean room projects to learn the methodology and to be able 
to form and lead clean room teams . Thorough training of clean 
room teams is an arduous process, but the resulting productivity 
justifies the effort. 

Several leading corporations are sufficiently intrigued with 
the potential of clean room that they are establishing clean room 
'"'uu". ~ ll<O~><o l<Odlll~ w 111 ~umpere wnn orner groups ano other 
methodologies within these organizations. As this experience 
base broadens, research will continue to refine the process and 
the statistical measures. 

Human verification can replace 
debugging in software development. 

Although the collective experience with clean room projects 
is not yet broad enough to be itself statistically analyzed, the 
anecdotal evidence is compelling. Compilation without errors 
the first time the code is taken to the computer is common. Jobs 
can be done with one-third the number oflines of code required 
by other efforts. Where comparable data have been available, 
errors in code prior to first execution have been reduced by a 
factor of 25. Errors in released code have been reduced by 
nearly two orders of magnitude. Project turnaround has been 
halved by experienced teams. As a rule of thumb, clean room 
quality is achieved if the error rate in statistical testing is less 
than five errors per 1 ,000 lines of code the first time the code 
goes to the machine. 

Such performance gives management a powerful tool. Busi
ness decisions that depend upon significant software develop
ment are among the most distressing decisions faced by business 
leaders. To be able to schedule a project in useful increments, 
to contract for a measurable and auditable level of reliability, 
and to have each increment available on schedule and certified 
will surely make software-dependent decisions much sharper. 

References 
1. J.H. Poore, "Derivation of Local Software Quality Metrics 

(Software Quality Circles) ," Software Practice and Experience (to be 
published). 

2. J.W. Duran and S.C. Ntafos, "An Evaluation of Random 
Testing," IEEE Transactions on Software Engineering, January 1986, 
pp. 3-11. 

3. R.W. Madsen and J.E. Holstein, "Determining Sample Size When 
Searching for Rare Items," IEEE Transactions on Reliability, 
December 1982, pp. 451-454. 

4. H.D. Mills, R.C. Linger, and A. Hevner, Principles of 
Information Systems Analysis and Design (New York: Academic Press, 
1986). 

5. R.C. Linger, H.D. Mills, and B.I. Witt, Structured Programming: 
Theory and Practice (Reading, MA: Addison-Wesley, 1979). 

6. Some evidence that such reasoning is effective in very large 
systems designed top-down with functional verification is given in A.J. 
Jordano, "DSM Software Architecture and Development," IBM 
Technical Directions, Vol. 10, No. 3 (1984), pp. 17-28. 

7. A. Currit, M. Dyer, and H.D. Mills, "Certifying the Reliability 
of Software," IEEE Transactions on Software Engineering, SE-12, 
1, January 1986, pp. 3-11. 

8. H.D. Mills, M. Dyer, and R.C. Linger, "Cleanroom Software 
Engineering," IEEE Software, September 1987, pp. 19-25. 

9. C.K. Cobb, Selecting a Software Reliability Model Based on Fail
ure Data Characteristics, master's thesis, University of Tennessee, 
Knoxville, 1988. 

10. R.W. Selby, V.R. Basili, and F.T. Baker, "Cleanroom Software 
Development: An Empirical Evaluation," IEEE Transactions on 
Software Engineering, Vol. SE-13, No. 9, September 1987. 

Harlan D. Mills is the director of the Information Systems Institute, 
Vern Rearh FT. He hol<i~ a Phn in mathe.matirs_ frron_ Truv.'\.. .'\tati"
University. 
J.H. Poore heads the department of computer science at the University 
of Tennessee, Knoxville. A member of ASQC, Poore holds a PhD 
in computer science from Georgia Institute of Technology. 

Quality Progress/ November 1988 55 


	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	11-1988

	Bringing Software Under Statistical Quality Control
	Harlan D. Mills
	J. H. Poore
	Recommended Citation


	tmp.1319743220.pdf.bwD_Q

