
ontents 
COYTRIBUTORS 

?REF ACE 

Zero Defect Software: Cleanroom Engineering 

Harlan D. Mills 

Background and Introduction 
:.. Cleanroom Engineering 
:::_ Statistical Quality Control in Software Engineering 
- - Software Testing in This First Human Generation 
: _ What is Cleanroom Engineering of Software? 
- Box Structured Software System Design 
- _ Statistical Quality Control 

Conclusions 
References . 

IX 

XI 

2 
6 

10 
13 
19 
24 
31 

38 
39 

Role of Verification in the Software Specification Process 

Marvin V. Zelkowitz 

Good Software Specifications 
- Axiomatic Correctness . 
- Functional Correctness . 
- - Denotational Semantics 
- .Ylultiattribute Specifications 

Conclusions 
Acknowledgments 
References . 

44 
57 
65 
80 
95 

106 
108 
108 

Computer Appl icat ions in Music Composition and Research 

Gary E. Wittlich, Eric J. Isaacson, and Jeffrey E. Hass 

Introduction . 
~ Music Score Encoding 
~ Music Score Input Systems 

Music Score Output Systems 
- Musical Instruments Digital Interface (MIDI) 

Digital Sound Synthesis 
- Computer-Aided Composition 

v 

112 
113 
120 
124 
130 
139 
151 



Zero Defect Software: 
Cleanroom Engineering 

HARLAN D. MILLS 

Florida Institute of Technology 
and 
Software Engineering Technology, Inc. 
Vera Beach, Florida 

Background and Introduction . 
1.1 History in Statistical Quality Control 
1.2 Application of SQC to Software Development 
Cleanroom Engineering . 
2.1 Cleanroom Statistical Quality Control . 
2.2 Zero Defect Software Is Really Possible. 
Statistical Quality Control in Software Engineering 
3.1 Statistical Test Design. 
3.2 Markov Chain Techniques for Software Certification 
Software Testing in This First Human Generation . 
4.1 Unit Testing as a Private Activity. 
4.2 A Historical Lesson in Typewriting . 
4.3 Two Sacred Cows in Software . 
4.4 The Power of Usage Testing over Coverage Testing 
What Is Cleanroom Engineering of Software? 
5.1 Cleanroom Engineering Process 
5.2 Cleanroom Engineering Methods . 
5.3 Dealing with Human Fallibility 
5.4 Cleanroom Experiences . 
Box Structured Software System Design 
6. 1 The Basis for Box Structured Design. 
6.2 Stepwise Refinement and Verification of Software 
6.3 The Mathematical Basis for Functional Verification 
6.4 Functional Verification of Program Parts 
Statistical Quality Control . 
7 .I Precision Specifications 
7.2 Statistical Certification 
7.3 Certification Tasks . 
7.4 Certification on a Scientific Basis . 
7.5 Usage Testing 
7.6 Software Usage as a Markov Process 
Conclusions . 
References 

2 
3 
5 
6 
7 
9 

10 
11 
12 
13 
13 
14 
15 
16 
19 
19 
20 
21 
23 
24 
25 
27 
28 
29 
31 
31 
33 
34 
35 
36 
37 
38 
39 

-.:>VANCES IN COMPUTERS, VOL. 36 1 Copyright © 1993 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 

ISBN 0-12-012136 -0 



2 HARLAN D. MILLS 

1. Background and Introduction 

Software is either correct or incorrect in design to a specification, in contrast 
with hardware, which is reliable to a certain level in performing to a correct 
design. Certifying the correctness of such software requires two conditions, 
namely: 

1. Statistical testing with inputs characteristic of actual usage, and 
2. No failures in the testing. 

If any failures arise in testing or subsequent usage, the software is incorrect, 
and the certification is invalid. If such failures are corrected, the certification 
process can be restarted, with no use of previous testing results. Such correc­
tions may or may not lead to additional failures. So, ·certifying the correct­
ness of software is an empirical process that is bound to succeed if the 
software is indeed correct and may appear to succeed for some time if the 
software is incorrect. 

Cleanroom Engineering introduces new levels of practical precision for 
achieving correct software, using three engineering teams. First, one team 
of specification engineers creates formal specifications and breaks them into 
increments for development and certification. Next, another team of develop­
ment engineers creates software to the specifications of these increments with 
formal verification, but without testing or debugging. Finally, another team 
of certification engineers tests and certifies the correctness of growing num­
bers of increments by stratified statistical testing. Any failures are returned 
for fixing to the development engineers and for retesting by the certification 
engineers for a new certification of correctness of the software. A new level 
of human capability is required in specification engineering, development 
engineering, and certification engineering, but it is a level that software 
engineers find possible. 

In order to carry out effective software testing and to achieve high reli­
ability, one needs to start with well-specified and well-developed software. 
Highly reliable performance cannot be tested into poorly developed 
software. So we will be concerned with the entire software engineering pro­
cess that culminates in the certification of well-specified and well-developed 
software. 

Software can be developed and certified as correct under statistical quality 
control to well-formed specifications of user requirements. To be humanly 
practical in sizable software systems, the specifications must be structured 
and defined in construction increments that accumulate into the final sys­
tems. This ability requires a sound development methodology to create 
software that is easily testable by engineering design and mathematical ver­
ification, in particular with no unit testing at all by the developers. Unit 

,.. ____.- .. - - " - - - - - --- .---=~ -



ZERO DEFECT SOFTWARE 3 

testing and fixing of informally developed code is the most error-prone 
activity in software development today, leading to deeper failures in 15% or 
more of the fixes. 

This ability also requires a test methodology based not only on the func­
tion and performance specifications, but also on the usage specifications, 
namely how critical each test case is to assessing the practical correctness of 
system behavior. Such a test methodology must be based on a stratified 
statistical strategy derived from the statistics of usage and the importance 
of the usage expected for the software. For an important case, a stratus may 
even consist of a single case (with probability 1), or may consist of a small 
ubset of cases, on out to strata containing large sections of the software. A 

test design defines each stratus (possibly hundreds or thousands) and the 
number of tests in each one. Testing without any failures found leads to 
certification of correctness of the software or software segment. 

If failures are later found, the certification is negated. If failures are fixed, 
the certification process can be started again. In any case, certification contin­
ues with software release to users, moving with confidence from a level of 
some three sigma at release up to and beyond six sigma with sufficient usage 
without failures. 

Software is either correct or incorrect in design to a specification, in con­
trast with hardware that is reliable to a certain level in performing to a 
correct design. For small and regular software, it may be possible to test 
exhaustively the software to determine its correctness. But software of any 
size or complexity can only be tested partially, and typically a very small 
fraction of possible inputs are actually tested. While possibly frustrating at 
first glance, this is all humans can assert about the correctness of software. 
But on second glance, the sequential history of certification efforts provides 
a human basis for assessing the quality of the software and some expectations 
for achieving future correctness. 

1.1 History in Statistical Quality Control 

Computer software is little over a human generation old, and software 
development as it is practiced today has been worked out in just that short 
time. Think of accounting when it was just a human generation old, when­
ever and wherever that may have been. It certainly did not have double entry 
bookkeeping, and not even sound arithmetic methods. Civil engineering did 
not have right triangles or methods of calculating areas at that stage. 
Software has many more people than accounting and civil engineering at 
that time, but fundamental ideas still take time to develop, even though 
people in the field are making do with what is available. 
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In another direction, statistical quality control (SQC) came into being 
about a human generation ago, with the work of Dr. Edward Deming and 
others in manufacturing in the 1950s. However, American industry largely 
ignored the new ideas of SQC in that period, getting along with however 
they were dealing (or not dealing) with quality. Statistics seemed like odd 
and extraneous effort in the industry, and hardly seemed worth doing in 
manufacturing. Of course, the rest of the story is well known, with Dr. 
Deming and others taking SQC to Japan with dramatic successes in Japanese 
industry, creating products with entirely new levels of both quality and 
productivity. By now American industry has largely caught up with Japanese 
industry in manufacturing SQC, but it has taken quite a while. 

It is now known how to develop software also by using statistical quality 
control. IBM and the US DOD DARPA STARS Program have supported 
this basis of SQC in software development. There is a considerable difference 
in SQC between manufacturing and software. But manufactuing SQC has 
been very informative and helpful in going to software. 

In manufacturing, the design is considered correct and the SQC applies 
to creating physical products to the design specifications. The design may 
be wrong for the product, but the job of manufacturing is to meet the design, 
right or wrong. The physical parts may be slightly incorrect but the product 
must still meet the design on a physical basis. For example, a wire cannot 
be cut to a 10 mm length exactly, but say within 0.001 mm, and still meet 
specifications in the product performance. 

Manufacturing under SQC is very different from that under previous 
controls. For example, in a 1950 assembly line of 20 stations, each station 
generating parts and adding to the product was producing products at a 
rapid rate, but many such products might then be found to be defective in 
the testing that followed. The attempted solution to such problems was to 
improve the part-making stations, because if each station was producing 
perfect parts the product would be satisfactory. But while some 
improvements were indeed made, new products had similar problems no 
matter how hard people tried. 

Manufacturing under SQC used ideas that first seemed strange and of no 
use. In the assembly line of 20 stations, first work out how each intermediate 
assembly at each point should perform; in many cases the stations must be 
redesigned to make this possible. Next; provide statistical measurements for 
the performances of the intermediate assemblies at each station, and make 
these measurements right there as each partial product comes down the line. 
Now, shocking as it may seem, stop the entire assembly line if any partial 
product fails its performance test. Fix the reason for the failure in whatever 
preceding stations necessary. All the workers are idle now! What a dumb 
thing that seems. In the old assembly line everybody worked hard all the 
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time. But forcing all the parts to be right during assembly created a dramatic 
improvement in both quality and productivity. The idle workers were a 
clear motivation for getting the work stations accurate to levels previously 
unimagined. 

So, in retrospect, SQC seemed very strange for manufacturing assembly 
lines in American industry. Who would think such ideas would be practical? 
No wonder American industry turned it down in the 1950s. And the objective 
is not statistics, it is quality control. The reason for statistics is that it is the 
only way to achieve real quality control. The improvement in productivity 
is a pleasant surprise, but it becomes understandable when the amount of 
rework becomes known. It is now understood as unnecessary with better 
parts work and good management. 

1.2 Application of SOC to Software Development 

With this background, it is time to apply SQC to software development. 
However, it is the design that must be produced correctly to meet a software 
specification. Just as in American manufacturing in the 1950s, American 
software in the 1990s is created in well-intended ways without SQC. Its 
performance is low in both quality and productivity compared with what is 
possible. In a 1990 European conference in Oslo, a Japanese group stated 
that Japanese companies were moving into SQC as described in this chapter. 

But American companies need not bring up the rear this time around in 
software. Just as in manufacturing SQC 40 years ago, it is not easy for 
managers and workers of today to move into software SQC. Everyone is so 
busy, how do they find time to learn the new ideas? It requires new capabili­
ties, but capabilities present in educated and disciplined people. For example, 
manufacturing workers discovered they could create parts that were orders 
of magnitude more accurate than previously imagined, with increased pro­
ductivity. Right now, well-intentioned and experienced programmers imag­
ine that software must have a few failures- say one to five per thousand 
lines of code- on release, and they cannot imagine a serious objective of 
creating software with no failures and higher productivity. It is not right to 
ask programmers to work faster, but to work smarter with real engineering 
discipline under SQC. 

Zero failure software is not possible with heuristic methods of program­
ming used in this first human generation of software development. It is 
possible with mathematics-based design discipline and statistics-based test 
discipline as discussed in Mills (1986) . Despite the experiences of the first 
human generation in software development, zero defect software is possible 
with the use of formal methods of program design and verification. Correct­
ness verification and statistical testing reinforce and complement each other 
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in surprising ways in achieving zero defects. Design discipline is made pos­
sible by the work of Dijkstra, Parnas and Wang (1989), and others. Test 
discipline is made possible by the work of Poore et al. (1990), Whittaker 
(1992), and others. Such a design discipline was taught in a six-course curric­
ulum in Software Engineering (Linger et al. , 1979 ; Mills et al. , 1986) across 
IBM in the 1980s with a faculty of over 60 well-prepared teachers and over 
10,000 students. SEI (Software Engineering Institute at Carnegie Mellon 
University) can teach and help others teach good design discipline. 

Software development has certainly improved in many ways over the past 
40 years. It has become better managed, here and there, in dealing with 
larger and more complex system development and software product prob­
lems. Basic technology has improved dramatically, with high-level languages, 
structured programming, and modular design for uniprogramming. It has 
not improved as dramatically for uniprogram testing or multi program design 
or testing. But the most deficient activity in software development today 
is the use of, and dependence on, private unit testing and debugging of 
software. 

It seems unbelievable from the outside that debugging software should be 
so difficult. But such debugging with a fix for a discovered fault will lead to 
a new fault at least 15% of the time (Adams, 1980). This number of new 
faults resulting from fixes has been a major surprise. Many large software 
systems or products cannot be successfully debugged because of such new 
faults. For example, the first optimized PL/ I compiler, with more than 50 
programmers for more than two years, was never released because it could 
not be debugged. An airline passenger reservation system that involved even 
more effort and time was never released and resulted in a major loss by the 
developer. At the moment, there seems no other way to create software than 
to code, unit test, and debug it the way it has always been done. But major 
and minor software development failures continue, and there is another way 
to create software, namely to outlaw private unit testing and debugging, as 
discussed next. 

2. Cleanroom Engineering 

As noted, two major properties of Cleanroom Engineering are: 

1. No debugging by the developers before the software goes to indepen­
dent testers, and 

2. Statistical testing taking into account both the usage and the criticalness 
of software parts. 

As we discuss next, there are more properties, but these two both seem 
critical or impossible at first glance compared with how software is developed 

. ~------- ·---- -~ - .... ' 
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today. They are both related to the short history of software of just a single 
human generation. For example, it took a human generation to discover 
touch typing for typewriters and it was not easy to make that happen. In 
another direction, farming today is entirely different than it was a human 
generation ago. It has become mechanized even more and moved from 
small one-family farms to larger corporate farms. In a similar way, serious 
software development will become a large-scale engineering operation rather 
than an intuitive programming operation. 

Cleanroom Engineering develops software of certified correctness under 
statistical quality control in a pipeline of increments that accumulate into the 
specified software product. In the cleanroom process no program debugging 
is permitted before independent statistical usage testing of the increments as 
they accumulate into the final product (Cobb and Mills, 1990 ; Dyer, 1992a) . 
The Cleanroom process provides rigorous methods of software specification, 
development, and certification, through which disciplined software engineer­
ing teams are capable of producing zero defect software of arbitrary size 
and complexity (Whittaker and Poore, 1992). Such engineering discipline is 
capable not only of producing correct software, but also of the certification 
of the correctness of the software as specified. 

Software is either correct or incorrect in design to a well-defined specifica­
tion, in contrast to hardware which is reliable to a certain level in performing 
to a design that is assumed to be correct. For small and regular software, it 
may be possible to test exhaustively the software to determine its correctness. 
Even then, failures from human fallibility can be overlooked. But software 
of any size or complexity can only be tested partially, and typically only a 
very small fraction of possible inputs can actually be tested. At first glance, 
the fractions are so small for systems of ordinary size that the task of 
testing looks impossible. But when combined with mathematical verification, 
correct software is indeed possible. 

For interactive software, the statistical correlation of successive inputs 
must be treated as well. If any failures arise in testing or subsequent usage, 
the software is incorrect, and the certification is invalid. If such failures are 
orrected, the certification process can be restarted, with no use of previous 

testing results. Such corrections may lead to additional failures, or they may 
not. So certifying the correctness of software is an empirical process that is 
bound to succeed if the software is indeed correct and may succeed for some 
time if the software is incorrect. 

2.1 Cleanroom Statistical Quality Control 

Cleanroom software engineering achieves statistical quality control over 
software development by strictly separating the design process from the 
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testing process in a pipeline of incremental software development. There are 
three major engineering activities in this process (Linger and Mills, 1988; 
Mills et al., 1987b): 

Software Specification: First, structured architecture and precise speci­
fication of a pipeline of software increments that accumulate into the final 
software product, which includes the statistics of its use as well as its function 
and performance requirements. 

Software Development: Second, box structured design and functional ver­
ification of each increment, delivery for testing and certification without 
debugging beforehand, and subsequent correction of any failures that may 
be uncovered during certification. 

Software Certification: Third, statistical testing and certification of the 
software reliability for the usage specification, notification to developers of 
any failures discovered during certification, and subsequent recertification 
as failures are corrected. 

These three activities are defined and discussed in later sections. 
As noted, there is an explicit feedback process between certification and 

development on any failures found in statistical usage testing. This feedback 
process provides an objective measure of the reliability of the software as it 
matures in the development pipeline. It does, indeed, provide a statistical 
quality control process for software development that has not been available 
in this first human generation of trial-and-error programming. 

Humans are fallible, even in using sound mathematical processes in func­
tional verification, so software failures are possible and almost certain during 
the certification process. But there is a surprising power and synergism 
between functional verification and statistical usage testing (Dyer, 1992b). 
First, as already noted, functional verification can be scaled up for high 
productivity and still leave no more errors than heuristic programming often 
leaves after unit and system testing combined. Second, it turns out that the 
mathematical errors left are much easier to find and fix during testing than 
errors left behind in debugging, by a factor of five as measured in practice 
(Mills et al., 1987b) . Mathematical errors usually turn out to be simple 
blunders in the software, whereas errors left behind or introduced in debug­
ging are usually deeper in logic or wider in system scope than those fixed. 
As a result, statistical usage testing not only provides a formal, objective 
basis for the certification of reliability under use, but also uncovers the errors 
of mathematical fallibility with remarkable efficiency. 

• 1 - . -- --- --
-y- ~-~ 
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2.2 Zero Defect Software Is Really Possible 

In spite of the experiences of this first human generation in software 
development, zero defect software is really possible. However, there is no 
foolproof logical way to know that software is zero defect. The proof is in 
using the product without ever finding any failures. Mathematics is very 
helpful in creating software that executes with no defects, but it is insufficient 
by itself to guarantee it. Statistics is also very helpful in creating software 
that executes zero defect, but is also insufficient by itself. Even so, mathemat­
ics and statistics foundations combined are very powerful bases for software 
engineering with zero defects . Three illustrations of zero defect software are 
noted next. 

First, the U.S. 1980 Census was acquired by a nationwide network system 
of 20 miniprocessors. The system was controlled by a 25 KLOC program, 

hich operated its entire 10 months in field use with no failure observed. It 
was developed by Mr. Paul Friday, of the U.S. Census Bureau, using step­
wise refinement and functional verification in Pascal. Mr. Friday used formal 
university courses in software engineering to achieve this feat. He was given 
the highest technical award of the U.S. Department of Commerce for that 
achievement. 

Second, the IBM wheelwriter typewriter products released in 1984 are 
controlled by three microprocessors with a 65 KLOC program. It has had 
millions of users since, with no failures ever detected. The IBM team creating 
rhis software also used functional verification and extensive testing in a well­
managed software engineering environment to achieve this result. The team 
had completed pass/ fail courses in formal software engineering before enter­
ing this project. 

Third, the NASA space shuttle software of some 500 KLOC, while not 
completely zero defect, has been zero defect in all flights. The first space 
shuttle flight initialization failed because of five computers, three initialized 
on one time frame, the other two on another time frame. That fault was 
fixed and did not reappear. The IBM team also used functional stepwise 
refinement and verification and extensive testing to achieve this result. The 
pace shuttle software is such a large, complex, and visible product that 

there are real lessons in it. All managers and programmers were required to 
complete a basic curriculum of six pass/ fail courses in understanding pro­
grams as rules for mathematical functions, and functional verification of 
programs and modules (Linger et al., 1979). The team received the highest 
NASA award for this achievement. 

Looking ahead, Hevner and Becker (1992) introduce an integrated devel­
opment environment based on repository data models that support Clean­
room specification, verification, and certification, as well as incremental 



10 HARLAN D. M ILLS 

development. Appropriate data models help identify tool requirements for 
this environment. 

3. Statistical Quality Control in Software Engineering 

The fundamental concepts of SQC in software versus other fields are 
significantly different. First, SQC in manufacturing or services assumes a 
correct design and deals with efforts to realize such a design. In this case the 
statistics deals with departures of the product from the design. But software 
is design whose manufacture is practically perfect in program compiling, 
linkage editing, etc. The design itself is under question and the statistics deals 
with departures of the design from the specifications that are discovered 
during testing and use. 

Second, software development is a creative human activity only a human 
generation old, largely carried out today by heuristic, trial-and-error meth­
ods. In this first human generation, testing during development has been 
primarily coverage and ad hoc, with no scientific basis, rather than based 
on statistical usage that can provide certified correctness. The objective 
generation of testing on the basis of statistical usage specifications, and the 
certification of software correctness from such objective statistical testing 
leads to new human understandings of software development as a rigorous 
and repeatable engineering process. 

Third, we need to work more on certification of correctness by statistical 
quality control because the other two areas of specification and development 
are better thought out with many fundamental problems well addressed. 
Certification of software is in its infancy, so there is much to learn, which 
will result in many substantial improvements over the present state of 
software testing. The technological goals are to create an entirely new human 
capability for developing zero defect software using methods of SQC. 

Many people presently believe that software has nothing to do with SQC 
because software is deterministic, not statistical, with results that are either 
right or wrong. In these people's view software is bound to have periodic 
failures, and good software just exhibits fewer failures than poor software. 
The innovation is to make usage statistics into the foundation for SQC as 
applied to an imperfect design process rather than to a manufacturing pro­
cess where the design is considered perfect. The elements of the Cleanroom 
Engineering process have been shown to be very practical and successful in 
creating software with zero defects and increased productivity. 

In this connection, Dyer ( 1992b) describes the merger of functional 
correctness verification in cleanroom engineering with formal inspections 
often used today. The systematic, stepwise process of functional verification 

-- - ..>.....:c...:~ -- - - - - ~ -_ ~~ 
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provides a framework for effective team inspections of software designs. 
Procedures for conducting inspection-based verification are given in Dyer 
1992b). 

3.1 Statistical Test Design 

In order to certify the correctness of software, it is necessary to define 
statistical testing that yields meaningful results. Measurements are needed 
to serve as a basis for the estimation of how well the software as designed 
and implemented will satisfy its requirements in actual use. In the past few 
years we have made significant progress in recognizing what measurements 
need to be made and in developing a program for making and utilizing the 
measurements. 

This testing program must recognize both the statistics of use and the 
importance of this use. First, failures in execution may be of many degrees 
of seriousness. Some failures may produce correct data in incorrect formats, 
but otherwise not affect continued execution. Other failures may produce 
incorrect data but continue execution correctly. Still other failures may con­
tinue execution incorrectly, possibly losing data. The most serious of failures 
may terminate execution unintentionally andj or lose data. The more serious 
the failure, the more important it is to find it. For this reason, the criticalness 
as well as the probabilities of failures must be considered. Some conditions 
are so critical that they should be tested for sure, with probability 1. At first 
glance this may not appear to be statistical testing, but it is at the endpoint 
of a statistical domain. 

The usage statistics of a software system or product is a new idea for 
testing. Usage statistics is often used informally to evaluate designs against 
performance requirements. For example, relative efficiency required -for 
different responses, say for entering and accessing data, will help define data 
tructures and algorithms required. If accessing data is much more frequent 

than entering it, perhaps the data should be stored alphabetically and 
accessed by binary search, while if entering is more frequent than accessing, 
perhaps the data should be stored in sequence of entry and accessed by 
linear search. 

But usage statistics can be used to make testing more realistic. Well­
intentioned testing by ad hoc invention can miss critical areas, for example 
incorrect entries that are expected occasionally and require recovery opera­
tions. Testing by simple uniform probability can be entirely unrealistic if 
usage statistics is far from uniform. For example, a programming language 
compiler accepts a remarkably small fraction of all text sequences. So the 
usage statistics of programs or near programs is important for realistic test­
ing of compiler software. Any one user may not use exactly the usage statis-
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tics defined for testing, but a class of users can be used to define a realistic 
usage statistics expected for them as a class. So the definition of realistic 
usage statistics is a substantial job that goes beyond functional and perform­
ance specifications into the likely usage of the software. 

3.2 Markov Chain Techniques for Software Certification 

Markov chains have exceptional value in software testing (Whittaker, 
1992; Whittaker and Poore, 1992). First, there is a question of how to use 
a specification as a guide in constructing a Markov chain to model the usage 
of correct software. Second, the testing process itself is modeled by another 
Markov chain which includes any possible failures in execution. If the 
software is correct, these two chains are identical. But if incorrect, the chains 
are slightly different. While testing proceeds, the reliability and mean time 
between failures in the second Markov chain can be estimated, both to 
measure progress and to evaluate the reality for reaching zero defect 
operations. 

As already noted, the certification team must account for both the statis­
tical concerns in testing and the relative importance of various inputs and 
operations to users. A specific input under a specific condition may happen 
rarely, but it can be important and therefore critical for testing. As a result, 
a test design involves a hierarchical structure of tests, each requiring a speci­
fication Markov chain, ranging all the way from the entire system to a 
single important operation. Just as with the software design, this test design 
requires long-term, systematic research into usage statistics and usage 
importance. 

While unlikely, if all inputs under all conditions are equally important, a 
single usage, statistics defined- set of tests is sufficient. But more likely, some 
inputs under some conditions will be more important than others. Today, 
much of testing is identified with specific cases of known importance, 
independent of their statistics. These specific cases can be brought into the 
statistics test designs as special cases. If an important test is defined with 
probability 1, it is now part of the hierarchical structure that defines the 
entire test. Usually, inputs and conditions will be partitioned naturally into 
subsets of the entire input space. Such subsets will themselves be partitioned 
into smaller subsets, and so on, clear down to single inputs and conditions. 

The test analyses will involve successive inputs for which the Markov 
process provides a good model. It not only matters at what frequencies 
various inputs and conditions will arise, but also how these frequencies 
depend on previous inputs (and thereby outputs) with input-to-input 
frequencies, as well. This requirement for estimating usage frequencies is 
new, and brings a new level of design to the testing process. Because of the 

--·- "'~-~-~ 
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test design work, the certification team must begin its analysis and design in 
parallel with the development team. 

4. Software Testing in This First Human Generation 

4.1 Unit Testing as a Private Activity 

In this first generation of software development and maintenance, the 
primary methods of software specification and design have been heuristic, 
going from informal and imprecise natural language to formal programming 
language by trial and error. When programs don't do the right things, was 
it the specification or the design at fault? If the specification was informal, 
how can one tell? The specifier may have had the right idea, but never written 
it down completely. Or the programmer may have met all requirements that 
were written down and extrapolated differently than the specifier intended. 

As already noted, private unit testing and fixing is used without question. 
What other way makes any sense? It seems so simple and so natural just to 
get the small errors out. How could that be harmful? It hasn't been suspected 
that so many new failures are introduced by unit testing and fixing. Unit 
testing is regarded as a private activity for getting defects out of the small 
parts of programs before assembling and integrating them into larger parts. 
Subsequently, more defects are discovered in the larger parts as smaller parts 
are tied together. The original programmers are often gone by this time. 
Finally, entire systems are frequently (almost always) delivered with more 
defects yet to be found. Users frequently find many more defects than the 
developers believed remained. As a result, many organizations have learned 
to expose new software products to a select few users for initial shakedown 
before distributing the products widely. 

This first generation of heuristic methods and experiences seem to work; 
after all, products are built. Advanced software teams do better than others 
in using the best technical and managerial methods that can be found. And 
_-et, even the advanced software teams stub their toes now and then. In fact, 
more systems and products than casual observers might imagine are seriously 
delayed or even abandoned with all the programs written, because they are 
too error-prone to release. Hundreds of person years may be involved, but 
the software still cannot be made to work correctly. In more recent times, 
several major PC upgraded products for word processing and financial 
analysis have been released more than a year behind their announcements 
at a major cost to their producing companies. 

The strange thing about most such software disasters is that they were 
not looked on as dangerous undertakings in their beginnings. Of course, 
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any software effort is a bit risky because computer code is so detailed and 
programmers are a little unpredictable. But "nobody said it would be so hard 
at the outset," is a typical comment. New and better heuristics, especially 
supported by CASE tools, are becoming available in object-oriented 
methods. With object-oriented methods, better approaches to high-level 
designs and specifications seem possible. But the software rubber meets 
the hardware road with the program code, and unit debugging is seldom 
questioned. At that stage, larger parts and entire products are tested, often 
with good records kept on the coverage testing, to ensure that every branch 
is exercised both ways and that all code is tested at least once. Yet in spite 
of the testing coverage, users often find unexpected levels of failures in 
operations, making the product marginal or unacceptable. 

The barely recognized fact is that unit debugging is the most error-prone 
activity in software development today. Fixing any failure found is usually 
successful. But creating a new and deeper failure occurs 15% of the time or 
more. This occurs because debugging strives to ensure correct outputs, which 
leads to developers modifying code to produce a correct output, and not 
modifying the code to produce the correct function. As a result, large failure­
filled software systems may never be debugged sufficiently to be released, 
even though extensive efforts are made. 

4.2 A Historical Lesson in Typewriting 

These experiences are not surprising in this first human generation of 
software development. They just seem part of the problem facing people in 
the field. Or are they? A hundred years ago people faced another set of 
problems in using the new typewriters, whose practical invention occurred 
late in the 19th century. How to type text and tabular material without 
errors at reasonable rates? Typewriters were special machines for special 
purposes. Executives, even the president of the United States, hand wrote 
their own letters by and large, and assistants or secretaries did likewise. 
Typewriters were used to write reports and documents with relatively poor 
quality reprints compared with printing. They certainly did not replace 
assembling print for printing machines. Typewriting was error-prone. One 
had to look at the keys, of course, while typing, so a reasonable way was to 
memorize the text a sentence at a time. But in going back and forth between 
the text and the typewriter, small mistakes or lapses were very possible from 
time to time. Correcting a character, even a word, might not be so bad. 
Correcting a missed sentence early on a typed page was better fixed by 
starting the page over. 

With this background for almost a human generation of using typewriters, 
the new idea of touch typing, typing without looking at the keys, was a 
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very strange one. "That's silly. Who could possibly do that?" In teaching 
typewriting, people who look at the keys can get useful work done in the 
very first day. In fact they learn practically all there is to know about a 
typewriter in the very first day, and just need to get more practice and skill 
by typewriting. In teaching touch typing, people get no useful work done in 
rbe first day or the first week. "Why would anyone spend time in such a 
useless activity?" Of course, we know that touch typing turned out to be an 
internationally useful method that put typewriters into business offices on a 
mass basis. Typewriter makers improved their products in many ways, but 
the reason typewriters were eventually made in such quantities was due to 
people knowing how to use them well rather than to companies knowing 
bow to make them well. 

There is a lesson in touch typing for software development. In software, 
teaching a programming language and how to compile and execute programs 
allows people to write programs right away. Very likely, such programs will 
require considerable debugging, and many text books say just that. With 
more and more experience in programming alone or in teams, errors and 
unit debugging are just an accepted and integral part of programming. 

But people with the right education and training do not need to unit debug 
their software any more than people need to look at the keys when they 
cype. Yet, just as in teaching touch typing, much less trial and error program­
ming is done at the beginning in good software education, with much greater 
emphasis on formal methods in program specification, design, and verifica­
tion. When serious programming begins only after formal methods, very 
little debugging will be required, because of more explicit design and ver­
ification from good specifications. But "why not let the computers find the 
errors, why make so much of a simple program?" For simple programs, 
that may be a perfectly good question. But as programs get larger and more 
complex, computers don't find the errors, and much more time will be spent 
debugging than writing the code originally. 

4.3 Two Sacred Cows in Software 

Software engineering and computer science are relatively new subjects, 
only a human generation old. In this first generation, two major sacred cows 
have emerged from the heuristic, error-prone software development of this 
entirely new human activity-namely program debugging and coverage test­
ing. As noted previously, program debugging before independent usage test­
ing is unnecessary and creates deeper errors in software than are generally 
ound and fixed. It is also a surprise to discover that coverage testing is a 

yery inefficient way of getting reliable software and provides no capability 
for scientific certification of reliability. 
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As a first generation effort, it has only seemed natural to debug programs 
as they are written, and even to establish technical and managerial standards 
for such debugging. For example, in the first generation in typing, it only 
seemed natural to look at the keys. Touch typing without looking at the 
keys must have looked very strange to the first generation of hunt and peck 
typists. Similarly, software development without debugging before indepen­
dent, certification testing of user function looks very strange to the first 
generation of trial and error programmers. It is quite usual for human 
performance to be surprising in new areas, and software development will 
prove to be no exception. 

Just as debugging programs has seemed natural, coverage testing has also 
seemed to be a natural and powerful process. Although 100% coverage 
testing is known to still leave errors behind, coverage testing seems to provide 
a systematic process for developing tests and recording results in well­
managed development. So it comes as a major surprise to discover that 
statistical usage testing is more than an order of magnitude more effective 
than coverage testing in increasing the time between failures in use. Coverage 
testing may, indeed, discover more errors in error-prone software than usage 
testing, but it discovers errors of all failure rates, while usage testing discovers 
the high failure rate errors more critical to users . 

4.4 The Power of Usage Testing over Coverage Testing 

The writings and data of Adams ( 1980) in the analysis of software testing, 
and the differences between software errors and failures, give entirely new 
insights in software testing. Since Adams has discovered an amazingly wide 
spectrum in failure rates for software errors, it is no longer sensible to treat 
errors as homogeneous objects to find and fix. Finding and fixing errors with 
high failure rates produces much more reliable software than finding and 
fixing just any errors, which may have average or low failure rates . 

The major surprise in Adams' data is the relative power of finding and 
fixing errors in usage testing over coverage testing, a factor of 30 in increasing 
mean time to failure (MTTF). That factor of 30 seems incredible until the 
facts are worked out from Adams' data. But it explains many anecdotes 
about experiences in testing. In one such experience, an operating systems 
development group used coverage testing systematically in a major revision 
and for weeks measured mean time to crashes in seconds. It reluctantly 
allowed user tapes in one weekend, but on fixing those errors, found that 
the mean time to abends jumped literally from seconds to minutes. 

The Adams data is given in Table I (from Adams, 1980). It describes 
distributions of failure rates for errors in nine major IBM products, including 
the major operating systems, language compilers, and database systems. 
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TABLE I 

DISTRIBUTIONS O F ERRORS (IN %) AMONG MEAN TIME TO FAILURE (MTTF) CLASSES 

MTTF in K months 

60 19 6 1.9 0.6 0.19 0.06 0.019 

Product 
1 34.2 28.8 17.8 10.3 5.0 2.1 1.2 0.7 
2 34.2 28.0 18.2 9.7 4.5 3.2 1.5 0.7 
3 33.7 28.5 18.0 8.7 6.5 2.8 1.4 0.4 
4 34.2 28.5 18.7 11.9 4.4 2.0 0.3 0.1 
5 34.2 28.5 18.4 9.4 4.4 2.9 1.4 0.7 
6 32.0 28 .2 20.1 11 .5 5.0 2.1 0.8 0.3 
7 34.0 28.5 18.5 9.9 4.5 2.7 1.4 0.6 
8 31.9 27.1 18.4 11.1 6.5 2.7 1.4 1.1 
9 31.2 27.6 20.4 12.8 5.6 1.9 0.5 0.0 

The uniformity of the failure rate distributions among these very different 
products is truly amazing. But even more amazing is a spread in failure rates 
over four orders of magnitude, from 19 months to 5,000 years (60K months) 
calendar time in MTTF, with about 33% of the errors having an MTTF of 
-,000 years, and 1% having an MTTF of 19 months. 

With such a range in failure rates, it is easy to see that coverage testing 
will find the very low failure rate errors a third of the time with practically 
no effect on the MTTF by the fix, whereas usage testing will find many more 
of the high failure rate errors with much greater effect. Table II develops the 
data, using Table I, that shows the relative effectiveness of fixes in usage 
esting and coverage testing, in terms of increased MTTF. Table II develops 

the change in failure rates for each MTTF class of Table I, because it is the 
failure rates of the MTTF classes that add up to the failure rate of the 
product. 

Line 1, Table II, denoted M (MTTF), is repeated directly from Table I, 
namely the mean time between failures of the MTTF class. Line 2, denoted 
ED (Error Density), is the average of the error densities of the nine products 
of Table I, column by column, which represents a typical software product. 

TABLE II 

ERROR DEN SIT IES AND FAILURE DENSITIES IN THE MTTF CLASSES OF TABLE I 

?roperty 
M 60 19 6 1.9 0.6 0.19 0.06 0.0 19 
E D 33 .2 28.2 18.7 10.6 5.2 2.5 1.1 0.5 
E D / M 0.6 1.5 3.1 5.6 8.7 13.2 18.3 26.3 
F D 0.8 2.0 3.9 7.3 11.1 17.1 23 .6 34.2 
F D / M 0 0 4 18 90 393 1,800 
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Line 3, denoted ED /M, is the contribution of each class, on average, in 
reducing the failure rate by fixing the next error found by coverage testing 
(1/M is the failure rate of the class, ED is the probability that a member of 
this class will be found next in coverage testing, so their product, ED j M, is 
the expected reduction in the total failure rate from that class). Now ED / M 
is also proportional to the usage failure rate in each class, since failures of 
that rate will be distributed by just that amount. Therefore, line 3 is normal­
ized to add to 100% in line 4, denoted FD (Failure Density) . It is interesting 
to note that Error Density (ED) and Failure Density (FD) are almost reverse 
distributions, Error Density being about a third at the high end of MTTFs 
and Failure Density being about a third at the low end of MTTFs. Finally, 
line 5, denoted FD /M, is the contribution of each class, on average, in 
reducing the failure rate by fixing the next error found by usage testing. 

The sums of the two lines ED / M and FD /M turn out to be proportional 
to the decrease in failure rate from the respective fixes of errors found by 
coverage testing and usage testing, respectively. Their sums are 77.3 and 
2,306, with a ratio of about 30 between them. That is the basis for the 
statement of their relative worth in increasing MTTF. It seems incredible at 
first glance, but that is the number! 

To see this in more detail, consider first the relative decreases in failure 
rate R in the two cases : 

Fix next error from coverage testing 

R--+ R - (sum of ED/ M values)/( errors remaining) 

= R - 77.3 / E . 

Fix next error from usage testing 

R--+ R - (sum of FD/ M values) / (errors remaining) 

= R - 2,306/ E. 

Next, the increase in MTTF in each case will be 

1/ (R - 77.3/E)- 1/ R = 77.3/[R * (E * R- 77.3)] 

and 

1/ (R- 2,306/ E) - 1/ R = 2,306/ [R * (E * R- 2,306)] . 

In these expressions, the numerator values 77.3 and 2,306 dominate, and the 
denominators are nearly equal when E * R is much larger than 77.3 or 2,306 
(either 77.3/ (E * R) or 2,306/ (E * R) is the fraction of R reduced by the 
next fix and is supposed to be small in this analysis). As noted previously, 
the ratio of these numerators is about 30 to 1, in favor of the fix with usage 
testing. 
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5. What Is Cleanroom Engineering of Software? 

5.1 Cleanroom Engineering Process 

The Cleanroom Engineering process develops software of certified correct­
ness under statistical quality control in a pipeline of increments, with box 
structured design and functional verification but no program debugging 
permitted before independent statistical usage testing of the increments. It 
provides rigorous methods for software specification, development, and cer­
tification that are capable of producing low or zero defect software of arbi­
trary size and complexity. Box structured design is based on a Parnas usage 
hierarchy of modules. Such modules, also known as data abstractions or 
objects, are described by a set of operations that may define and access 
internally stored data. Functional verification is based on the fact that any 
program or program part is a rule for a mathematical function. It may not 
be the function desired, but it is a function. 

The term Cleanroom is taken from the hardware industry to mean an 
emphasis on preventing errors, rather than allowing errors to appear and 
removing them later (of course any errors introduced should be removed). 
Cleanroom Engineering of software involves rigorous methods that enable 
greater control over both product and process. The Cleanroom process not 
only produces software of high correctness and high performance, but does 
o while yielding high productivity and meeting schedules. The intellectual 

control provided by the rigorous Cleanroom process allows both technical 
and management control. 

Cleanroom Engineering achieves statistical quality control over software 
development by strictly separating the design process from the testing pro­
cess in a pipeline of incremental software development. There are three major 
engineering activities in the process (Linger and Mills, 1988; Mills eta!., 
1987b): 

Specification: First, a specification team creates an incremental specifica­
tion that defines a pipeline of software increments that accumulate into the 
final software product, which includes the statistics of its use as well as its 
function and performance requirements. 

Development: Second, a development team designs and codes increments 
specified using box structured design and functional verification of each 
increment, with delivery to certification with no debugging beforehand, and 
provides subsequent correction for any failures that may be uncovered dur­
ing certification. 

Certification: Third, a certification team uses statistical testing and analy­
sis for the certification of the software correctness to the usage specification, 
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notification to designers of any failures discovered during certification, and 
subsequent recertification as failures are corrected. 

As noted, there is an explicit feedback process between certification and 
development on any failures found in statistical usage testing. This feedback 
process provides an objective measure of the correctness of the software as 
it matures in the development pipeline. It does, indeed, provide a statistical 
quality control process for software development that has not been available 
in this first human generation of trial and error programming. 

5.2 Cleanroom Engineering Methods 

Cleanroom Engineering provides a set of rigorous methods for software 
development under statistical quality control, based on sound mathematical 
and statistical principles. While millions of people are involved in software, 
most of them regard software development as an intuitive, heuristic activity. 
They do not imagine software engineering as a mathematics-based subject 
with complete rigor being possible. But software engineering should be and 
can be a mathematics-based activity. When mathematical rigor is applied, 
both quality and productivity increase. Nor can they imagine software engi­
neering based on statistics since computers are completely deterministic in 
behavior. And yet the usage of software is statistical in nature. 

For software engineering, being mathematics-based does not mean being 
numbers-based. Numbers are part of mathematics, but the finite basis of 
computers adds complexity to dealing with numbers. With integers, compu­
ters face overflow possibilities that need to be assured against. With real 
numbers, computers face roundoff problems, so arithmetic becomes approxi­
mate, not exact. In these cases, software must deal with computer operations, 
not with ideal numerical operations. But mathematics deals with any 
operations performed by computers, not simply approximate numerical 
operations. Fortunately, the nonnumerical operations are typically exact in 
computers, for example logic operations, even text processing operations, so 
their mathematical basis is very solid. At first glance, nonnumerical 
operations may not look mathematical, but they are. Logic, set theory, and 
function theory are clearly nonnumerical mathematics, but sorting theory, 
text processing theory, and graph theory can also be framed as mathematics 
as well. 

Software is a human generation old, while mathematics is many human 
generations old. Although not understood early or widely, software has 
direct mathematical foundations because of the very deterministic behavior 
of computers. A computer program is a rule for a mathematical function, 
mapping all possible initial states into final states. Such functions are very 
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tivity and still leave no more errors than heuristic programming often leaves 
after unit and system testing combined. Second, it turns out that the 
mathematical errors left are much easier to find and fix during testing than 
errors left behind in debugging, measured at a factor of five in practice (Mills 
et al., 1987b). Mathematical errors usually turn out to be simple oversights 
in the software, whereas errors left behind or introduced in debugging are 
usually deeper in logic or wider in system scope than those fixed. As a result, 
statistical usage testing not only provides a formal, objective basis for the 
certification of correctness under use, but also uncovers the errors of mathe­
matical fallibility with remarkable efficiency. 

In Cleanroom Engineering a major discovery is the ability of well-educated 
and motivated people to create nearly defect-free software before any execu­
tion or debugging, with many fewer than five defects per thousand lines of 
code. Such code is ready for usage testing and certification with no unit 
debugging by the designers. In this first human generation of software 
development it has been counterintuitive to expect software with so few 
defects at the outset. Typical heuristic programming leaves 50 defects per 
thousand lines of code, then reduces that number to five or fewer by debug­
ging. The problem is that for programmers with good capabilities and 
intentions, it seems on the surface that unit debugging makes complete 
correctness on first coding unnecessary. But the unknown result is the 
number of faults, over 15%, created in even the simple seeming fixes. 

The mathematical foundations for Cleanroom Engineering come from the 
deterministic nature of computers themselves. As noted, a computer pro­
gram is no more and no less than a rule for a mathematical function (Linger 
et al., 1979; Mills, 1975). Such a function need not be numerical, of course, 
and most programs do not define numerical functions. But for every legal 
input, a program directs the computer to produce a unique output, whether 
correct as specified or not. And the set of all such input- output pairs is a 
mathematical function. A more intuitive way to view a program in this first 
generation is as a set of instructions for specific executions with specific input 
data. While correct, this view misses a point of reusing well-known and 
tested mathematical ideas, regarding computer programming as new and 
private art rather than more mature and public engineering. 

With these mathematical foundations, software development becomes a 
process of constructing rules for functions that meet required specifications, 
which need not be a trial and error programming process. The functional 
semantics of a structured programming language can be expressed in an 
algebra of functions with function operations corresponding to program 
sequence, alternation, and iteration (Linger et al., 1979). The systematic top 
down development of programs is mirrored in describing function rules in 
terms of algebraic operations among simpler functions, and their rules in 
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terms of still simpler functions until the rules of the programming language 
are reached. It is a new mental base for most programmers to consider the 
complete functions needed, top down, rather than computer executions for 
specific data. 

Trammel et al. (1992) discuss the practical realities in adopting the Clean­
room process in software organizations. They define a three-phase process 
for introducing Cleanroom in a software development organization, includ­
ing management commitment and team ownership as critical success factors. 

5.4 Cleanroom Experiences 

The IBM COBOL Structuring Facility (IBM COBOL/ SF), a complex 
product of some 80K lines of PL/I source code, was developed in the Clean­
room discipline, with box-structured design and functional verification but 
no debugging before usage testing and certification of its correctness. A 
Yersion of the U.S. A.F. HH60 (helicopter) flight control program of over 
0 KLOC was also developed using Cleanroom. The Coarse/ Fine Attitude 

Determination Subsystems (CFADS) of the UARS Attitude Ground 
Support System (AGSS) of some 30 KLOC has been developed with Clean­
-oom at NASA. 

The IBM COBOL/ SF converts an unstructured COBOL program into a 
5lructured one of identical function. It uses considerable artificial intelligence 
:o transform a flat structured program into one with a deeper hierarchy that 
- much easier to understand and modify. The product line was prototyped 
i th Cleanroom discipline at the outset, then individual products were gener-

_ted in Cleanroom extensions. In this development, several challenging 
- hedules were defined for competitive reasons, but every schedule was met. 

The COBOL/ SF products have high function per line of code. The proto­
--pe was estimated at 100 KLOC by an experienced language processing 

.: oup, but the Cleanroom developed prototype was 20 KLOC. The software 
designed not only in structured programming, but also in structured 

~ta access. No arrays or pointers were used in the design; instead, sets, 
ueues, and stacks were used as primitive data structures (Mills and Linger, 
986). Such data-structured programs are more reliably verified and 

· pected, and also more readily optimized with respect to size or perfor­
mance, as required. 

COBOL/ SF, Version 2, consists of 80 KLOC, 28 KLOC reused from 
revious products, 52 KLOC new or changed, designed and tested in a 
ipeline of five increments (Linger and Mills, 1988), the largest over 
9 KLOC. A total of 179 corrections were required during certification, 

-ewer than 3.5 corrections per KLOC for new code with no developer execu­
·on, fewer than 2 corrections per KLOC for all code. The productivity of 
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the development was 740 LOC per staff month, including all specification, 
design, implementation, and management, in meeting a very short deadline. 

The HH60 flight control program was developed on schedule. Program­
mers' morale went from quite low at the outset (" why us? " ) to very high on 
discovering their unexpected capability in accurate software design without 
debugging. The 12 programmers involved had all passed the pass/ fail course­
work in mathematical (functional) verification of the IBM Software 
Engineering Institute, but were provided a week's review as a team for the 
project. The testers had much more to learn about certification by objective 
statistics (Currit et al., 1986). 

The subsystem Coarse/ Fine Attitude Determination System (CFADS) of 
the NASA Attitude Ground Support System (AGSS) of some 30 KLOC 
was developed in Fortran. Sixty-two percent of the subroutines, which aver­
aged 258 source lines each, compiled correctly the first time, with but one 
of the rest compiled correctly on the second attempt. Compared with well­
measured related systems, the failure rate was down by a factor of five while 
the productivity was up by 70% (Kouchakdjian et al. , 1989). 

V. R. Basili and F. T . Baker introduced Cleanroom ideas in an under­
graduate software engineering course at the University of Maryland, assisted 
by R. W. Selby. As a result, a controlled experiment in a small software 
project was carried out over two academic years, using 15 teams with both 
traditional and Cleanroom methods. The result, even on first exposure to 
Cleanroom, was positive in the production of reliable software, compared 
with traditional results (Selby et al., 1987). 

Cleanroom projects have been carried out at the University of Tennessee, 
under the leadership of J. H. Poore (Mills and Poore, 1988) and at the 
University of Florida under H . D . Mills. At Florida, seven teams of under­
graduates produced uniformly successful systems for a common structured 
specification of three increments. It is a surprise for undergraduates to 
consider software development as a serious engineering activity using 
mathematical verification instead of debugging, since software development 
is typically introduced primarily as a trial-and-error activity with no real 
technical standards. 

6. Box Structured Software System Design 

Box structured design is based on a Parnas usage hierarchy of modules 
(Parnas, 1972, 1979). Such modules, also known as data abstractions or 
objects, are described by a set of operations that may define and access 
internally stored data. In Ada, such modules are defined as packages, with 
operations defined by the calls of the procedures and functions of the pack­
ages, and internal data declared in the package. 
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Stacks, queues, and sequential or random access files provide simple 
=xamples of such modules or packages. Part of their discipline is that inter­
ilillly stored data cannot be accessed or altered in any way except through 
-· e explicit operations of the package. It is critical in box structured design 
·o recognize that packages exist at every level from complete systems to 

dividual program variables. It is also critical to recognize that a verifiable 
;:esign must deal with a usage hierarchy rather than a parts hierarchy in its 
srructure. A program that stores no data between invocations can be 
.:escribed in terms of a parts hierarchy of its smaller and smaller parts, 
xcause any use depends only on data supplied to it on its call with no 
~~pendence on previous calls. But each call to a specific realization of a 
_ ckage, say a queue, will depend not only on the present call and data 
_ pplied to it, but also on previous calls and data supplied then. 

The parts hierarchy of a structured program identifies every sequence, 
ternation, and iteration (say every begin-end, if-then-else, while-loop) at 

=':ery level. It turns out that the usage hierarchy of a system of packages 
say an object-oriented design with all objects identified) also identifies every 

::all (use) of every operation of every package. The semantics of the struc­
!lred program are defined by a mathematical function for each sequence, 
· ternation, and iteration in the parts hierarchy. That doesn't quite work for 
·· e operations of packages because of usage history dependencies. But there 
- a simple extension for packages that does work. It is to model the behavior 
f a package as a state machine, with its calls of its several operations as 
puts to the common state machine. Then the semantics of such a package 

-defined by the transition function of its state machine (with an initial state). 
llen the operations are defined by structured programs, the semantics of 

• ckages becomes a simple extension of the semantics of structured 
_To grams. 

Deck et al. ( 1992) introduce a taxonomy of black box semantics based on 
teractive properties of the system to be specified. They define three classes 
-semantics to specify systems of increasing complexity in their interactions 
"th other systems in the execution environment. The semantics extend to 
teractive and concurrent system specifications. 

6.1 The Basis for Box Structured Design 

While theoretically straightforward, the practical design of systems of 
1>arnas modules (object-oriented systems) in usage hierarchies can seem quite 
w mplex on first exposure. It seems much simpler to outline such designs in 
?<Uis hierarchies and structures, for example in data flow diagrams, without 
_;· tinguishing between separate usages of the same module. While that may 
.seem simpler at the moment, such design outlines are incomplete and often 
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lead to faulty completions at the detailed programming levels. In spite of 
their common use in this first human generation of system design, data flow 
diagrams should only be used within rigorous design methods rather than 
leaving critical requirements to details with incomplete specifications. 

In order to create and control such designs based on usage hierarchies in 
more practical ways, their box structures provide standard, finer grained 
subdescriptions for any package of three forms, namely as black boxes, as 
state boxes, and as clear boxes, defined as follows (Mills, 1988; Mills et al., 
1986, 1987). 

Black Box: External view of a Parnas package, describing its behavior as 
a mathematical function from historical sequences of stimuli to its next 
response. 

State Box: Intermediate view of a Parnas package, describing its behavior 
by use of an internal state and internal black box with a mathematical 
function from historical sequences of stimuli and states to its next response 
and state, and an initial internal state. 

Clear Box: Internal view of a Parnas package, describing the internal 
black box of its state box in a usage control structure of other Parnas 
packages; such a control structure may define sequential or concurrent use 
of the other packages. 

Box structures enforce completeness and precision in design of software 
systems as usage hierarchies of Parnas packages. Such completeness and 
precision lead to pleasant surprises in human capabilities in software engi­
neering and development. The surprises are in capabilities to move from 
system specifications to design in programs without the need for unit/ 
package testing and debugging before delivery to system usage testing. In 
this first generation of software development, it has been widely assumed 
that trial-and-error programming, unit testing, and debugging were neces­
sary. But well-educated, well-motivated software professionals are indeed 
capable of developing software systems of arbitrary size and complexity 
without program debugging before system usage testing (Anderson and 
Goodman, 1957). 

Fetzer and Poore (1992) introduce techniques for using the Z notation in 
defining box structures using the set theoretic and predicate calculus con­
structs defined in Z. Z provides a rigorous, formal language for the inner 
syntax of black box and state box forms. They introduce the integration of 
box structures and Z notation in a miniature specification. 

In Rosen et al. (1992), Rosen introduces general design language selection 
criteria based on the design and verification requirements of cleanroom 
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software development. Syntactic and semantic language requirements are 
described for disciplined control and data structures, for well-defined 
intended functions, and for function theoretic proof rules for verification as 
described. In the definition of the Design C language, a specialization of Z 
is given in terms of these requirements. 

Fuhrer et al. ( 1990) describe some cleanroom tools, including the Develop­
ment Assistant, Certification Assistant, and Management Assistant CASE 
tools for supporting cleanroom operations. A summary is given of the 
cleanroom development of these tools themselves through seven code in­
crements, including metrics from design, verification, and statistical quality 
certification. 

6.2 Stepwise Refinement and Verification of Software 

Once the design is complete, the clear box at each level is expanded to 
code to implement fully the defined function rule for the black box function 
at that level by stepwise refinement, as introduced by Wirth (1971). Follow­
ing each expansion, functional verification is used to help structure a proof 
that the expansion correctly implements the specification. The nature of the 
proof revolves around the fact that a program is a rule for a function and 
the specification for the program is a relation or function. What must be 
hown in the proof is that the rule (the program) correctly implements the 

relation or function (the specification) for the full range of the specification 
and no more. Linger, Mills and Witt (1979) have developed a correctness 
theorem that defines what must be shown to prove that a program is equiva­
lent to its specification for each of the structured programming language 
constructs. The proof strategy is subdivided into small parts which easily 
accumulate into a proof for a large program. Experience indicates that 
people are able to master these ideas and construct proof arguments for very 
large software systems. 

The development team expands each clear box in the usage hierarchy into 
the selected target code using stepwise refinement and functional verification. 
As the development team designs and implements the software, it is held 
collectively responsible for the quality of the software. 

In describing the activities of software development, no mention is made 
of testing or even of compilation. The cleanroom development team does 
not test or even compile. They use mathematical proofs (functional verifi­
cation) to demonstrate the correctness of programming units. Testing and 
measuring failures by program execution is the responsibility of the 
certification team. 
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6.3 The Mathematical Basis for Functional Verification 

As noted, any program or program part is a rule for a mathematical 
function. It may not be the function desired, but it is a function. In structured 
programs, the rules are direct in form, building program rules out of just 
two function building operations: first, function composition, which 
corresponds to sequential execution of program parts, and second, disjoint 
function union, which corresponds to alternative execution of one program 
part or another, as in if/or case structures. Program iteration uses no more 
than these two operations together, and function recursion provides a useful 
view of an iteration process. 

Any program part or total program defines a single, possibly complex 
function. The function is seldom a numerical function in classical terms. 
Even numerical programs must deal with finite sets of numbers in which 
overflow and roundoff's depart from classical number systems. Given the 
text or name of a program or program part in whatever language, say a 
program called Alpha in Ada defined by a set of external packages Gamma 
and an internal procedure called Beta 

Alpha = with Gamma; 
procedure Beta 
IS 

begin 

end Beta; 

the program function will be denoted by brackets [ ] around the name or 
text, such as 

[Alpha] = [with Gamma; 
procedure Beta 
is 

begin 

end Beta;] 

In this case [Alpha] is a set of ordered pairs 

[Alpha] = {(X, Y) I Given initial state X, Alph~ will produce final 
state Y} 

If Alpha loops indefinitely, or does not terminate for some other reason, for 
some entry state, that state is not part of [Alpha]. The function [Alpha] is 

••• a;:. 



ZERO DEFECT SOFTWARE 29 

determined by Ada text, but is independent of the language Ada. In this 
case, Alpha is a rule for the function [Alpha], but there are many rules for 
a single function. The same function can be defined by a rule in Fortran 
text, COBOL text, etc., even machine code. 

6.4 Functional Verification of Program Parts 

From programs to program parts, starting with simple assignment state­
ments, such as 

x:=y; 

in Ada, the program part function 

[x := y;] 

takes its initial data state to its final data state. If legal, it will change the 
value of x in the final state to the value of y in the initial state and change 
no other values of variables in the initial state. If illegal, the final state 
may be quite different from the initial state, possibly with both x and y 
disappearing, as well as other variables, in terminating the entire program 
execution. So assignment statements have simple function parts when legal, 
but possibly more complex function parts when illegal. In summary, the 
function [x := y] is a set of ordered pairs with second members determined 
uniquely by the first members 

[x := y;] = { «x, y, ... ), <y, y, ... »I x := y; is legal} 

u { «x, y, ... ), <???))I x := y; is illegal} 

where ??? will be determined by other aspects of the initial state. Illegal 
situations will be suppressed in what follows for the sake of time. In more 
direct function notation, dealing only with the legal situation, 

[x := y;]( <x, y , ... >) = (y , y, ... > 
in which the function argument <x, y , ... > produces the function value 
(y,y, .. . ). 

Next, for a sequence of statements, such as 

x := y; y := z; z := x; 

in Ada, the part function 

[x := y; y := z; z := x;] 
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will alter values of x, y, and z as a composition of the three individual 
assignment functions 

[x := y;] * [y := z;] * [z := x;] . 

That is, beginning with an initial state as argument, the first assignment 
function gives a new state as value 

[x := y ;]( (x, y, z, . .. ) ) = (y, y, z, ... ) 

the second assignment function uses this value as an argument 

[y := z ;]( (y, y, z, 0 0 0)) = (y, z, z, 0 . 0) 

and the third assignment function uses this last value as argument 

[z := x;]( (y, z, z, ... )) = (y, z, y, ... ) 

That is, the composition function is a nested set of simpler functions that 
evaluate as 

([x := y;] * [y := z;] * [z := x;])( (x, y, z, ... )) 

= [z := x ;]([y := z ;]([x := y;]( (x, y, z, ... ) ))) 

= [z := x; ]([y := z;]( (y, y, z, . .. ) )) 

= [z := x ;]( (y, z, z, ... ) ) 

= (y, z,y, ... ) 

as worked out just before. In summary, this composition function will inter­
change the values of y and z and leave x with the initial value of y, not 
changing any other data in the initial state. 

Finally, for an alternation statement, such as 

if x > y then y : = z; else x : = z end if; 

in Ada, the part function will execute either the then part or the else part, 
so that 

[if x > y then y := z; else x := z; end if;] 

= (x > y-> [y := z; ] I x = y-> [x := z;]) 

= [y:=z;lx> y] u [x:=z; lx=y] 

where the expression [y := z; I x > y] means the function [y := z;] with its 
domain restricted to the condition x > y. That is, the part function is a union 
of disjoint functions. 
























