

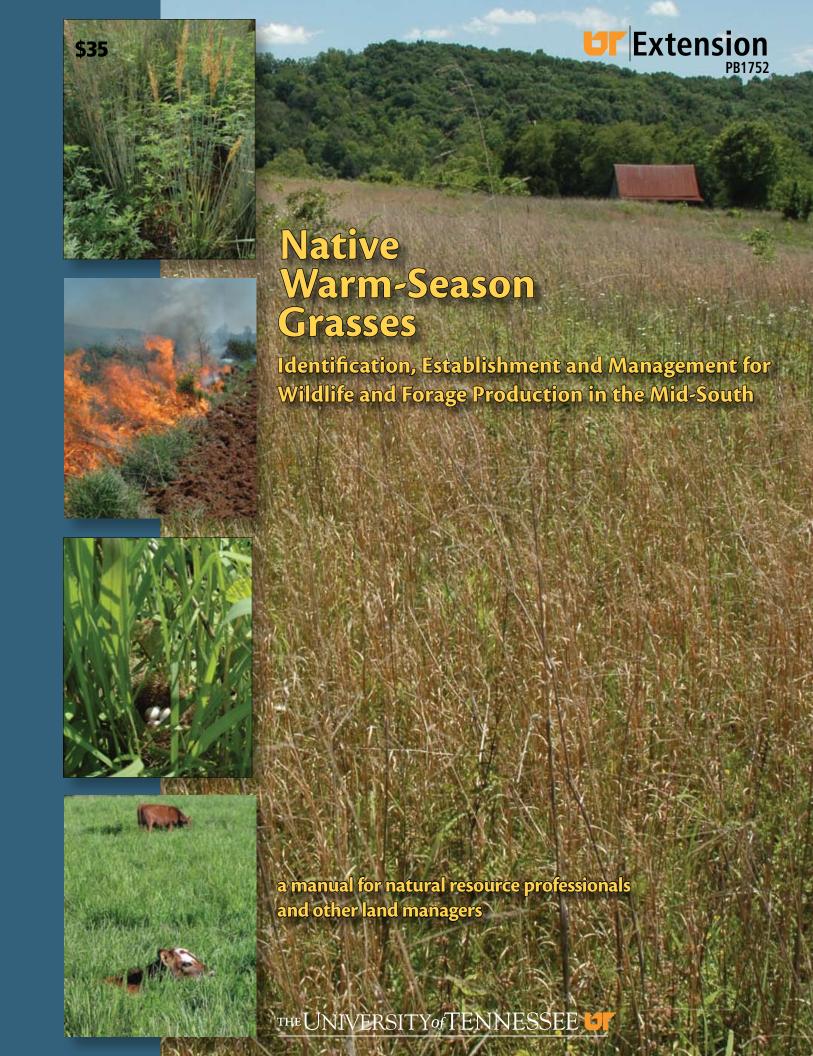
University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange

Forages UT Extension Publications

6-1-2007

PB1752: Native Warm-Season Grasses

The University of Tennessee Agricultural Extension Service


Follow this and additional works at: http://trace.tennessee.edu/utk agexfora

Recommended Citation

"PB1752: Native Warm-Season Grasses," The University of Tennessee Agricultural Extension Service, PB1752-2.5M-6/07 E12-4915-00-017-07, http://trace.tennessee.edu/utk_agexfora/12

The publications in this collection represent the historical publishing record of the UT Agricultural Experiment Station and do not necessarily reflect current scientific knowledge or recommendations. Current information about UT Ag Research can be found at the UT Ag Research website.

This Native Warm - Season Grasses is brought to you for free and open access by the UT Extension Publications at Trace: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Forages by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

Native Warm-Season Grasses

Identification, Establishment and Management for Wildlife and Forage Production in the Mid-South

a manual for natural resource professionals and other land managers

Craig A. Harper, Associate Professor/Extension Wildlife Specialist The University of Tennessee, Department of Forestry, Wildlife and Fisheries

Gary E. Bates, Professor/Extension Forage Specialist The University of Tennessee, Department of Plant Sciences

> Michael P. Hansbrough, Private Lands Biologist USDA Natural Resources Conservation Service

Mark J. Gudlin, Private Lands Liaison Tennessee Wildlife Resources Agency

John P. Gruchy, Research Associate
The University of Tennessee, Department of Forestry, Wildlife and Fisheries

Patrick D. Keyser, Associate Professor/Center for Native Grasslands Management The University of Tennessee, Department of Forestry, Wildlife and Fisheries © 2007 Craig Harper University of Tennessee Extension Institute of Agriculture Knoxville, Tennessee

ISBN 978-0-9795165-0-4

Produced by the Office of Marketing and Communications Services, University of Tennessee Institute of Agriculture Designed by Donna Hundley Edited by Wanda Russell

Printed by the University of Tennessee Graphic Arts Service

Corresponding Author: Craig A. Harper

Dept of Forestry, Wildlife & Fisheries

University of Tennessee Knoxville, TN 37996 charper@utk.edu (865) 974-7346

Photos by authors except where noted.

Funding to support printing provided by:

Contents

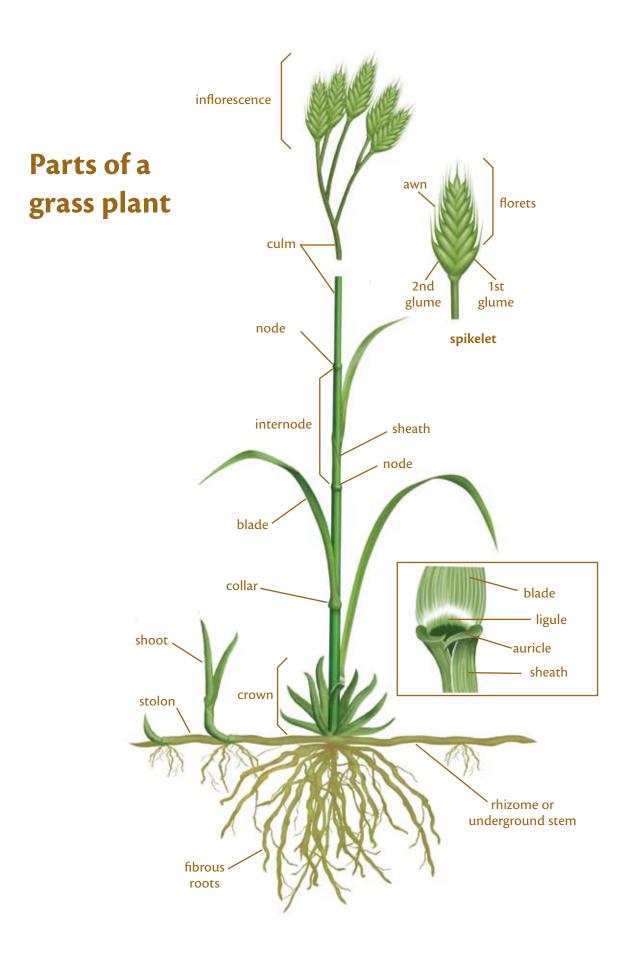
Prefac	cevii
	luctionix
Parts o	of a grass plantx
Ch. 1	Identification and description 1
	Big bluestem1
	Little bluestem3
	Broomsedge bluestem5
	Indiangrass6
	Switchgrass7
	Eastern gamagrass9
	Sideoats grama11
	Other native warm -season grasses12
Ch. 2	Using native warm-season grasses
	to enhance wildlife habitat13
	Benefits of nwsg over other cover types14
	Using nwsg when wildlife is the primary objective21
	Using nwsg when wildlife is a secondary objective30
	Response of bobwhites to nwsg in USDA programs32
	Problems associated with perennial cool-season grasses37
Ch. 3	Using native warm-season grasses
	as forage for livestock39
	Native warm-season grasses for hay
	Native warm-season grasses for grazing45
	Landowner "testimonials"54
Ch. 4	Using native warm-season grasses for biofuels59
	Production of switchgrass for biofuels
	Harvesting switchgrass for biofuels63
	Alternative management strategies64
	The future

Ch. 5	Establishment	69
	Evaluating the seedbank	69
	Seed quality, germination and Pure Live Seed (PLS)	7 3
	A word about surfactants	76
	Competition control	80
	pH and fertilizer requirements	85
	Planting techniques, timing, seeding depth and seeding rate	87
	Troubleshooting tips when using a no-till drill	88
	Recommended mixtures for wildlife and forages	92
	Evaluating establishment success— what to expect	97
	Checklist before planting nwsg	100
Ch. 6	Managing native warm-season grasses	
	and associated early-succession habitat	101
	Prescribed fire	102
	Burning and disking to increase invertebrate availability	112
	Firebreak management	113
	Disking	120
	Herbicides	125
	Mowing and haying	135
Concl	usion	139
Ackno	owledgements	. 141
Appe	ndix 1	143
	Use of early-succession fields containing	
	native warm-season grasses and associated forbs	
	by various wildlife species in the Mid-South region.	
Appe	ndix 2	149
	A brief description of USDA programs provided	
	through the Natural Resource Conservation Service (NRCS)	
	and Farm Service Agency (FSA)	
Appe	ndix 3	15 3
	Calibrating sprayers	
Appe	ndix 4	159
	Herbicides, rates, approximate applications, cost,	
	and manufacturer information	

Appendix 5Using no-till technology to establish nwsg	163
Appendix 6 Approximate number of seed per pound for selected grass spec	
Appendix 7 Sources of native warm-season grass seed	171
Appendix 8Glossary	173
Appendix 9 Suggested reading and references	181

Preface

Native warm-season grasses (nwsg) have received a tremendous amount of attention since the early 1990s, especially among wildlife managers trying to enhance habitat for northern bobwhites, grassland songbirds and other early-successional species. During this time, much work has been devoted to improving methods for establishment, identifying sound management practices and documenting the response of wildlife to habitat restoration efforts. Also noteworthy during this period is the interest nwsg have generated among forage and livestock producers. Research continues to show various nwsg are viable forage for hay production and grazing for several livestock species. This manual is intended to provide in-depth information on identifying, establishing and managing nwsg for natural resources professionals, forage and livestock producers and other landowners attempting to grow and manage nwsg either for wildlife and/or livestock.



Introduction

Nwsg are grasses historically indigenous to an area that actively grow during the warm months of the year. In the Mid-South, that includes those warm-season grasses that occurred prior to European settlement. Many non-native grasses occur "naturally," but that doesn't mean they are native. Naturalized grasses originated outside a particular region, but are able to exist (and often thrive) in the wild (without cultivation) in self-perpetuating populations. Most naturalized grasses in the Mid-South were brought to North America from Europe (tall fescue, orchardgrass), Africa (bermudagrass, crabgrass) or South America (dallisgrass, bahiagrass) as a forage crop.

Grasses are classified as warm- or cool-season based on their chemical pathways for photosynthesis. Warm-season grasses fix energy into 4-carbon units and are referred to as C4 grasses. As a result, their photosynthetic potential is much higher than that of cool-season grasses. They make most of their active growth when minimum daily temperatures reach approximately 60 F and soil temperatures reach 55 F. The optimum temperature for warm-season grass production is 85 – 95 F. Nwsg are dormant during autumn and winter. Cool-season grasses fix energy into 3-carbon units and are referred to as C3 grasses. They make most of their active growth during fall and spring months when the minimum daily temperature is approximately 40 F. The optimum temperature for cool-season grasses production is 60 – 80 F. What this means is warm-season grasses grow more rapidly during a relatively short period, while cool-season grasses grow more slowly during a longer period.

Technically, the term nwsg could include numerous warm-season grasses native to the Mid-South region. Nonetheless, seven species are most commonly promoted for their value as cover for wildlife and/or forage for livestock. These include big bluestem, little bluestem, broomsedge bluestem, indiangrass, sideoats grama, switchgrass and eastern gamagrass. It is important to realize not all of these have the same quality for wildlife habitat or livestock forage. For example, broomsedge offers excellent nesting habitat for bobwhites, but poor forage for livestock.

