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Design and Analysis of Ranavirus Studies: 
Surveillance and Assessing Risk

Matthew J. Gray, Jesse L. Brunner, Julia E. Earl, and Ellen Ariel

1  Introduction

There is mounting evidence that ranaviruses can impact populations of ectother-
mic vertebrate species, and may contribute to species declines (Teacher et al. 
2010; Earl and Gray 2014; Price et al. 2014). Studies can be designed to deter-
mine the distribution and prevalence of ranavirus, the risk of introducing the 
pathogen into an uninfected area, and its possible effects on populations. Properly 
designed studies rely on a  combination of field data, laboratory experiments, and 
quantitative analyses, which typically require teams of experts with adequate 
resources. The financial cost to assess the risk of ranaviruses can be substantial. 
For example, Project RANA (Risk assessment of new and emerging systemic iri-
doviral diseases for European fish and aquatic ecosystems) cost approximately 
1.4 M € (in 2012; Evira 2013). Similarly, the Maryland Department of Natural 
Resources (MDNR) is currently performing a surveillance study across seven US 
states for $178,000 (in 2014 USD; Smith et al. 2014). According to the Global 
Ranavirus Consortium (GRC) website, average cost of genomic DNA (gDNA) 
extraction and quantitative PCR to test for ranavirus is about $25 USD (in 2014) 
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per sample (http://www.ranavirus.org/). Considering that adequate sample sizes 
to detect ranavirus and obtain precise estimates of infection prevalence can be 
high (n > 60), laboratory expenses associated with ranavirus testing are substan-
tial. Costs for mobilizing field crews over large geographic regions are also con-
siderable. For example, over 95% of the MDNR’s budget for the above study was 
dedicated to personnel, field supplies, and travel. Thus, organizations that are 
interested in assessing the risk of ranaviruses in wild and captive populations 
should be prepared to invest adequate resources. Significant planning also is 
essential to ensure that sufficient sample sizes are collected, contamination of 
samples is minimized (Miller et al. 2015), and that the information collected leads 
to intended measurable deliverables. For organizations that have limited knowl-
edge about ranaviruses in their region, it may take several years to document the 
distribution of ranaviruses, identify infection hotspots, and implement disease 
intervention strategies that thwart the introduction of ranavirus or reduce its prev-
alence. This chapter provides the basics for designing studies to assess the risk of 
ranavirus. In addition, we encourage organizations to collaborate with experts that 
have been studying ranaviruses. The GRC can provide information on ranavirus 
experts in your region.

2  Ranavirus Surveillance

The emergence of infectious diseases has mobilized universities and organizations 
to determine the risk of pathogens in wild populations. To quantify risk, a funda-
mental understanding of the host–pathogen system at molecular (Jancovich et al. 
2015a) and organismal levels (Brunner et al. 2015) is essential. The assessment of 
risk often starts with determining whether a pathogen is emerging, which means the 
pathogen is increasing in geographic distribution, prevalence in a population, or 
host range (Wobeser 2006). In this chapter, we refer to an outbreak as an increase in 
ranavirus occurrence beyond background levels, which are often unknown. Because 
estimates of infection prevalence and incidence are used to make decisions about 
risk, pathogen surveillance programs are commonly employed. If designed prop-
erly, surveillance programs can be effective at detecting pathogens, obtaining pre-
cise estimates of prevalence and incidence, and providing the necessary data to 
determine if a pathogen is a threat to a population or species.

2.1  Interpreting Infection Data

Increasingly, ranavirus infections are detected using PCR-based methods, but other 
methods are also important for directly detecting the virus (i.e., isolation in cell 
culture, electron microscopy, antigen capture ELISA) or evidence of infection 
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(e.g., histology, serologic methods; Miller et al. 2015). Estimates of viral load via 
quantitative PCR or cell culture-based methods (i.e., plaque assays or 50 % tissue 
culture infective dose [TCID50]), along with other diagnostic tools (e.g., histology), 
can provide information on the intensity or severity of infection and disease 
(Miller et al. 2015). It is important to understand what each of these methods 
detects (e.g., PCR detects the presence of ranavirus DNA while isolation of a virus 
with cell culture demonstrates the presence of infectious virions, Miller et al. 
2015), as well as to recognize the limitations of each. The ability to detect an infec-
tion generally increases with time since pathogen exposure, severity of the infec-
tion, and the sensitivity of the method (Miller et al. 2015). If the assay’s sensitivity 
and specificity are known, these values should be used to adjust estimates of preva-
lence and incidence; if they are not known, one should interpret infection data 
conservatively.

The most common variables measured during surveillance studies are infection 
prevalence and incidence. Infection prevalence is the number of individuals infected 
divided by the sample size, and it estimates the proportion of the population that is 
infected at a particular time. A related variable is seroprevalence, which estimates 
the proportion of the population that has serologic evidence of prior exposure to the 
pathogen. Incidence, on the other hand, is the rate at which individuals become 
infected over a specified time period (Wobeser 2006). While it is often expressed as 
the number of new cases per unit time, it is generally more useful to present as per 
capita incidence (e.g., per 1,000 individuals at risk).

While prevalence is more commonly estimated than incidence during surveil-
lance studies, it is simply a “snap shot” of the infection burden at a given time so it 
is difficult to interpret in the absence of biological context. An understanding of the 
relative susceptibility of species to ranavirus can help interpret prevalence data. For 
example, if experimental exposures show that a species dies rapidly following rana-
virus exposure, then high prevalence would be most consistent with sampling dur-
ing the peak of an epidemic. Several studies have reported species-level susceptibility 
under controlled conditions (e.g., Hoverman et al. 2011; Brenes et al. 2014b; 
Brunner et al. 2015). Biological context also can be gleaned from the density of the 
population and the timing of the survey relative to the phenology of the organism. 
For example, observing low prevalence and a dense population of amphibian larvae 
early in spring would be more consistent with the virus recently being introduced 
rather than an outbreak already occurring.

Several surveillance studies suggest background prevalence levels for ranavirus 
in amphibian and chelonian populations is <5 % (e.g., Todd-Thompson 2010; 
Hoverman et al. 2012; Allender et al. 2006; Forzán and Wood 2013; Hamed et al. 
2013; Sutton et al. 2014). Given the apparent correlation between disease- related 
mortality and infection prevalence with FV3-like ranaviruses (Haislip et al. 2011; 
Hoverman et al. 2011; Brenes et al. 2014b), Gray and Miller (2013) suggested that 
prevalence >40 % in amphibian populations might signal that an outbreak is occur-
ring. Although these rules of thumb may be useful in interpreting prevalence levels, 
we urge caution in interpreting prevalence data outside of the broader biological 

Design and Analysis of Ranavirus Studies: Surveillance and Assessing Risk



212

context. It is also worth noting that ranavirus die-offs can occur quickly (<2 weeks; 
Todd-Thompson 2010; Waltzek et al. 2014), so frequent sampling is necessary to 
detect and understand the epizootiology of ranaviruses.

Lastly, it is important to recognize that infected individuals may be more or less 
likely to be detected or captured than uninfected individuals, which can bias preva-
lence estimates (Cooch et al. 2012). For instance, moribund fish and tadpoles are 
often found near the surface thus can be detected easily and inflate prevalence, 
whereas sick turtles may move less and have lower detection probabilities resulting 
in underestimates of prevalence. Variation in detection probabilities through time 
(e.g., developmental stages) and among locations also can lead to apparent differ-
ences in prevalence that do not reflect actual differences in the proportion infected. 
While we are unaware of any ranavirus surveillance studies that accounted for 
detection probabilities, we think that doing so will substantially improve our under-
standing of ranavirus biology.

Infection prevalence is useful when describing the distribution of ranaviruses 
among regions and host species, but it does not convey information about risk or 
rates of infection. Infection incidence is the rate at which individuals become 
infected with a pathogen (i.e., the number of new cases that occur in a specified 
time period; Wobeser 2006). In small captive populations, it may be possible to 
determine how many individual animals become infected over short intervals. 
For example, if an initial survey found that 2 of 50 animals were infected and a 
second survey at the end of the month found that ten individuals were infected, 
then the incidence was 16.7 % (=8 new cases/48 at risk) per month. Note that 
individuals infected at the beginning of a study are not at risk of developing the 
infection so they are not included when estimating incidence. If populations are 
not closed (i.e., immigration or emigration occurs), calculations of incidence 
rates need to be adjusted for the time at risk (i.e., see Dohoo et al. 2003 for 
details).

Estimating incidence in wild populations is difficult, because we generally can-
not track the fate or infection status of individuals. Two approaches are often used 
to estimate infection incidence in wild populations. First, sentinels can be used, 
which are uninfected individuals that are introduced into the environment (e.g., tad-
poles in cages placed in a pond) and regularly screened for infection. Sentinel spe-
cies should be highly susceptible to ranavirus, such as the wood frog (Lithobates 
sylvaticus) in North America (Hoverman et al. 2011). A second approach is capture- 
mark reencounter (CMR) studies where individuals are given unique marks and 
released. During subsequent encounter periods (e.g., trapping, netting), the 
researcher records the new and recaptured individuals, and determines their  infection 
status. Given that individuals are released, infection status must be determined 
using nonlethal methods (St-Amour and Lesbarrères 2007; Gray et al. 2012). 
Ultimately, CMR models estimate the probability of individuals changing infection 
status while accounting for imperfect detection of the pathogen and imperfect 
recapture probability of the host.
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2.2  Planning Surveillance

Cross-sectional studies that sample multiple populations during one time period are 
most appropriate for understanding the distribution of ranaviruses, while longitudi-
nal studies that sample the same populations through time are most useful in under-
standing the epidemiology of ranaviruses and their impacts on populations. For 
organizations starting surveillance programs, we recommend starting with a cross- 
sectional study that involves widespread sampling across multiple taxa with the 
goal of identifying locations with elevated levels of ranavirus infection. If funding 
is limited, species with known high susceptibility to ranavirus or species of conser-
vation concern can be targeted. Lethal samples (i.e., organ tissue) will likely result 
in greater detection of ranavirus compared to nonlethal samples (i.e., swabs, tail- 
clips; Gray et al. 2012). Once populations or sites with high ranavirus prevalence 
are identified, a more intensive longitudinal study can be performed that involves 
frequent sampling through the annual cycle to understand seasonal and annual 
trends. Sampling once every 2 weeks while hosts are present should be sufficient to 
detect most outbreaks (Todd-Thompson 2010).

Ranavirus outbreaks can occur because of natural or anthropogenic factors 
(Gray et al. 2009). Some known natural factors are host density, species composi-
tion, temperature, and host development (Gray et al. 2009; Brunner et al. 2015). 
Anthropogenic factors could be related to stressors (e.g., pesticides, Kerby et al. 
2011) or the introduction of novel isolates (i.e., pathogen pollution, Storfer et al. 
2007). Thus, to identify the causal factors for outbreaks, ideally host densities 
and stages of development, water and ambient temperature, and water quality 
should be measured during surveillance programs. If ranavirus is detected, it can 
be isolated from fresh or frozen tissue (Miller et al. 2015), and genomic compari-
sons can reveal whether it is a novel isolate that was potentially introduced 
(Jancovich et al. 2015b).

Understanding the impacts of ranavirus on populations is a fundamental conser-
vation question (Duffus et al. 2015). Sampling the same sites over several years is 
necessary to understand possible population impacts (e.g., Price et al. 2014). In 
addition to sampling individuals for ranavirus infection, mark- recapture methods 
(e.g., Jolly-Seber) can be used to estimate host population size (Williams et al. 
2002). Estimates of prevalence, incidence rate, and host abundance are essential to 
make informed decisions on ranavirus impacts and to identify causes of outbreaks 
so intervention strategies can be implemented.

3  Study Design

When designing a surveillance study, sites to be sampled should be selected ran-
domly unless certain sites need to be targeted because they are of key conservation 
interest. Random sampling could be stratified based on different geographic areas or 
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a hypothesis related to ranavirus emergence, such as human land-use (e.g., agricul-
tural vs. forested). Random site selection avoids unintentional biases and potential 
confounding factors. For instance, sites that are easily accessed will be easier to 
sample, but may also have greater rates of visitation by others (e.g., people fishing), 
which could increase rates of ranavirus introduction or levels of stressors. The num-
ber of sites sampled will depend on the study’s objectives and available resources. 
Clearly, as number (and spatial extent) of sites increases, your conclusions will be 
more general. However, there also is merit in performing intensive sampling at a 
few sites, especially those with known reoccurring die-offs.

When sampling, individuals should be randomly collected. Ideally, captured 
individuals should be placed into separate numbered containers, and the individu-
als that are processed should be selected using a random numbers table or statisti-
cal software. Individuals should not be cohoused because transmission of 
ranavirus can occur rapidly between them (Brunner et al. 2007; Robert et al. 
2011). Another approach is to process individuals as they are captured until a 
target sample size is met. Importantly, individuals that are processed should not 
be haphazardly selected from a group, because bias can be introduced (Gotelli and 
Ellison 2004). If morbid individuals are observed, they can be targeted for diag-
nostic purposes (Miller et al. 2015); however, targeting individuals with possible 
gross signs of ranaviral disease may overestimate prevalence or incidence rate. 
Alternatively, if the goal of surveillance is to declare a site as “ranavirus-free” 
(Sect. 7), targeting apparently morbid individuals can increase the probability of 
detecting the pathogen.

Lastly, surveillance studies in wild populations are important to learn about the 
distribution of ranavirus and effects on host populations. However, identifying fac-
tors responsible for outbreaks in wild populations can be challenging. Laboratory 
and mesocosm studies can be useful in identifying natural and anthropogenic fac-
tors that facilitate emergence. Information from controlled studies can be used to 
design surveillance studies that target certain hypotheses for ranavirus emergence. 
Additionally, controlled studies can inform field personnel of factors that should be 
measured (e.g., water quality) in conjunction with infection status and population 
abundance.

4  Required Sample Size

Determining the number of samples that need to be collected is generally a first step 
in designing a surveillance project. Required sample size will depend on whether 
your goal is to (1) detect the pathogen or (2) obtain a precise estimate of prevalence 
that can be used for statistical inferences. To estimate sample size necessary to 
detect a pathogen, you need (1) a previous estimate or assumed level of prevalence, 
(2) estimate of host population size, and (3) a specified level of confidence (gener-
ally 95 %) in detecting the pathogen (Amos 1985; Thoesen 1994). As prevalence of 
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the pathogen decreases and host population increases, the sample size required to 
detect a pathogen increases (Table 1). Thus, a small sample size (n ≤ 10) is required 
to detect an outbreak of ranavirus; however, a large sample size is required 
(n = 35–150) to detect ranavirus if prevalence is low (≤5 %). In general, we recom-
mend a minimum sample size of 30 per site for widespread surveillance projects 
that are attempting to detect ranavirus (Table 1). Larger sample sizes should be 
collected at sites of concern where precise estimates are needed to identify factors 
associated with emergence.

Determining the required sample size to obtain a precise estimate of prevalence 
requires: (1) a previous estimate of prevalence p̂( ) , (2) a specified level of error (d) 
that you are willing to tolerate in the estimate of prevalence, and (3) a specified level 
of confidence in the prevalence estimate (generally 95 %). Sample size can be esti-
mated as,

 
n p p

d
= -( ) é

ëê
ù
ûú

ˆ ˆ
.

1
1 96

2

,
 

(1)

where 1.96 is the critical value for the standard normal curve at 95 % confidence. If 
a previous estimate of p̂  is unavailable, ˆ .p = 0 5  can be used. Thus, if ˆ .p = 0 85  and 
d = 0.05, required n = 196. However, if you are willing to accept a larger error in 
estimating p̂  (e.g., 10 % = 0.10), required n = 49 when ˆ .p = 0 85 . Additionally, as p 
approaches 0.5, the required sample size for a precise estimate of p̂  increases. In 
the previous example where d = 0.10, required n = 96 for ˆ .p = 0 5 .

Detecting differences in prevalence between two sites with a statistical test can 
require a large sample size (Table 2). For example, required n = 219–408 per site 
to detect a 10 % difference in prevalence between two sites with 95 % confidence 
(α) and statistical power (β) = 80 % depending on the value of the two proportions. 
Several websites (http://epitools.ausvet.com.au/content.php?page=2Proportions) 
and software packages are available for planning required sample size considering 

Table 1 Required sample sizea to detect ranavirus in a host population with 95 % confidence given 
the population size and assumed infection prevalence

Estimated population size

Assumed infection prevalence of ranavirus

20 % 10 % 5 % 2 %

50  5 20 35  50
100  8 23 45  75
250 11 25 50 110
500 13 26 55 130
2,000 15 27 60 145
>100,000 15 30 60 150

aCalculated following methodology in Amos (1985) and Thoesen (1994)
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the minimum detectable difference between proportions, α and β. Required 
sample size decreases as the minimum detectable difference increases, and confi-
dence level and power of a statistical test decrease.

5  Data Analysis

5.1  Confidence Intervals

Even with large sample sizes, there is uncertainty associated with any estimate of 
prevalence or incidence. Confidence intervals are a common measure of conveying 
the degree of certainty in these estimates. They can also be used to statistically com-
pare estimates of prevalence, where nonoverlapping confidence intervals imply a 
statistical difference. To construct a confidence interval for incidence, the propor-
tion is divided by the time interval.

A common approach to estimating confidence intervals is based on the standard 
normal approximation. This process involves calculating the standard error of a 
proportion, multiplying by the critical value associated with 95 % confidence for the 
standard normal distribution (1.96), and adding and subtracting this product from 
the sample estimate for prevalence (Brown et al. 2001):

 
ˆ

ˆ ˆ
.p

p p

n
±

-( )
1 96

1

 
(2)

This approximation should only be used if sample size is large (n > 20) and 
0 10 0 90. .< <p

ÙÙ
; otherwise, confidence intervals can extend beyond 0 and 1, 

which is nonsensical (Brown et al. 2001).

Proportion 
1

Proportion 2
0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

0.05 474 88 43 27 19 14 11 8 7 6
0.1 474 219 72 38 25 17 13 10 8 7
0.2 88 219 313 91 45 28 19 13 10 8
0.3 43 72 313 376 103 49 29 19 13 11
0.4 27 38 91 376 408 107 49 28 17 14
0.5 19 25 45 103 408 408 103 45 25 19
0.6 14 17 28 49 107 408 376 91 38 27
0.7 11 13 19 29 49 103 376 313 72 43
0.8 8 10 13 19 28 45 91 313 219 88
0.9 7 8 10 13 17 25 38 72 219 474
0.95 6 7 8 11 14 19 27 43 88 474

Table 2 Required sample sizea for detecting differences between two proportions with 95 % 
confidence (α = 0.05) and 80 % statistical power (β = 0.80)

aSample size provided is per proportion and calculated using http://epitools.ausvet.com.au/content.
php?page=2Proportions
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There are several better methods for estimating confidence intervals for proportions 
(reviewed in Brown et al. 2001). We recommend the Wilson score interval (Wilson 
1927), because it performs well at lower sample sizes, when p̂  is near 0 or 1, and it 
is not overly conservative (as with some continuity correction methods). The equa-
tion is:
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with the same variables as (2). Hand calculation can be time consuming; however, 
many statistical packages estimate the Wilson score interval (e.g., the R package 
“binom”) and some websites are available (http://vassarstats.net/prop1.html). 
Appendix 1 provides example code in R for estimating confidence intervals.

5.2  Comparing Proportions

While it is useful to describe the degree of confidence in an estimate of prevalence 
or incidence, we are more often interested in comparing these estimates between 
groups or populations. Chi-square tests are often used to compare proportions 
among populations; the most common is the Pearson’s chi-squared test:

 
c 2
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where Oi is the observed number of infections for population i, and Ei is the expected 
number of infections for population i according to the null hypothesis. Generally, 
the null hypothesis is that infection prevalence is equal among populations. For 
example, consider the scenario where 10 of 35 animals tested positive for ranavirus 
in one population and 20 of 45 tested positive in another. The contingency table is:

Population A Population B Total

Infected 10 20 30

Not infected 25 25 50

Total 35 45 80

The expected infection prevalence, assuming no difference among populations, 
would be (10 + 20)/(35 + 45) = 0.375. Thus, the number of infections one would 
expect in each population would be 0.375 × 35 animals = 13.125 in the first popula-
tion and 0.375 × 45 animals = 16.875 in the second. The χ2-test statistic is the sum of 
the squared differences between observed and expected values divided by the 
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expected value for populations i = 1, 2, 3, …, n. This statistic is compared to a critical 
value from the chi-squared distribution with (row − 1) × (columns − 1) degrees of 
freedom for evidence that infection prevalence is different in at least one population. 
Here there are two rows for infected and uninfected, and two columns for the two 
populations, so the degrees of freedom = (2 − 1) × (2 − 1) = 1. If the test is significant 
and there are >2 populations, subsequent pairwise comparisons can be performed 
following the same methodology, with appropriate correction of experimentwise 
error rate (e.g., Bonferroni correction). Chi-square tests require that no more than 
20 % of expected counts are <5, which may not be achieved especially in popula-
tions with low infection prevalence. If one margin of the contingency table is fixed 
(e.g., if the number of samples from sites A and B in our example were set a priori 
at 35 and 45, respectively), then Barnard’s exact test is a powerful alternative to the 
chi-square test that avoids the problem with low expected counts (Martín Andrés 
et al. 2004), and can be performed using the “Barnard” package in R. Appendix 1 
provides example code in R for testing for differences in proportions.

Logistic regression is a robust and more flexible framework for comparing the 
probability of infection (or death) among individuals or populations given environ-
mental or host characteristics. The logistic model predicts the logit-transformed 
probability of a binary outcome (e.g., infection, mortality) as a linear function of 
one or more predictor variables:
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where β0, …, βm are the intercept and regression coefficients for predictor variables 
x1, …, xm. The logit transform is the log of the odds ratio, where the odds ratio is 
calculated by exponentiating both sides of (5).
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If x1 is a categorical predictor (e.g., male vs. female), then exp(β1) can be interpreted 
as the increased (or decreased) odds of infection for males relative to females. If x1 
is instead a continuous variable (e.g., animal length), then exp(β1) is the increased 
(or decreased) odds of infection with a one-unit increase in the predictor variable. It 
is important to be careful when interpreting odds-ratio coefficients relative to the 
units measured (e.g., mm vs. cm) as well as in the context of the range of values that 
were measured. For example, a large predicted increase in risk with each centimeter 
may seem impressive, but if all of the animals measured were within 0.1 cm of each 
other, the actual effect size is much less substantial.

Logistic regression can also be used to estimate the risk factors associated with 
ranavirus occurrence among populations (e.g., Gahl and Calhoun 2008; Greer and 
Collins 2008). For instance, you may be interested in finding the predicted probability 
of ranavirus infection or a die-off occurring in particular populations. It is possible to 
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use the coefficients of the logistic regression to predict this probability for population 
i (or analogously, individual i) as:
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Suppose we fit a logistic regression model predicting the occurrence of ranavirus in 
wetlands as a function of distance from the nearest road where the intercept was 
β0 = − 0.5 and the slope parameter for distance was β1 = − 0.1. In this case, a pond that 
was 10 km from a road would have a predicted probability of ranavirus occurrence 
as: 1/(1 + exp[−(−0.5 + − 0.1 × 10)]) = 0.182, while a population that was 5 km away 
would have a predicted probability of 1/(1 + exp[−(−0.5 + − 0.1 × 5)]) = 0.269. Most 
statistical packages will provide predicted probabilities and confidence intervals 
from a logistic regression model. Appendix 1 provides example code in R for logis-
tic regression.

5.3  Viral Titers

The above statistical approaches classify infection as binary; an individual is 
infected or not. However, infection can be thought of as a continuum from subclini-
cal to clinical infections, where the latter is resulting in disease and possibly mortality 
(Miller et al. 2015). Quantitative PCR and cell culture-based methods (e.g., plaque 
assays and TCID50) are common techniques to estimate viral titers in tissue (Miller 
et al. 2015). Inasmuch as viral titers in tissues correlate with the severity of infec-
tion, these data provide additional insight into the possible effects of ranavirus on 
populations. Consider, for instance, measuring ranavirus prevalence and titers 
through time in a population of a tolerant species (e.g., American bullfrog, Lithobates 
catesbeianus; Hoverman et al. 2011). One might observe that the prevalence of 
ranavirus was quite high, but titers were very low. If changing conditions (e.g., ris-
ing temperatures) were hypothesized to make this species more susceptible, then 
one would expect to see viral titers increase with increasing temperature, while 
prevalence of infection would remain unchanged.

Vital titers are often reported as log10-transformed values of virus concentration 
per unit of genomic DNA or tissue. Such transformed titers are generally normally 
distributed, which are suitable for simple linear models (i.e., regression, analysis of 
variance). For example, the relationship discussed above could be tested with a 
linear regression of viral titers on temperature.

Because the log of zero is undefined, it is common practice to add one or a num-
ber representing the minimum detectable level to all numbers including zero before 
taking the log. If there are many zeros (i.e., individuals that tested negative) in the 
dataset, the resulting distribution will not be normal. However, if you are interested 
in the distribution of titers in infected animals only, it is appropriate to exclude the 
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zeros for the uninfected individuals. Alternatively, you can use zero-inflated mod-
els. These models account for the probability that an individual is infected using the 
equivalent of a logistic model, and given that an animal is infected, predicts the 
number of virions with typically a Poisson or negative binomial distribution. These 
models can also be applied to other surveillance data, such as the number of infected 
animals in a population, where there may be zeros because there is no infection in 
the population or because infected animals were missed during sampling. We direct 
the readers to Dohoo et al. (2003) and Zuur et al. (2012) for additional guidance.

5.4  Analysis of Survival Data

While we are often interested in the probability of infection or death, it is also useful 
to understand the timing or rate of mortality. In survival analyses, the fate of specific 
individuals is followed over time at frequent intervals; thus, these designs are prob-
ably most appropriate in captive populations (e.g., zoos, laboratory studies), where 
every individual can be checked regularly. When the fate of all individuals is known 
over time, survival can be represented as a curve ranging from 100 to 0 % over the 
duration of the study.

Censoring is when the fate of some individuals during a study is unknown, and 
must be accounted for in survival analyses. Right censoring occurs when the fate of 
an individual is not observed after some point in time; the individual is censored 
after its last observation. Right censoring also occurs when individuals are eutha-
nized during or at the end of a study to collect diagnostic information. If an animal 
was infected at some unknown time before the start of the study, it is left censored. 
In field studies, it is common that individuals are added to a study after the first 
sampling date, which is called staggered entry.

Information on the fate of individuals at risk at each time point (i.e., excluding 
those that have been censored) is used to estimate time-specific survival, S(t), and 
analyzed with various statistical packages (e.g., Program MARK, http://www.phi-
dot.org/software/mark/). One of the most common survival estimators is the 
Kaplan–Meier (K–M) function:
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where S(t) is probability of surviving until time t = ti, ni is the number of individuals 
that survived and were not censored before time i, and di is the number that died at 
time ti (see Jager et al. 2008 for an overview). The probability of surviving up to 
time t is the product of the current and previous survival probabilities.

The K–M survival estimates can be compared between two groups of samples 
using the Mantel–Haenszel test, which is essentially a contingency table approach 
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(Sect. 5.2), where expectations and deviations are calculated through time. The 
contingency table is:

Group A Group B Total
Event dAi dBi di

No Event nAi − dAi nBi − dBi ni − di

At Risk nAi nBi ni

where i refers to the time ti and subscripts A and B are the two groups. The expected 
number of deaths at time ti in group A, if both groups are identical in terms of their 
survival functions, is:

 
ˆ /e d n ni i i iA A .= ´( )  
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Now, the expected number of deaths can be compared to the actual number of 
deaths in group A at time ti, and repeated over i = 1, 2, 3, …, m sample periods. In 
the case of comparing two groups, expectations can be calculated for one group, 
because deviations in group A imply deviations in group B. The test statistic is:
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where V is the variance of the expected number of deaths. The test statistic is chi- 
square distributed with one degree of freedom (Dohoo et al. 2003; Hosmer et al. 
2008).

While the Mantel–Haenszel test is relatively easy to calculate, it cannot accom-
modate more than two groups or continuous predictors or covariates. The Cox 
Proportional Hazard (Cox PH) model is a more general method of testing for dif-
ferences in survival curves among groups, or among individuals with continuous 
covariates (e.g., body size). Cox PH estimates a baseline hazard function (Box 1), 
and tests whether individuals in the groups have a higher or lower hazard than the 
baseline (Hosmer et al. 2008). Cox PH nonparametrically estimates a baseline 
hazard function, h0(t), from the data. The hazard for an individual with covariates 
x1, x2, …, xn is:

 
h t x x xn n
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(11)

When the linear portion of the model in brackets is equal to zero, the exponential 
term is one and the hazard is equal to h0(t), the baseline hazard. If the sum of the 
terms in brackets is >0, then the hazard increases by some proportion; if it is <0, 
the hazard is reduced by some proportion. For example, if the coefficient for 
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females (relative to males) was βFemale = 0.693, then females would have a hazard 
that was exp(0.693) = 2× greater than that of males. In Cox PH analyses, the focus 
tends to be on the proportional differences in survival between groups, although it 
is possible to extract the baseline hazard from most statistical packages.

There are limitations to the Cox PH model. First, it cannot accommodate left- 
censored observations. Second, it assumes the proportional difference in hazard 
between groups (e.g., males vs. females) is constant through time. Thus, if survival 
curves are plotted, they should not cross or diverge; they should be approximately 
parallel through time. If meeting either of these assumptions is unreasonable, read-
ers should consult a text on survival analyses (e.g., Dohoo et al. 2003; Hosmer et al. 
2008) or statistician for alternative approaches.

One alternative approach to Cox PH is accelerated failure time (AFT) models, 
sometimes called parametric survival models (Hosmer et al. 2008). There are two 
key differences between AFT and Cox PH models. First, in AFT models, the func-
tional form (but not rates) of the underlying hazard is specified a priori rather than 
estimated from the data (Box 1). For instance, a constant hazard would be modeled 
using an exponential model (Hosmer et al. 2008). Because the form of the hazard is 
set a priori and only the model parameters are estimated, survival estimates can be 

predicted beyond the observed time period and may have more statistical power.

5.5  Mark-Recapture Studies

Many of the difficulties inherent in estimating epidemiologically relevant parameters 
in wildlife populations (e.g., individual fates, population size) can be addressed using 
CMR methods (reviewed in Cooch et al. 2012). This is an active area of research 

Box 1

Hazard function, h(t)—instantaneous rate of death at time t. The cumulative 
hazard is written as H(t).

Survival function, S(t)—probability of surviving beyond time t.
Probability density function, f(t)—the expected distribution of times to 

death.

These functions are related to each other:
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and one with a large literature (e.g., Amstrup et al. 2005; Thomson et al. 2009). 
Thus, we will simply provide an overview of approaches that may prove useful to 
understanding ranavirus epidemiology and direct the reader to the literature above.

Closed population models are particularly useful for estimating population size 
(or density) and prevalence of infection. These models assume that the initial and 
subsequent recapture sessions occur close enough in time that one can assume there 
has been no birth, death, immigration, or emigration. In the simple case where there 
are two capture occasions, the population size, N̂ , is estimated by the actual count 
of individuals, C, adjusted for the detection probability, p̂  (i.e., the Lincoln–
Peterson estimator):

 
ˆ ˆ/N C p= .  (12)

The detection probability is estimated as the fraction of initially marked individuals 
that are recaptured. This model can be extended to account for multiple capture ses-
sions as well as differences between groups (e.g., males vs. females) or states (e.g., 
infected vs. uninfected). Importantly, the detection probability can be modeled sep-
arately for different groups or states, which allows you to account for differences in 
detection probabilities between ranavirus-infected and -uninfected or symptomatic 
and asymptomatic animals (see Sect. 2.1).

Open CMR models do not assume that the population is closed to demographic 
changes and are generally better suited for repeated monitoring and estimating 
demographic parameters, particularly apparent survival, S. Parameters in open 
CMR models can be modeled separately between groups (e.g., infected and unin-
fected) or as a function of covariates (e.g., age, size), which provides a means of 
estimating the impact of disease on individuals in natural settings. One could, for 
instance, determine whether apparent survival differs between ranavirus-infected 
and -uninfected fish, and whether these differences are constant between adults 
and juveniles. In a similar framework, it may be possible to estimate the popula-
tion growth rate as a function of the occurrence or prevalence of disease (Cooch 
et al. 2012).

Multi-state models are an extension of CMR models that allow individuals to 
transition between different states (e.g., uninfected and infected). This powerful 
modeling approach provides a means of estimating the rate or probability of 
transitioning from uninfected to infected states (i.e., incidence) and vice versa. 
These models assume that survival and transitions between states are temporally 
separated (e.g., individuals first survive then become infected). Additionally, 
only one transition (e.g., uninfected to infected) can occur between encounter 
events. Thus, careful design of a CMR study is essential. These and related mod-
els can be extended to account for misclassification of states (e.g., infection sta-
tus is not measured perfectly) or partial observability (e.g., the individual is 
observed but its infection status is not determined). Considering the complexity 
of working with CMR models, we recommend consulting a statistician during 
study design and analysis.
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6  Use of Dynamic Models

Dynamic models can be very useful in studying host–pathogen interactions. 
Within- host models can elucidate physiological mechanisms that lead to host 
infection and disease (e.g., Mideo et al. 2008, 2011; Woodhams et al. 2008). In com-
parison, between-host models focus on the fate of individuals and populations when 
a pathogen is introduced or circulating (Hastings 1997). In this section, we will 
focus on the latter because of their usefulness in predicting the effects of pathogens 
on populations. To date, few dynamic models have been formulated for ranaviruses 
(e.g., Duffus 2009). Thus, several of our examples will come from the wildlife disease 
literature and modeling efforts with the emerging pathogen Batrachochytrium 
dendrobaditis (Bd).

6.1  SI/SIR Models: Transmission

Susceptible-infected-recovered (SIR) models examine transmission dynamics using 
a series of ordinary differential equations that model and predict one of three out-
comes: pathogen extinction, host extinction, or pathogen–host persistence (Allen 
2006). In many simple cases, the total population of hosts is divided into three sub-
populations: individuals susceptible to infection (S), infected individuals (I), and 
individuals that have recovered (R) from infection and cannot be re-infected or at 
least have temporary immunity. R can also be the individuals removed from the 
population. A simpler version of the model is where individuals cannot become 
immune, the susceptible-infected (SI) model (Allen 2006). In this version, if indi-
viduals clear the infection, they become susceptible again. Here, we describe the 
basic SIR model.

In the simplest continuous time SIR model, the total population size (N) can be 
assumed constant

 N S I R= + +  (13)

where S, I, and R represent the number of individuals in each respective subpopula-
tion (Hastings 1997). The rate of change of each subpopulation at time t can be 
modeled as

 d dS t SI/ = -b  (14)

 d dI t SI I/ = -b g  (15)

 d dR t I/ = g  (16)

where β is the rate at which hosts contact and transmit the infection to each other 
and γ is the host recovery rate (or removal rate). Here, transmission is assumed to 
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be density-dependent, as transmission is represented as βSI. Some evidence exists 
that transmission of ranavirus may be density-independent (Harp and Petranka 
2006), and can be modeled as βI/N. McCallum et al. (2001) provide other forms of 
transmission functions, including density-independent transmission and nonlinear 
functions of density. Because demography (birth, death, immigration, or emigra-
tion) is not included in this model, the only equilibrium occurs when all individuals 
are in the susceptible class (with I = 0). For an epidemic to occur, the number of 
infected individuals must increase dI/dt > 0. The reproductive number of a disease 
(R0) is the number of secondary cases that one infected individual would produce on 
average in a susceptible population, and is equal to

 R S0 = b g/ .  (17)

If R0 > 1, number of infections are increasing in a population, and is representa-
tive of an epidemic. However, due to the density-dependent nature of this model, 
there is a minimum population size for an epidemic to occur (the threshold popula-
tion size is NT = γ/β), and the epidemic ends before all susceptible individuals 
become infected (Hastings 1997). When modeling epidemics, the time scale is 
assumed short enough to ignore births and other forms of mortality in the host popu-
lation. This assumption can be relaxed in more complex models by adding births to 
the susceptible population and natural mortality to each subset of the population.

For ranavirus and most natural populations, the basic SIR model is likely too 
simplistic. Duffus (2009) used a discrete-time SI model to show that ranavirus 
could be maintained in a population of common frogs (Rana temporaria) in the UK 
with only transmission between adults. Her model included natural and disease 
induced mortality and recruitment from earlier life stages. The transmission rate 
was determined by the contact rate between adults and the likelihood of being 
infected given contact. Duffus (2009) also demonstrated that transmission between 
adults could maintain two syndromes of ranavirus (the ulcerative and hemorrhagic 
forms) in a single population. These models showed the conditions that could result 
in persistence of ranavirus in populations of common frogs, and which parameter 
estimates need additional data to better understand the system and predict outcomes 
in particular populations (Duffus 2009). Another model is in development for wood 
frogs (Lithobates sylvaticus) that investigates stage-specific susceptibility and 
waterborne transmission to recreate die-off patterns observed in natural populations 
(JLB, unpublished data).

Other model expansions could be particularly useful for predicting ranavirus 
dynamics in natural populations. For example, most ranavirus host species exist in 
communities where they are likely to interact with other susceptible species, 
 possibly from different ectothermic vertebrate classes (Gray et al. 2009). Brenes 
et al. (2014a) demonstrated that interclass transmission of ranavirus through water 
was possible. He also showed that ranaviral disease outcomes depended on species 
composition in the amphibian community and which species was initially infected 
with ranavirus (Brenes 2013). These studies could serve as a starting point for 
determining transmission probabilities in aquatic communities with multiple species. 
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In other disease systems, the addition of multiple species to transmission models 
had an effect on the focal host population, but depended on the host’s competency 
as a reservoir and its dominance within the community (Keesing et al. 2006). The 
addition of multiple host species can make the analysis of SIR models challenging. 
To date, most models have included only two species and the pathogen (Keesing 
et al. 2006), which may be unrealistic for some ranavirus–host systems. Dobson 
(2004) dealt with the large number of parameters in multi-species models by scal-
ing the parameters as allometric functions of host body size, although it is unclear 
such a relationship exists with transmission of ranavirus. Lélu et al. (2013) provide 
an example of a model including trophic transfer of a parasite (Toxoplasma gondii) 
from rats to cats and vertical transmission in cats. Similar complex interactions 
certainly occur among ranavirus hosts species, such as predation or necrophagy, 
and mechanical transmission by mosquitoes has been hypothesized (Allender et al. 
2006; Johnson et al. 2007; Kimble et al. 2014). Despite the large number of possi-
ble interactions in a ranavirus–host system, several interactions are likely unimport-
ant to its epidemiology. One strategy would be to create several competing models 
and fit them to data on dynamics in natural populations or in mesocosm studies to 
identify the most important mechanisms for transmission.

For researchers interested in using SIR models to examine ranavirus, we recom-
mend Otto and Day’s (2007) book A Biologist’s Guide to Mathematical Modeling 
in Ecology and Evolution, which reviews the mathematics and describes the process 
necessary for constructing and analyzing models primarily with ordinary differen-
tial equations. An understanding of computer programming and use of software 
(e.g., Matlab, Maple, Mathematica, R) will be necessary to construct models and 
perform simulations for most analyses. Appendix 2 provides example code in 
Matlab for a simple SIR model.

6.2  Individual-Based Models/Pattern-Oriented Modeling

Individuals-based models (IBMs), sometimes called agent-based models (ABMs), 
are also very useful for examining disease dynamics. IBMs are simulation-based, 
and during each time step, a set of rules or probabilistic events occurs involving 
each individual. IBMs are often easier for biologists to construct than SIR models, 
because they do not require solving differential equations. However, IBMs can be 
complex and require computer programming skills. These models often operate on 
a set schedule of events that are implemented using sequential equations, a series 
of for-loops, and if-then statements that determine an individual’s actions or fate. 
For disease IBMs, each individual’s disease state is recorded and their risk of infection 
can depend on their interaction with other individuals or the environment. There 
are also other types of IBMs that use differential equations. For example, Briggs 
et al. (2010) developed an IBM with differential equations that explicitly incorpo-
rated individual Bd load and further examined how a pathogen reservoir and a 
long-lived tadpole stage affected whether the frog population could persist with Bd 
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or experience local extinction. Similar models could be developed for ranavirus 
that include viral load and shedding to better understand how the virus might inter-
act with the host and factors that initiate die-offs. One attractive aspect of IBMs is 
that they can explicitly incorporate animal behavior. For ranavirus, researchers 
might be interested in how different behaviors, such as schooling or necrophagy, 
affect host populations and persistence with the pathogen.

A useful technique for creating IBMs and determining plausible interactions is 
called pattern-oriented modeling (POM). In POM, data are used to determine sev-
eral salient patterns seen in a natural system of interest that form the basis of model 
evaluation. Multiple possible forms of an IBM are created, representing different 
hypotheses about host–pathogen interactions. The different IBMs are evaluated 
based on their ability to recreate the salient patterns (Grimm et al. 2005; Grimm and 
Railsback 2012). When a model is able to match multiple patterns, it is more likely 
to be structurally realistic (Wiegand et al. 2003), and capable of producing testable 
predictions. In using POM, researchers can also contrast different hypotheses, 
determine a useful model structure, and reduce parameter uncertainty.

For researchers interested in developing IBMs, we recommend two books: 
Grimm and Railsback’s (2005) Individual Based Modeling and Ecology and 
Railsback and Grimm’s (2011) Agent-Based and Individual-Based Modeling: A 
Practical Introduction. Both titles describe a “best model practice” called object- 
oriented design and description (ODD), which is a standard format to describe vari-
ous aspects of an IBM. The latter title goes through the process of building IBMs 
with examples and code for a relatively user-friendly and free program called 
NetLogo (http://ccl.northwestern.edu/netlogo/index.shtml). NetLogo includes a 
library of preconstructed models, including AIDS, Disease Solo, and Virus, which 
could form the basis for the development of models for ranavirus. Further, NetLogo’s 
website includes a Modeling Commons, where NetLogo users can share their mod-
els to help others in their own model development. Other software, such as Matlab 
and R, can also be used to develop and analyze IBMs.

6.3  Population Matrix Models

Population matrix models examine changes in population size and age structure 
over time. These models include parameters for the transition probability between 
each age class. To incorporate disease, the survival following exposure to ranavirus 
can be incorporated for each age class. Earl and Gray (2014) developed a stage- 
structured matrix model to predict the effects of ranavirus exposure during the egg, 
hatchling, larval, and metamorph stages on a closed population of wood frogs. This 
study combined information from a wood frog population model (Harper et al. 
2008) with experimental challenge data (Haislip et al. 2011) to predict population 
outcomes. Appendix 2 provides example code in Matlab for a matrix model follow-
ing Earl and Gray (2014).

Population matrix models can also be combined with transmission models to more 
realistically model both dynamics simultaneously. For example, Briggs et al. (2005) 
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merged a population model of yellow-legged frogs (Rana muscosa) and a SIR 
model of the infection dynamics of Bd based on the current knowledge of transmis-
sion and mortality rates. This model combined discrete-time between-year popula-
tion dynamics with a continuous time transmission dynamics within each year. By 
running the model with different parameter values, Briggs et al. (2005) were able to 
determine which conditions resulted in extinction of the frog population, nonpersis-
tence of the pathogen, and persistence of the frog population and the pathogen.

Population models can also be scaled up to take into account metapopulation 
processes. A metapopulation is a set of spatially structured local populations that 
periodically interact via dispersal (Marsh and Trenham 2001; Smith and Green 
2005). Several ranavirus host species are likely structured as metapopulations. 
Metapopulation models incorporate parameters for dispersal probability between 
local populations as well as demographic parameters in each local population. 
Metapopulation models are useful to understand the spatial spread of pathogens 
among populations and examine the effectiveness of disease intervention strategies 
(Hess 1996). In amphibians, the occurrence of ranavirus outbreaks has been attrib-
uted partly to subclinically infected juveniles or adults returning to breeding sites, 
shedding the virus, and infecting larvae (Brunner et al. 2004). For individuals inter-
ested in population matrix models, we recommend Caswell’s (2000) Matrix 
Population Models: Construction, Analysis, and Interpretation. Hanski’s (1999) 
Metapopulation Ecology will be useful for those interested in investigating ranavi-
rus effects on metapopulation dynamics.

6.4  Modeling Disease Intervention Strategies

One goal of modeling host–pathogen dynamics is to identify intervention strategies 
that thwart disease outbreaks. Currently, there are few proposed control options for 
ranavirus, but vaccine development is possible in the future (Miller et al. 2011). 
Other options include quarantining individuals or populations, culling, and creating 
captive populations for reintroduction if disease is likely to cause extremely high 
mortality to populations of conservation concern. Models also can be used to identify 
vulnerable points in the host–pathogen cycle that can be interrupted with intervention 
strategies. For example, if outbreaks are a consequence of density, emergent vegeta-
tion in wetlands can reduce the probability of transmission among amphibian larvae 
(Greer and Collins 2008). If stressors in the aquatic environment (e.g., high nitrogen 
levels) are resulting in reoccurring outbreaks, strategies that improve water quality 
can be used. A thorough understanding of the factors responsible for outbreaks and 
the ranavirus–host system is essential to identifying plausible intervention strategies. 
In some cases, possible intervention strategies might be infeasible to implement, 
excessively costly, or undesirable in natural populations. However, if strategies are 
feasible, models can be used to determine when and how often the strategy should be 
employed for the best results. SIR models and their variants can be used to explore 
vaccination strategies (Hethcote 2000) and other control techniques such as culling 
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(Lloyd-Smith et al. 2005). Cost of disease control can be incorporated into models to 
determine the best strategies given financial constraints (Fenichel et al. 2010). 
Woodhams et al. (2011) discussed possible intervention strategies for Bd and pre-
sented model results of their efficacy on individuals with and without an adaptive 
immunity. They also went on to show that reducing the host population size (i.e., 
decreasing transmission probability) could prevent extinction. For researchers inter-
ested in implementing optimal control models, we recommend Lenhart and 
Workman’s (2007) Optimal Control Applied to Biological Models, which focuses on 
control of continuous ordinary differential equation models and includes sample 
code for the computer program Matlab. Optimal control can also be applied to IBMs, 
but effective techniques are still being developed (Federico et al. 2013).

6.5  Model Parameterization and “Evaludation”

There are a number of ways to parameterize models and integrate them with data. 
Frequently, modelers choose parameter values by searching the literature, but often 
not all parameter values are available. Another method is to construct a model and 
fit the output to an existing data sequence. In the case of ranavirus modeling, predic-
tions could be fit to surveillance data that include abundances of infected and unin-
fected individuals, or the magnitude and timing of a die-off. After the model is fit to 
the data, the parameter values that give the best fit or that match multiple patterns 
(as in POM) are then used. If some parameters are known and researchers have a 
good idea of the possible range of other parameters, these ranges of values can be 
explored to determine how they change the model output. Assessing the effects of 
changes in parameter values is called sensitivity analysis (Cariboni et al. 2007). If 
the model is especially sensitive to a certain parameter, it suggests that better param-
eter estimation would be a valuable research direction (Biek et al. 2002; Cariboni 
et al. 2007), especially if the parameter estimate is not based on robust data (e.g., 
low sample sizes). Cariboni et al. (2007) suggest best practices for sensitivity analy-
sis. An excellent review of parameter estimation for disease modeling of natural 
populations can be found in Cooch et al. (2012).

The aim of model evaluation is to determine if models typify natural systems 
well enough to represent the intended dynamics. This often involves determining 
whether or not they can be used to make accurate predictions. Frequently, the terms 
model evaluation, model validation, and model testing are used interchangeably. 
Because models are built on assumptions and simplifications, they are never truly 
“valid” or “correct.” Augusiak et al. (2014) have suggested the term “evaludation” 
to represent the process of assessing the model’s quality and reliability, and included 
six elements for proper “evaludation” of a model:

 – Assessing the quality of the data used to build the model
 – Evaluating the simplifying assumptions structuring the model
 – Verifying that the model is correctly implemented
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 – Verifying that the output matches the data used to design the model
 – Exploring model sensitivity to changes in parameter values, and
 – Assessing whether the model can fit an independent data set not used in original 

model formulation.

It is recommended that model formation and “evaludation” follow a documenta-
tion procedure called TRACE (TRAnsparent and Comprehensive Ecological docu-
mentation) that is designed to ensure reliability of models and link the science to 
application (Grimm et al. 2014).

7  Risk Analysis for Introduction of Ranavirus into 
an Uninfected Area

Import risk analysis (IRA) is a procedure that can be used to determine the threat of a 
pathogen entering a system. The consequences of pathogen introduction can be 
monitored directly (Sect. 2) or simulated using models (Sect. 6). The guidelines for 
IRA have been primarily developed from a trade perspective between two countries or 
regions to assess the disease risk associated with the import of live terrestrial produc-
tion animals. However, the same principles can be applied to assess the risk of ranavi-
rus introduction in wild or captive populations. In general, IRAs focus on possible 
infection of one species or several species within the same taxonomic class. As dis-
cussed in Duffus et al. (2015), ranaviruses are multi-species pathogens that have the 
capability of infecting three vertebrate classes, which makes IRA for ranaviruses 
complex. IRAs can be used to establish or revise trade or translocation guidelines for 
wildlife that could be subclinically infected with a pathogen (Smith et al. 2009). The 
World Organization for Animal Health (OIE) lists ranaviruses that infect amphibians as 
notifiable pathogens, meaning that a subsample of amphibians that are involved in 
international trade should be verified ranavirus negative prior to shipment (Schloegel 
et al. 2010). Currently, these regulations are not being enforced in most countries 
(Kolby et al. 2014). The procedures we outline below are based on principles and 
recommendations of the OIE (Vose 2000; OIE 2014), with examples of how they can 
be applied to parts of an IRA for the introduction of a ranavirus into an uninfected area.

7.1  Defining the Hazard

The first step in an IRA is defining an area of interest. The area could be a popula-
tion of interest, such as one that contains an uncommon species that is susceptible 
to ranavirus, or it could be a geographic region or country (Rödder et al. 2009; OIE 
2014). Generally, areas are defined based on artificial or natural barriers to animal 
movement or pathogen translocation (OIE 2014). For example, ranavirus virions 
can flow downstream in tributaries, and associated floodplains are often corridors 
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for animal movement; thus, areas should be defined by watershed for lotic systems. 
In lentic systems, depressional wetlands or lakes containing possible ranavirus hosts 
could be defined as the area of interest if it is hydrologically closed and surrounded 
by a terrestrial landscape. In zoological settings, the area of interest typically is the 
captive facility (OIE 2014).

The next step is determining the presence of ranavirus in the area of interest. 
Section 2 discussed surveillance studies, and additional guidelines are provided by 
OIE (2014). Minimum sample size to detect ranavirus depends on several factors 
(Sect. 2, Table 1). Additionally, infrequent sampling can result in lack of detection. 
Todd-Thompson (2010) showed that ranavirus in Gourley Pond of the Great Smoky 
Mountains National Park appeared nonexistent except for a 3-week period in late 
spring when an outbreak occurred resulting in widespread mortality across multiple 
species. Thus, sampling sites every 2 weeks when hosts are present with a large 
sample size (n > 30) should result in a high detection probability. If resources are 
limiting, sampling at least four periods per year while hosts are present may be suf-
ficient. Using this sampling frequency, Hoverman et al. (2012) detected ranavirus at 
33 of 40 sites. Given that ranavirus could have been present at all sites in this study, 
a ballpark estimate of detection probability was 82.5–100 % with their sampling 
frequency. Sampling should be performed over several years to verify that a site is 
ranavirus negative. For large areas of interest, multiple sites spaced no less than the 
average dispersal distance of hosts should be sampled, which for amphibians is about 
1 km (Wells 2007). Thus, distinct populations should be sampled without leaving 
large gaps between them. If ranavirus is detected, there is no reason to conduct an 
IRA, unless there is concern of a foreign strain of ranavirus being introduced.

Although the primary interest in the introduction of ranavirus to an area typically 
is for a certain species of conern, it is important that all ranavirus hosts are consid-
ered in an IRA. As discussed in Brunner et al. (2015), some hosts function as reser-
voirs for the virus and maintain subclinical infections resulting in low population 
prevalence, while other species serve as amplification hosts and initiate outbreaks. If 
funds are limited, a viable strategy would be to test amplification hosts, because 
these species tend to have lower resistance to ranavirus, and detection probabilities 
are therefore greater. Duffus et al. (2015) provide a list of known ranavirus hosts, and 
several challenge studies (e.g., Hoverman et al. 2011; Brenes et al. 2014b) can pro-
vide insight into relative difference in susceptibility between species.

7.2  Risk Assessment

Risk assessment involves three primary steps: identifying routes of introduction, 
identifying the consequence of introduction, and estimating risk. It is often useful 
to develop flow diagrams that illustrate each step of assessment (Figs. 1 and 2). 
To describe this process, below we provide an example of assessing risk to wild 
amphibians via import of aquacultured fish that are infected with ranavirus.
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7.2.1  Routes of Introduction

Routes of introduction could include dispersal paths of hosts or translocation of the 
virus on fomites attached to non-hosts (i.e., birds and mammals, Gray et al. 2009). 
Humans can play a large role in the possible introduction of ranavirus by moving 
between contaminated and uncontaminated sites. The environmental persistence of 
ranavirus in unsterile water and soil is probably at least one week (Nazir et al. 2012). 
Thus, recreationists that move among watersheds without decontaminating footwear 
or gear could be a major source of ranavirus introduction (Gray et al. 2009). Fish 
hatcheries are known sites of ranavirus outbreaks (Waltzek et al. 2014); thus, the 
release of clinically or subclinically infected fish or their effluent from the hatchery 
could be another major source of ranavirus introduction. For a particular area of inter-
est, it is important to identify the most likely routes of introduction. It can be useful 

Stage Control point Event Assumption

Import Origin of import Imported fish are
infected with 
ranavirus

Import into study
zone

Border inspection Ranavirus is not
detected in 
consignment

Fish are released to 
importer

Importer / retailer Ranavirus is not
detected in 
consignment

Fish are sold to fish
farm

Fish farm Ranavirus is not
detected in 
consignment and not
contained within 
farm. 

Release Release of virus to the
environment

Environment Susceptible 
amphibian species
inhabit this 
environment

Exposure Exposure
Exposure Susceptible animals 

get infected

Fig. 1 Flow diagram for possible routes of transmission of ranavirus into a naïve susceptible 
population of amphibians in the wild
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to divide routes of introduction into three stages: import, release, and exposure. In the 
case of imported aquacultured fish, the following steps define the import stage:

• Imported fish from an infected zone are infected with ranavirus
• The infection passes undetected through border control
• The infected fish are released to the retailer
• The infected fish are sold to an aquaculture facility in the study zone.

Assuming that fish are contained in aquaculture ponds, ranavirus could be 
released into adjacent aquatic environments via several pathways:

• Virus contaminated effluent is released
• Infected fish escape
• Avian or mammalian predators could transport live or dead fish
• Ranavirus hosts, such as amphibians or reptiles, could enter the pond, become 

infected, and disperse
• Mechanical vectors, such as pets or humans, could transport the virus on fomites.

Finally, exposure to the virus could occur via several direct and indirect routes 
(Gray et al. 2009). Host species could be exposed to the virus in water, which is an 
efficient transmission medium, or the virus could be transmitted by direct contact or 
consumption of infected hosts (Miller et al. 2011). There is some evidence that 
ranavirus transmission can be density independent, which can increase extinction 
probabilities (Brunner et al. 2015).

7.2.2  Consequence Assessment

The outcome of ranavirus infection in a species can be described qualitatively or 
quantitatively in terms of direct or indirect consequences. Direct consequences are 
the effect that ranavirus has on the species of interest, which typically includes esti-
mating the likelihood of population declines and extinction (Sect. 6). Highly sus-
ceptible species that are rare have the greatest probability of extinction (Earl and 
Gray 2014), especially if these species co-occur with other ranavirus hosts. Indirect 
consequences are costs associated with pathogen surveillance (i.e., field and diag-
nostic expenses) and possible repatriation of populations following extinction.

7.2.3  Risk Estimation

The assumption is that the virus will travel along the routes that were identified from 
an infected animal to a susceptible animal. In cases where it is determined that the 
consequence of ranavirus introduction is unacceptable, a series of critical control 
points (CCPs) should be established along the routes of introduction identified 
above, where the virus could be intercepted and the transmission terminated. The 
probability of the infection passing unnoticed through a CCP is estimated for each 
CCP by addressing several questions. This process can be summarized in a scenario 
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tree, where each CCP has a “yes” and a “no” branch, and a likelihood of detection is 
assigned (Fig. 2). In Fig. 2, CCP 1 and 4 are predetermined for each border control 
post, while CCP 3 will depend on the training and experience of the inspectors. CCP 
2 can be affected by viral load, water temperature, and animal health. Detecting a 
pathogen in a laboratory test in CCP 5 is a function of two processes: sample size 
(Sect. 2) and performance of molecular tests (i.e., the sensitivity and specificity of 
PCR, Miller et al. 2015). The sensitivity and specificity of PCR for ranavirus is an 
ongoing research direction (Miller et al. 2015), and can be affected by sample type 
(i.e., lethal vs. nonlethal collection, Gray et al. 2012). In general, it is believed that 
liver and kidney tissue provide the most reliable estimate of detection followed 
by tail, toe clips, and blood (Miller et al. 2015). Assuming perfect sensitivity and 
specificity of PCR, the probability of detecting ranavirus is approximately 95 % 

CCP 1 Is there any inspection of the fish at the border?

Yes No Likelihood of detection is negligible

CCP 2
Will the fish show clinical signs?

Yes No Likelihood of detection is negligible

CCP 3
Will inspector recognize the clinical signs?

Yes No 

CCP 4
Will samples be analysed for viral
presence?

Will samples be analysed for viral
presence?

Yes No Yes No

Likelihood of
detection is
negligible

Likelihood of
detection is
negligible

CCP 5
Will techniques used detect the virus? Will techniques used detect the virus?

Yes No Yes No

Likelihood of
detection (P1)

Likelihood of
detection is
negligible

Likelihood of
detection (P2)

Likelihood of
detection is
negligible

Fig. 2 Scenario tree for detection of ranavirus in a consignment of infected fish at the border 
inspection. Critical control points (CCP) 1–5 are opportunities identified where the virus could be 
detected and future transmission terminated. P1 is the product of the “Yes” answer probabilities in 
the left branch of the tree. P2 is the product of the two “yes” answer probabilities in the right branch 
of the scenario tree. The probability of ranavirus not being detected at the border is 1 − (P1 + P2)
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using the required sample sizes in Table 1. Risk of not detecting ranavirus in an 
imported consignment is calculated as: 1 − the product of the detection probabilities 
at all CCPs (Fig. 2).

7.3  Risk Management and Communication

To manage the risk of ranavirus introduction, it is useful to perform a risk- 
consequence assessment. If risk is low but the consequence to the target species is 
high, risk management priority would be high. If, however, the risk of introducing 
ranavirus is high but the consequences are low, risk management priority would be 
low. If the IRA indicates that the consequences are high, then the recommendations 
to management would focus on the CCPs and how to increase the likelihood of 
detecting and eliminating an infected consignment in a cost effective manner.

Effective communication is required among stakeholders, both when collecting 
information to feed into the IRA and in terms of informing end users of the find-
ings, management options, and their implementation. Risk communication is often 
centered at government level, but individual organizations such as fish farmers or 
herpetological societies can investigate and implement their own quarantine and 
surveillance guidelines with qualified diagnostic support. Cooperation and aware-
ness at all levels will greatly reduce the risk of introducing ranavirus into an unin-
fected area.

Many of the facts needed to carry out a comprehensive IRA may already be 
available in the published scientific literature and should be used to substantiate the 
recommendation for a risk analysis. It is important to consider the applicability and 
quality of the published literature before it is used in risk analyses. Published data 
might be from a different species, time of year, or continent. If published data do not 
exist for your species or region, a pilot study can be performed to generate data. 
Alternatively, obtaining expert opinion following the Delphi method can be an 
approach to secure preliminary estimates for use in the risk analysis (Helmer 1967; 
Vose 2000). We recommend that all organizations that are interested in performing 
an IRA consult experts that study ranaviruses. The GRC is a collection of scientists, 
veterinarians and practitioners that can provide guidance with setting up IRAs. 
Each continent has a regional GRC representative that can assist or make necessary 
connections with experts in your region.
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 Appendix 1

The links below are for a guide to using the statistical program R to estimate confi-
dence intervals, perform chi-square analyses and logistic regression, and plot the 
appropriate graphs.

http://fwf.ag.utk.edu/mgray/RanavirusBook/Chap8/SampleCode_8.5.html
http://fwf.ag.utk.edu/mgray/RanavirusBook/Chap8/SampleCode_8.5.R
http://fwf.ag.utk.edu/mgray/RanavirusBook/Chap8/Data.csv

 Appendix 2

The links below are for downloading MatLab programs for doing SIR and stage- 
structured model simulations.

SIR model:

http://fwf.ag.utk.edu/mgray/RanavirusBook/Chap8/Example_SIR_Model.m
http://fwf.ag.utk.edu/mgray/RanavirusBook/Chap8/Example_SIR_Model.txt
http://fwf.ag.utk.edu/mgray/RanavirusBook/Chap8/SIR.m
http://fwf.ag.utk.edu/mgray/RanavirusBook/Chap8/SIR.txt

Population model:

http://fwf.ag.utk.edu/mgray/RanavirusBook/Chap8/PopulationModelDetails.pdf
http://fwf.ag.utk.edu/mgray/RanavirusBook/Chap8/PopulationModelCode.txt
http://fwf.ag.utk.edu/mgray/RanavirusBook/Chap8/PopulationExampleModel.m
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