
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

The Harlan D. Mills Collection Science Alliance

1999

Management of Software Engineering, The - Part I: Principles of Management of Software Engineering, The - Part I: Principles of

Software Engineering Software Engineering

Harlan D. Mills

Follow this and additional works at: https://trace.tennessee.edu/utk_harlan

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Mills, Harlan D., "Management of Software Engineering, The - Part I: Principles of Software Engineering"
(1999). The Harlan D. Mills Collection.
https://trace.tennessee.edu/utk_harlan/5

This Article is brought to you for free and open access by the Science Alliance at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in The Harlan D. Mills Collection by an authorized
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact
trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_harlan
https://trace.tennessee.edu/utk-scialli
https://trace.tennessee.edu/utk_harlan?utm_source=trace.tennessee.edu%2Futk_harlan%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=trace.tennessee.edu%2Futk_harlan%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

·l

l

- ~~·~·,

·t "~:::. Repri-nted from
·"'I

'·r~~
,.

§ : ::§-;-~ Systellls Journal
·-::---._,

Volume Ninteen I Number Four 11980

The management of software engineering
Part 1: Principles of software engineering
by H. D. Mills

Copyright 1980 by In ternational Business Machines Corporation. See individual articles for copying information. ISS N
18-8670. Printed in U·.S.A. '

\
:->¥:

i

j

1
I

414

Sofnmre engineering may be defined as ;he sysiemaric design
and de\·elopment of sofnmre products and 1he management of
th e software process . Software engineering has as one of its pri­
mary objectives the p roduction of programs thar meet specifica­
tions, and are demonstrably accurate, produced on time, and
within budget. This pap er in fi ve parts discusses the principles
and practices used by th e IBM Federal Systems Di\·ision fo r the
design , development , and managem ent of software .

The general principles of software engineering are set forth in
Part I, in which the author relates software engineering to the
whole field of the system development process - system engineer­
ing, hardware engineering , software engineering, and system in­
tegration . Presented briefly are overviews of the major aspects of
software engineering - design, development, and management.

Part II , on the software engineering program, deals with the ar­
chitecture of the new discipline. Discussed is the underlying con­
cept of the software development life cycle . Based upon this foun­
dation are a series of formally documented practices that set
forth the specifics of software design, development, and manage­
ment methods, which are presented in this paper. Also presented
is an educational program whereby this discipline with its prin­
ciples and practices has been made teachable.

Part Ill, on software engineering design practices , deals with ac­
tivities bounded by requirements definition on one side and pro­
gram implementation on the other. Three levels of design prac­
tices are defined, dealing with construction and verification of
software systems, modules within systems, and individual pro­
grams. At each stage , a new level of mathematical rigor and pre­
cision for creating and evaluating software designs is introduced.

Part IV, on software engineering development practices, dis­
cusses a methodology for translating designs into software prod­
ucts . The subject is treated under two main headings, cude man­
agement and integration engineering . These are rigorous meth­
ods for building the parts and integrating them into the whole
software product that meets the design specifications .

Part V deals with the management of software engineering,
which is primarily the intellectual control of the whole software
engineering process. Intellectual control is brought about by a
technical review strategy, a· cost management approach, and a
project environment for effective software development.

Copyright 1980 by International Business Machines Corporation. Copying is per­
mitted without payment of royalty provided that (I) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright notice are in-

MILLS IBM SYST J • VOL I9 • NO 4 • I980

The management of software engineering
Part 1: Principles of software engineering
by H. D. Mills

In the past 20 years, the Federal Systems Division of the IBM

Corporation has been involved with some of the nation's most
complex and ~demanding software developments. These include
the ground support software for the NASA Manned Space Series
of the Mercury , Gemini, Apollo, and Skylab Programs (reaching
the moon with Apollo), and both the ground and space software
for the NASA Space Shuttle Program. FSD has also developed soft­
ware for the Safeguard Anti-Ballistic Missile System, for the En­
route Traffic Control System for the FAA, and many other major
civil and defense systems.

Software engineering began to emerge in FSD some ten years ago
in a continuing evolution that is still underway. Ten years ago
general management expected the worst from software projects­
cost overruns, late deliveries, unreliable and incomplete soft­
ware. Today, management has learned to expect on-time, within­
budget deliveries of high-quality software. A Navy helicopter/
ship system, called LAMPS, provides a recent example. LAMPS

software was a four-year project of over 200 person-years of ef­
fort, developing over three million and integrating over seven mil­
lion words of program and data for eight different processors dis­
tributed between a helicopter and a ship, in 45 incremental deliv­
eries. Every one of those deliveries was on time and under
budget. A more extended example can be found in the NASA

space program, where in the past ten years, FSD has managed
some 7000 person-years of software development, developing
and integrating over a hundred million bytes of program and data
for ground and space processors in over a dozen projects. There
were few late or overrun deliveries in that decade , and none at all
in the past four years.

There have been two evolutions in FSD: fi rst, an evolution in
ideas, leading to a growing discipline in both the management and
technical sides of software engineering , and second, an evolution
in the number and skill of people using the discipline. This evolu­
tion has not been without pain and attrition . Software is a new
subject of human endeavor. Just as programming has evolved
from a cut and try individual activity to a precision design process
in structured programming, software engineering has evolved
from an undependable group activity to an orderly and manage­
able activity for meeting schedules and budgets with high-quality
products.

eluded on the first page. The title and abstract may be used without further per­
mission in computer-based and other information-service systems. Permission to
republish other excerpts should be obtained from the Editor.

IBM SYST J • VOL 19 • NO 4 • 1980 MILLS 415

416

It is one thing to talk about orderly software development, and
quite another to achieve it. The basis for this orderly control is
mathematical discipline, even though the problem being solved
by the software may not be mathematical. The key management
standards of software engineering in FSD are based on mathemati­
cal theorems about how programs can be structured, docu­
mented, and organized into larger systems, because without theo­
rems for bedrock, choices reduce to matters of management style
and individual experience.

The FSD Software Engineering Education which supports the
Program is highly mathematical for both managers and program­
mers. Set theory, logic, mathematical functions, and state ma­
chines play key roles in education, not for the sake of mathemat­
ics itself, but because practical experience has shown that that
level of precision is required in order to do more than talk about
orderly software development.

The present state of the FSD Software Engineering Program is
described in the accompanying papers.

"Software engineering program," by D. O'Neill
"Software engineering design practices," by R. C. Linger
"Software engineering development practices," by M. Dyer
"Software engineering management practices," by R. E. Quin­
nan

What is software?

Software began as a synonym for computer programs, but the
term has taken on a much more extensive meaning. The effective
use of computer hardware requires more than programs. It re­
quires well-informed users and human procedures for computer
operations, data entry, and program execution. These require­
ments call for instructions for humans of no less precision and
completeness than programs for the computers. Thus, operators'
guides, users' guides, etc. become as important to a system oper­
ation as programs. Further, the users must understand well
enough what the computers do to correctly interpret their outputs
and intelligently prepare their inputs to meet operational objec­
tives. Thus, requirements and specifications of computer pro­
grams and systems are of vital importance to the users as well.

Although computers began as single units serving a single user at
a time, the rapid growth of multi/distributed processing systems
to serve multi/distributed users has greatly expanded the role of
software. Software is the logical glue that can hold many comput­
ers and digital devices of all kinds together in a coherent system,
which in turn interacts with many kinds of people- clerical, pro-

MILLS IBM SYST J • VOL 19 • NO 4 • 1980

fessional, staff specialists, and management-in the operation of
an enterprise.

As a result of the pervasive role of software in a multi/distributed
processing system, it seems proper to redefine the term software
from its usual meaning of single programs to mean logical doc­
trine for the harmonious cooperation of a system of people and
machines- usually many kinds of people and many kinds of ma­
chines. In such a system, the agents of action are people and ma­
chines, with the blueprints for their action supplied by software.
A human procedure is as important to the system as a machine
procedure. People have radically different instruction sets than
machines, including an operation called "use your common
sense," but they have instruction sets just the same. The synchro­
nization of two people or a person and a machine is as important
as the synchronization of two machines, but people often supply
self-synchronization capabilities. Even ''off the shelf machines''
have an analog in "people with presently available skills."

Thus, software consists of operational requirements for a system,
its specifications, design, and programs, all its user manuals and
guides, and its maintenance documentation. Further, this whole
software complex needs to evolve as a consistent whole as the
operation evolves, as new hardware is added, and as new people
are added. That is, software is typically a set oflogical blueprints
for the operation and use of a multi/distributed processing system
by an organization of people in its natural evolution over time.

What is software engineering?

Software engineering is a growing set of disciplines and proce­
dures for the dependable development and maintenance of soft­
ware, as embodied in the FSD Software Engineering Practices,
and discussed in Reference 1. For a wider perspective, we can
identify the following four definite functions in an overall system
development process, the relationships among which are illus­
trated in Figure 1.

Software engineering stands between system engineering and
system integration, accepting from system engineering the sys­
tem software requirements and resources, and providing system
integration with the software for meeting those requirements with
those resources. Thus the total software of a system is a joint
product of system engineering and software engineering, which
begins with a defined system purpose and a defined configuration
of hardware.

Of course, operating systems, compilers, and programming sup­
port systems all represent special and specialized software sys-

IBM SYST J • VOL 19 • NO 4 • 1980 MILLS

Figure 1 System development

417

418

tern developments, and the disciplines and procedures of soft­
ware engineering apply fully to them. But we are usually more
preoccupied with application systems, which make use of such
support systems as extensions of the hardware.

The FSD practices classify the disciplines of Software Engineering
into the following three categories:

• Design-system design, module design, program design, and
data design, all of which culminate in source code in one or
more compilable programming languages, as well as in linkage
editor, loader, and job control languages.

• Development-organization of design activities into sustained
software development, selection, and control of design sup­
port facilities, code management, test, and software in­
tegration planning and control.

• Management-work breakdown and organization proce­
dures, estimation, and scheduling of personnel and computer
resources required for software design and development,
measurement and control of software design and develop­
ment.

Software engineering design

Attention to the principles of software design has focused on
three distinct areas during the past decade and has resulted in an
abundance of useful and well-tested material on the following
subjects:

• Sequential process control-characterized by structured pro­
gramming and program correctness ideas of Dahl, Dijkstra,
and Hoare,2 Hoare, 3 Linger, Mills, and Witt,4 and Wirth. 5

'
6

• System and data structuring-characterized by modular de­
composition ideas of Dahl, Dijkstra, and Hoare,2 Ferrentino
and Mills, 7

'
8 and Parnas. 9

•

• Real-time and multiple/distributed processing control-char­
acterized by concurrent processing and process synchro­
nization ideas of Brinch Hansen, 10 Hoare, 11 and Wirth. 12

Software design requires the integration of these three areas into
a systematic process, as discussed in Reference 13. These design
principles provide increased discipline and repeatability for the
design process. Designers can understand, evaluate, and criticize
each other's work in a common, objective framework. As pointed
out by Weinberg, 14 people can better practice egoless software
design by focusing criticisms on the design and not on the author.
These design principles also establish the criteria for more for­
malized design inspection procedures that permit designers, in-

MILLS IBM SYST J • VOL 19 • NO 4 • 1980

spectors, and management to better prepare, conduct, and inter­
pret the results of periodic design inspections.

Software engineering development

Although the primary thrust of software engineering is embodied
in design, the organization and support of design activities into
sustained software development is an equally important activity,
as discussed in References 1, 15, and 16. The selection of design
and programming languages and their support tools, the use of
library support systems to maintain and monitor a design under
development, and the implementation of a test and integration
strategy will all affect the design process in major ways. The dis­
ciplines and procedures needed to sustain software development
must be scrutinized and chosen as carefully as design principles.

Intellectual control is the key to orderly software development. It
is made possible by a sequence of logically equivalent software
descriptions, beginning with high-level specifications and pro­
ceeding through successively lower-level specification refine­
ments until the level of source code is reached. Successive de­
scriptions can be base lined and validated to milestones, so that
the intermediate progress of software development is more vis­
ible to management. This activity of creating a sequence of more
and more detailed specification refinements of an initial specifica­
tion is the process of top-down development.

The intellectual control and management of design abstractions
and details is the basis for the development discipline. Design and
programming languages are required that can deal with procedure
abstractions and data abstractions, with system structure, and
with the harmonious cooperation of multi/distributed processes .
Library support systems are required that can handle the conve­
nient creation, storage, retrieval, and correction of design units ,
and provide the overall assessment of design status and progress
against objectives.

The first guarantee of quality in design is in well-informed, well­
educated, and well-motivated designers. Quality must be built
into designs, and cannot be inspected in or tested in. Never­
theless , any prudent development process verifies quality
through inspection and testing. Inspection by peers in design, by
users or surrogates, by other financial specialists concerned with
cost, reliability, or maintainability not only increases confidence
in the design at hand, but also provides designers with valuable
lessons and insights to be applied to future designs. The very fact
that designs face inspections motivates even the most con­
scientious designers to greater care, deeper simplicities, and
more precision in their work.

IBM SYST J o VOL 19 o NO 4 o 1980 MILLS 419

420

Software engineering management

Management from a software engineering viewpoint is primarily
the management of a design process, and represents an equally
difficult intellectual activity. While the process is highly creative,
it must still be estimated and scheduled, so that the various parts
of the design activity can be coordinated and integrated into a
harmonious result, and so that users and other functions of sys­
tem development can plan on this result. The intellectual control
that comes from well-conceived design and development dis­
ciplines and procedures is invaluable in this process. Without that
intellectual control, even the best managers face hopeless odds in
trying to see the work through.

To meet cost/schedule commitments based on imperfect estima­
tion techniques , a software engineering manager must adopt a
manage-and-design-to-cost/schedule process. That process re­
quires a continuous and relentless rectification of design objec­
tives with the cost/scheduleneeded to achieve those objectives.
Occasionally, a brilliant new approach or technique which in­
creases productivity and shortens time in the development pro­
cess may simplify this . But usually, the best possible approaches
and techniques have already been planned, and a shortfall or
windfall in achievable software requires consultation with the
user to make the best choices among function, performance, cost,
and schedule . The intellectual control of software design not only
allows better choices in a current development, but also stimu­
lates subsequent improvements in function or performance for a
well-designed baseline system resulting from the current develop­
ment.

In software engineering, there are two parts to an estimate-mak­
ing a good estimate and making the estimate good. The software
engineering manager must see that both parts are right in addition
to ensuring the right function and performance. That is not an
easy task and never will be, but there is help on the way, as de­
scribed in the companion articles and in the references.

ACKNOWLEDGMENTS

The authors thank FSD President John B. Jackson for giving them
as well as other developers and students of the software engineer­
ing program the leadership and means to implement this program.
We also thank James A. Bitonti for setting for us the goal of de­
veloping a written base of procedures for the educational program
and project compliance accountability.

The author is located at the IBM Federal Systems Division , 10215
Fernwood Road, Bethesda, MD 20034.

MILLS IBM SYST J • VOL 19 • NO 4 • 1980

The management of software engineering
Part II: Software engineering program
by D. O'Neill

The breadth of applications in industry today stresses software
development and has resulted in a diversity of design tech­
nologies, computer products, programming languages, support
software tools, and documentation requirements . Moving from
one application area to another can require major adjustments by
both technical people and management. These time- and energy­
consuming adjustments introduce more diversity and further
complicate an already complex process.

It is well known that software costs associated with computer
system developments have been increasing and are becoming a
critical cost element in these developments. 17

'
18 Budget data in­

dicate that software costs may become ninety percent of system
development costs by 1985. Yet the development ofreliable soft­
ware on schedule within cost has been and remains a significant
management challenge. 19

'
20 At the same time , hardware manufac­

turing costs are being reduced by orders of magnitude. These
trends are introducing new levels of complexity into software de­
velopments as demands for system performance and reliability
are requiring greater precision in software design and develop­
ment. Potential solutions to these problems have been surveyed
by the IBM Federal Systems Division, with particular attention to
recent developments in the academic and professional commu­
nities . 7 , 13,2 1-23

The result of our research into these new developments has been
to make these developments teachable and practical in the dis­
cipline of software engineering. Software engineering has been
defined as the systematic design and development of software
products and the management of the software process. The soft­
ware engineering discipline combines design topics resulting from
university influences with the software development and manage­
ment expertise of industry. Both perspectives are necessary to
support a software engineering program that blends technology
advances with practical innovations.

The software engineering program of the IBM Federal Systems
Division demonstrates a commitment to the improving of the soft­
ware development process beyond the software technology in­
novations of structured programming, top-down development ,

Copyright 1980 by International Business Machines Corporation. Copying is per­
mitted without payment of royalty provided that (I) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright notice are in­
cluded on the first page. The title and abstract may be used without further per­
mission in computer-based and other information-service systems. Permission to
republish other excerpts should be obtained from the Editor.

ffi~ SYST J • VOL 19 • NO 4 • 1980 O' NEILL 421

422

Figure 1 Software engineering practices organization

SOFTWARE DEVELOPMENT

CODE MANAGEMENT
INTEGRATION ENGINEERING

SOFTWARE DESIGN

SYSTEMATIC PROGRAMM ING
SYSTEMATIC DESIGN
ADVANCED DESIGN

SOFTWARE MANAGEMENT

TECHNICAL REVIEWS
COST MANAGEMENT

PROGRAM MANAGEMENT

and chief programmer teams. Following the advances in hard­
ware technology, this program is designed to teach the practice of
higher levels of precision in software design and develop­
ment. 1,4'

24
'
25 The program addresses current trends in the business

environment that demand software product quality and reduced
software costs .

The software engineering program combines development of
comprehensive practices, education in such practices, and devel­
opment of necessary support tools. The primary thrust of the
program is the preparation of uniform software engineering prac­
tices that apply modern design, practical development, and
proven management methods. Software engineering practices are
introduced through formal education to provide a broad base of
professional programmers who are able to produce software sys­
tems utilizing these disciplines. Uniform tools are provided to
support the uniform practices. Process assessment has also been
introduced to ensure that this program is being followed and to
measure its effectiveness.

A comprehensive collection of technical and managerial practices
is emerging from the combination of successful experience and
university research. These represent the best of the current un­
derstanding of the software engineering process and a proven
way of designing, developing, and managing software. Each prac­
tice defines specific work products that serve as visible inter­
mediate steps in the process. The application of the design tech­
niques produces modular designs and structured programs that
are reliable and efficient as well as adaptable to change. Software
development utilizes high-level languages and programming sup­
port library hierarchies to manage code produced in a natural se­
quence of phased increments. Management methodology pro­
vides plans and controls that ensure cost and schedule visibility
of the process, as well as technical performance measurements of
the emerging product. The relationships among software engi­
neering design, development, and management practices are
shown in Figure 1 and are discussed later in Parts III to V.

O'NEILL IBM SYST J • VOL 19 • NO 4 o 1980

The software design practices introduce advanced software tech­
nology including systematic programming, systematic design ,
and advanced design. Systematic programming practices involve
logical and program expression for recording designs, program
design through stepwise refinement, and program verification
using formal proof of correctness, as well as less formal methods.
Systematic design practices cover data design with data types and
structures, and modular design using state machines and mod­
ules. Advanced design practices cover concurrent design includ­
ing synchronization and real-time considerations, and software
system specification using state machine methodology.

Software development practices include code management and
integration engineering. Code management ensures that software
is uniform with respect to programming language usage , coding
standards, and conventions. This also includes software system­
building procedures and covers computer product support soft­
ware and the software development environment. Integration
engineering introduces procedures for software integration ,
incremental software development, and interface specification
management. It also covers simulation and performance mea­
surement software.

Software management practices include technical reviews , cost
management, and program management. The technical reviews
are product based for the completion of each work component
of the software development life cycle. Cost management in­
cludes the practices for process and design-to-cost methodology,
and program management is designed to improve the visibility of
the software process through more effective plans and controls.

Software development life cycle

A set of activities has been defined that describes the software
process from system definition through operational support. The
activities that make up the software process are further defined in
terms of work components that identify the tasks to be per­
formed, as shown in Table 1. These activities portray software in
the enlarged perspective of the full life cycle as viewed by the
customer, and provide the basis for effective management. The
activities may overlap in time, but each must be scheduled for
completion prior to subsequent dependent activities . Many devel­
opments call for performance in all activities of the life cycle ,
whereas others may involve only certain ones. Work components
have specific completion criteria in the form of work products that
are subject to technical review.

IBM SYST J • VOL 19 • NO 4 • 1980 O'NETLL 423

424

Table 1 Software life-cycle activities

Activity

System definition

Software design

Software development

Software system test

System and
acceptance test

Operational support

Work components

Software requirements definition
Software system description
Software development planning

Functional design
Program design
Test design
Software tools
Design evaluation

Module development
Development testing

Software system test procedures
Software integration and test

System test support
Acceptance test support

System operation support
Training
Site deployment support

In many projects, support activities that are required to produce a
work product may be collected together from an organizational or
cost accounting viewpoint into a general support function. Typi­
cally, this includes project management, software configuration
management, software quality assurance, software cost engineer­
ing, administrative centers, technical publication/2 financial man­
agement services, and data management. Software engineering
practices apply across the full life cycle. The correspondence be­
tween software engineering practices and the life-cycle activities
is shown in Table 2.

System definition includes definition and analysis of the software
system requirements, establishment of a software system de­
scription, and initiation of the software development planning
necessary to proceed with further development of the software
system. The software system requirements are a record of the
complete system capability, including both the software and the
environment in which the system is to operate. Because require­
ments documentation is expressed in natural language and may
lack precision, a description that is produced for the software sys­
tem only is prepared in a precise, detailed, succinct, and suf­
ficient manner using prescribed methods of expression. The soft­
ware system description must be traceable to the requirements
document and must maintain semantic correspondence with that
document. The initial software development plan is prepared on
the basis of the software system description and includes cost
management planning, schedules and external dependencies, and
resources of both people and machines.

O'NEILL IBM SYST J • VOL 19 • NO 4 • 1980

Table 2 Practices and activities relationships

Life cycle
activities

Design Development

Advanced Systematic Systematic Code Integration Technical
design design programming management engineering reviews

System •
definition

Software • • • •
design

Software • • •
develop-
ment

Software • •
system
test

System and •
accept-
ance test

Operational •
support

Software design includes conversion of the software system de­
scription into a design, design evaluation, preparation of test de­
signs, and production of software tools. Functional designs are
composed of module designs produced according to systematic
design practices, and program designs are composed of struc­
tured programs produced from the module designs according to
systematic programming practices. The preparation of test de­
signs is performed using integration engineering practices.

The software development activity includes module development
and development testing. Module development is the final elabo­
ration of design details according to systematic programming
practices and the preparation of source language statements that
can be translated into executing code. These statements comply
with their program and module designs and are produced in ac­
cordance with code management practices. Module testing in­
cludes test procedure executions to ensure that an implemented
module complies with the specification of the software system
and is conducted according to integration engineering practices.

Software system testing includes the preparation of testing proce­
dures followed by software integration and testing as specified in
the integration engineering practices . This is to ensure that the
implemented software system complies with specification of the
software system and the code management practices.

System and acceptance testing ensures that the software system
complies with all project-deliverable objectives. This testing also
verifies that all deliverable items exist and all reviews have been
successfully completed. Code management practices apply dur­
ing this activity.

£BM SYST J o VOL 19 o NO 4 o 1980 O'NEILL

•
•
•

•

•

425

Management

Cost Program
management management

• •
• •
• •

• •

• •

• •

Figure 2 Software engineering
program organization

SOFT- : SOFTWARE
WARE : ENGINEERING
ENGI- • COUNCI L

NEERING -----------
AND

TECH- -----------
NOLOGY: SOFTWARE
ORGANI- 1 TECHNOLOGY

ZATION l S~~'if~~G

426

Operational support includes system operation support, site de­
ployment support, and training; code management practices ap­
ply here as well. The product of a project is typically delivered to
a customer who operates it with minimal post-delivery assist­
ance. Customer procedures for change control, system evalua­
tion, and so forth apply during the operations stage of the life
cycle.

Software engineering program implementation

The main thrust of the software engineering program is to im­
prove product quality and reduce cost by implementing consis­
tent practices. A successful operation of the program also re­
quires education, tools, and measurements. Education in modern
techniques gives personnel an understanding and appreciation of
the methods defined in the practices . Tools that support these
methods ensure their effective utilization and rapid adoption. The
application of these methods and realization of their benefits re­
quire continuous assessment and feedback of results.

The software engineering program requires continuous communi­
cation between the business areas responsible for contract per­
formance and the Software Engineering and Advanced Tech­
nology group, which is the divisional organization responsible for
technology advances . Two special communication channels,
shown in Figure 2, have been established for this purpose.

A Software Engineering Council provides policy guidance in soft­
ware operations and is responsible for setting the direction of the
software engineering program. The Council, which meets quar­
terly, is composed of senior software executives. A Software
Technology Steering Group, which sponsors and reviews the
software engineering practices, formulates software technology
strategy . The latter group also generates the software investment
programs. The steering group meets monthly and is composed of
representatives from the business areas and the Software Engi­
neering and Technology Group. They are responsible for formu­
lating the software engineering practices to reflect a combination
of the best current business usage and practical new ideas from
the computer sciences. Participation of the business areas en­
sures their commitment to the program while at the same time
providing the technologists with practical insights and project
constraints . ·

A software engineering curriculum has been designed around
seminars and workshops, as illustrated in Figure 3. Three prereq­
uisite self-study courses and four instructor-taught courses are
available in this curriculum, which was begun in October 1977
and is to be completed in 1981. Their common objective is to

O'NEILL IBM SYST J o VOL 19 • NO 4 o 1980

Figure 3 Software engineering education curriculum

'SELF- TEST

PROCESS
DESIGN

LANGUAGE
SELF

STUDY

ALGEB RA
SELF

STUDY

LOGICAL
EXPRESSION

SEMINAR

T
E
s
T

T

.

E
s
T

PREREQUISITE TESTS

PROCESS
DESIGN

LANGUAGE

B
LOGICAL

EXPR ESSION

BYPASS 'lL------...J
ANY OR ALL

SYSTEMATIC T
PROGRAMMING E

WORKSHOP s
(SPW) T

significantly improve the predictability of the software process
and the quality of the resulting product. The underlying technical
objective is to increase visibility and intellectual control over a
developing software product by the process of stepwise refine­
ment using standard conceptual models and a limited number of
basic control and data structures. The process calls for the suc­
cessive replacement of abstract designs with increasingly more
detailed designs that are known to be equivalent. The underlying
management objective is to provide complementary development
strategies , feedback mechanisms, and control techniques. Admis­
sion to these courses is arranged through Software Engineering
Program Coordinators in each business area. Table 3 summarizes
information on the expected audience , prerequisites , and dura­
tion of each course.

The three prerequisite self-studies prepare students to read the
professional literature and to communicate in the workshops us­
ing the language of mathematics and a software design language.
Prerequisite tests are administered by business area coordinators
in algebra, Process Design Language (PDL) , and logical expression

asic concepts and the notations of set theory and symbolic
logic).

A. Systematic Programming Workshop (SPW) advocates a particu­
lar discipline for the design of sequential programs modeled on
mathematical functions. Designs are expanded from abstract
statements of a program' s intended function, using PDL, which is
a programming-like design language . At each step , a design state-

Y SYST J • VOL 19 • NO 4 • 1980 O' NEILL 427

SOFTWARE
MANAGEMENT

WORKSHOP
(SMW)

ADVANCED
DESIGN

WORKSHOP
(ADW)

Table 3 Software education summary

Course

Self-study

Systematic
Programming
Workshop
(SPW)

Systematic
Design
Workshop
(SDW)

Advanced
Design
Workshop
(ADW)

Software
Management
Workshop
(SMW)

--
Audience Prerequisites Duration

All programmers Programming Logical expression 10- 15 hours
Algebra 112- 1 hour and analysts experience
Process Design Language 6- 10 hours

All programmers Algebra, 8 112 days
and analysts Process Design
and others Language
designated by Logical expression
management

Key programmers Satisfactory 5 days
and analysts completion of
and others Systematic
designated by Programming
management Workshop

Software designers Satisfactory 3 days
and architects completion of
designated by Systematic
management Design

Workshop

All software Satisfactory 5 days
managers and completion of
selected
technical
personnel

428

SDWorSDW
concepts
seminar

ment is replaced by a simple function-equivalent program whose
components are simpler intended functions. By restricting these
replacement programs to a limited set of program structures, the
equivalence of successive versions of the design is more readily
verified.

A Systematic Design Workshop (SDW) extends the stepwise-re­
finement discipline of SPW to include the design of sequential pro­
grams with retained data, modeled on finite-state machines. State
machines provide for encapsulating collections of data, with ac­
cess limited to a fixed set of related programs. Concepts are in­
troduced that allow the designer to relate initial abstract represen­
tations of state data to later, more specific representations .

An Advanced Design Workshop/Seminar (ADWIS) extends the de­
sign concepts of SDW to include the design of concurrent systems,
modeled on networks of communicating state machines. The de­
signer is asked to view the overall system as a state machine, and
then to partition state data to define a network of state machines.
Each input is identified with a path through the network. Several
options for introducing and controlling concurrency within this
framework are discussed. The approach is applicable to a wide
variety of hardware configurations.

O'NEILL IBM SYST J o VOL 19 o NO 4 o 1980

The Software Management Workshop (SMW) includes a review of
~oncepts of FSD's functional organization, and the specific role of
rhe software engineering function. The primary emphasis is on
ilie principles underlying FSD's software standards and practices,
in the context of management of the software product, the techni-
al methodology, the organization, the development environ­

ment , and the customer.

Education has been carried out by a small group of instructors
drawn from the professional programming cadre in FSD. This was
a departure from the traditional method of using full-time educa­
tors who have less actual programming experience . The cowses
themselves represented new offerings , much more technical than
most internal training programs. The level of difficulty was also
high , for job-related required courses. Nevertheless , student
achievement has been excellent, and course evaluations by the
students have been highly favorable.

A principal software investment priority is the development of
the tools needed to reinforce software engineering and establish
an environment of modern methods. Current emphasis is on two
tools , a system development laboratory and a programming sup­
port library, because of their applicability to multiple facets of the
program.

The software development laboratory establishes a more com­
plete and uniform programming environment. The laboratory in-
ludes interactive, batch, and dedicated development facilities

for design creation , program generation, simulation, and target
machine execution. The implementation of this discipline uses
proven off-the-shelf development software tools that are in­
tegrated to address the software development process. This ap­
proach isolates validation of system design to the software design
activity, implementation to the software development activity,
and software-hardware interaction to the system test activity.
The laboratory approach provides the system developer with a
ingle interface for the entire software development process.

The integrated development discipline uses commercially sup­
ported large-scale operating systems to aid in the reduction of
life-cycle costs. With time-shared resources, small projects and
large projects alike can use the total technology without incurring

e expense of a large dedicated resource.

The programming support library helps organize and control a
rogramming project. It serves as the means of communication

among development personnel and forms a standard interface be­
een programmers and the system development laboratory. The

rogramming support library is designed to provide a complete
· erarchicallibrary facility. As such the library supports the code

SYST J o VOL 19 o NO 4 o 1980 O' NEILL 429

430

management and machinability needs associated with process de­
sign language during design, and it supports programming lan­
guages during module development, software integration, and
product release. Thus this library is a key element in the appli­
cation of software engineering technology . It is a collection of
computer programs, disk-resident libraries, and operating proce­
dures that provide facilities for programmers to store, edit, com­
pile, and execute programs under development. Typically, the li­
brary produces summary statistics and analyses of such activities
as storing, compiling, and executing programs.

Software engineering process assessment

One of the best ways of estimating future software development
efforts and schedules is to rely on past experience. Yet few man­
agers have access to recorded development data. A data base and
retrieval system that can be used by line management to retrieve
single-project development data as well as composite reports of
selected categories of software makes possible a comparison of
one manager' s experience with that of managers of comparable
efforts. The data base is also a source of information on software
development. 3

,4 In this role, it can support evaluations of the ef­
fectiveness of the software engineering program.

Individual projects may involve several categories of software,
such as application , diagnostic, and support software. Appli­
cation software can be furtherbroken down by such character­
istics as real-time signal processing, process control, and on-line
graphics.

Data are associated with specific life-cycle activities, each of
which is evaluated to determine key data parameters to be col­
lected. Quantitative data and , more subjectively, project success
judgments are included. The criteria for determining the per­
tinence of data are useful to software managers for characterizing
and estimating the size of software projects.

Concluding remarks

Recent advances in software technology have necessitated a
coordinated program involving people , tools, and practices. Edu­
cation through a rich curriculum of software engineering courses
is well underway. The development of tools that establish the
proper environment for good programming is in progress, and
software engineering practices are assembled and ready for use.

This program reflects an understanding of the software develop­
ment process. With a realistic assessment of traditional methods,

O' NEILL IBM SYST J • VOL 19 • NO 4 • 1980

a

software engineering includes a comprehensive collection of
technical and management practices that can be applied today.
Beginning with software system requirements recorded in source
libraries, advanced techniques are now available to permit the
conceptual abstraction, modularization, and structuring of de­
signs that reduce complexity to manageable proportions and im­
prove the completeness and correctness of the resulting software
product. Modem development tools and uniform code manage­
ment practices support orderly code generation in high-level lan­
guages, with storage in hierarchical libraries from which patch­
free, quality source code products are delivered. Integration engi­
neering is emerging as a distinct organizational function with a
foundation of advanced technology. Management practices pro­
vide the methodology for balancing cost, schedule, performance,
and quality perspectives.

As a result, software product quality can be dramatically im­
proved by the routine application of modern design practices that
contribute directly to program correctness and error avoidance
through simplified and understandable designs. The manage­
ability of software can be improved through uniform practices
that govern plans, controls, and cost management, and through
technology innovations that greatly improve the visibility of the
software product for more effective management and control.
Productivity improvements result primarily from the improve­
ments in software product quality and the elimination or reduc­
tion of software errors. This reduces error detection and correc­
tion during testing. In addition to simplified designs, broader us­
age of higher-level programming languages and improved support
tools also contribute to productivity gains.

Taken together, the software engineering discipline is a broad at­
tack on the problems faced by the software community. 26 By
emphasizing methodology and theoretical foundations, FSD has
attempted to establish a common level on which each individual
can build to the full extent of one's own creative ability. The
benefit has been steady improvement in measured results over a
sustained period of time.

The author is located at the IBM Federal Systems Division, 18/00
Frederick Drive, Gaithersburg, MD 20780.

IB M SYST J • VOL 19 • NO 4 • 1980 O' NEILL 431

432

The management of software engineering
Part Ill: Software design practices
by R. C. Linger

It is well known that large-scale software development is a diffi­
cult and complex process that demands the best design and man­
agement techniques available. Without effective principles for
structuring and organizing software design and development ,
even the best-managed projects can be overwhelmed by the sheer
volume of logical complexity. What is not so well known is that
with increasing frequency, large-scale software systems are being
developed in an orderly and systematic manner according to new
design and development principles , and that these systems are
exhibiting remarkable quality in testing and use. The level of pre­
cision and rigor in their construction is itself remarkable, com­
pared to what was thought possible just a few years ago .

A major forcing factor in this emerging human capability for logi­
cal precision on a large scale has been a dramatic increase, over
the past decade, both in the availability of documented and tested
principles for software design, and in the number of software pro­
fessionals who understand and can apply them. These principles
include the structured programming and program correctness
ideas of Dahl, Dijkstra, and Hoare,2 Hoare,3 Linger, Mills, and
Witt, 4 and Wirth; 5

'
6 the module and data design ideas of Dahl,

Dijkstra, and Hoare,2 Ferrentino and Mills, 7 and Pamas;9 and the
concurrent processing and synchronization ideas of Brinch Han­
sen, 10 Hoare, 11 and Dijkstra. 27 Effective management principles
for organizing and controlling software development have
emerged as well, as described in Mills 11 and Baker. 15

In 1977, the Federal Systems Division of the IBM Corporation
established a Software Engineering Program to create a set of
uniform software practices dealing with software design, devel­
opment, and management principles (as indicated in Part II, Fig­
ure 1), and to develop an educational curriculum based on the
practices. The resulting practices (some thirty in all) are the prod­
uct of an extensive review process and reflect the best thinking
and judgement of experienced software practitioners brought to­
gether from across the division.

Each practice is a terse statement of a particular aspect of soft­
ware technology, defined in terms of scope, objectives, area of

Copyright 1980 by International Business Machines Corporation . Copying is per­
mitted without payment of royalty provided that (!) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright notice are
included on the first page. The title and abstract may be used without further
permission in computer-based and other information-service systems. Permission
to republish other excerpts should be obtained from the Editor.

LINGER IBM SYST J • VOL 19 • NO 4 • 1980

application, methodology, and required work products. Each
practice establishes a foundation for acceptable professional per­
formance, but makes no attempt to educate to that foundation.
That is the purpose of the educational curriculum. In fact, a prac­
tice may seem mysterious indeed , without a corresponding
course to back it up!

In particular, the software design practices define principles for
specification, design, and verification of software systems, mod­
ules, data , and programs. The principles provide means to main­
tain intellectual control over complex software developments.
They have deep roots in mathematics, yet correspond closely to
concepts that have long been part of effective software design.
Their value lies in the increased discipline and order they bring to
the design process, as well as in the improved quality of the re­
sulting software products . The practices provide uniform ex­
pressive forms at each stage of design for better communication
among software designers , managers , and users . They also pro­
vide objective criteria for design analysis and evaluation, as part
of a continuing process of inspection and review.

The software design practices are organized into three groups, as
shown in Table 1. Practices in the first group, systematic pro­
gramming, deal with forms for recording individual program de­
signs, as well as techniques for program construction and veri­
fication. Methods for organizing the synchronous logic of a soft­
ware system into a hierarchy of design modules (special
combinations of programs and permanent data) are defined in the
second group , systematic design. Finally, the advanced design
group prescribes techniques for overall software system specifi­
cation and for the design of concurrent programs that must share
resources and cooperate in execution.

Software design disciplines

Three of the practices , one from each group, form a logical pro­
gression of design disciplines , that is , program design, modular
design, and real-time design. Each of these practices defines con­
cepts for a particular level of expression within the overall soft­
ware design process. The idea of these three practices, dealing
with design of programs , modules, and concurrent systems, is not
that of decomposition of subject matter. Rather the idea is that of
a sequence of building block methodologies , each of which draws
heavily on its predecessors .

Program design, the basic practice of the three, is concerned with
rograms that execute and transform data independently of data
orage between executions. Modular design makes use of pro­

grams, with the one additional concept of the storage of data be-

- SYST J • VOL 19 • NO 4 • 1980 LINGER 433

434

Table 1 Software design practices

Systematic programming practices

Logical expression

Program expression

Program design

Program design verification

Systematic design practices

Data design

Modular design

Advanced design practices

Software system specification

Real-time design

Purpose

Prescribes mathematics-based tech­
niques for precise expression and rea­
soning that apply to all phases of soft­
ware development.

Defines control, data, and program
structures for recording program de­
signs.

Specifies a process of stepwise refine­
ment fo r recording structured program
designs .

Prescribes function-theoretic techniques
for proving the correctness of struc­
tured programs .

Specifies the use of abstract data objects
and operations in a high-level design
framework.

Defines techniques for designing syn­
chronous software systems, based on
state machines and design modules.

Defines a process based on state ma­
chines for creating a specification as
the cornerstone documentation of a
software system.

Defines a stagewise process for design­
ing asynchronous software to achieve
correct concurrent operation, with
optimization to meet real-time proc­
essing requirements.

tween executions. It permits the definition of a data processing
service for a user (a person or another module), with data storage
as an integral part of that service. A module is constructed out of
program operations plus the designation of data to be retained
(stored) after program executions. The real-time design practice
makes use of modules with the one additional concept of the
asynchronous control of concurrent module executions. That is,
a system is constructed out of modules plus the designation of
real-time priorities for their concurrent execution.

In consequence of this building block structure, the design activi­
ties of a software system are sharply defined at the three levels of
program, module, and system. At the system level, one is con­
cerned only with the control of modules, and defers matters of
user specifications and services to the module level. At the mod­
ule level, one defers matters of processing to the program level.
In summary, these design practices have the following properties .

LINGER IBM SYST J • VOL !9 • NO 4 • 1980

Program design is concerned with programs only, but with no
permanent storage of data between program invocations. The log­
ical model of a program is a mathematical function, which defines
the input and output characteristics of the program, but not its
internals. Elements of the program design practice are shown in
Appendix A, as an example of the format and content of an FSD

practice .

Modular design is concerned with a collection of program opera­
tions and persistent data storage facilities that (1) make up a com­
plete service to some user, and (2) represent all permissible ways
of affecting the persistent data. A module is incompletely defined
if other programs can affect its persistent data in any way-other
than through the services that the module provides. The logical
model of a module is a state machine that defines (1) the collec­
tive input and output characteristics of all the program operations
of the module and (2) the data that are persistent (i.e., the state of
the state machine).

Real-time design is concerned with the coordination and synchro­
nization of a collection of modules operating concurrently in a
computing system, possibly with multiple processors, so that
they (1) do not inadvertently interfere with one another, (2) meet
real-time deadlines as required, and (3) make sufficiently efficient
use of the computing system. The logical model of a concurrent
system design is an indeterministic state machine, which reflects
the various possible rates of execution of its constituent modules
in providing acceptable system performance to the module users.
In practice, a collection of modules may be initialized together,
then run asynchronously for some period of time on demand from
various users, and then quiesced together again. During this time,
other modules may be initialized, run, and quiesced asynchro­
nously.

The remaining software design practices support and extend this
progression of design disciplines. The practices of the advanced
design group are currently under development. The systematic
programming and systematic design practices are now described
in detail.

Systematic programming practices

The logical expression practice specifies rigorous methods of rea­
oning and expression based on mathematical principles for use

during system and program development. Logical expression in-
tudes the concepts, structures, operations, and notation of set

theory, functions, and predicate logic. These expressive forms
improve communication among designers and help clarify pro­
gram requiremen~s, specification, and design documentation.

::B!.I SYST J • VOL 19 • NO 4 o 1980 LINGER

logical

expression

435

program

expression

436

They permit precision without vagueness in expressing design ab­
stractions, while allowing the deferral of details to later phases of
development.

It is possible to develop small programs without these standards
and with less formality, but it is practically impossible to develop
large software systems under sound engineering control at an ac­
ceptable level of reliability , productivity, and quality without an
equivalent level of formality and logical precision. The logical ex­
pression practice is the conceptual foundation for other software
engineering techniques, and helps · develop familiarity with pat­
terns ofthought and notation found in software engineering litera­
ture.

Specifications in natural language often prove difficult to check
for completeness, and design and implementation details can be
easily and unintentionally mixed with the specification of pro­
cessing requirements. But a compact mathematics-based notation
(for example, sets and set operations) can help define precisely
what is required at a uniform level of specification. The complete­
ness of such a specification is more easily checked, and the even­
tual designs of specified objects (such as sequential or direct-ac­
cess files) and operations (such as algorithms to test for set mem­
bership, add and delete members , etc.) are not influenced by
premature detailing. Natural language explanations of the set op­
erations can then be added for clarity, but with no requirement to
carry the full burden of specification.

The program expression practice defines requirements for the
textual language for recording program designs. This language is
intended to support the following activities:

• Stepwise design of programs with correctness verification.
• Effective communication among users, designers, and devel­

opers.
• Reading, studying, and group reviewing of program designs.

The use of a design language helps to institutionalize the design
process itself, so that design becomes a standard project activity,
with its own intermediate work product between thought and
code. For designers, there is time to schedule design progress,
and for managers there is visible evidence of that progress. The
problem of " ad hoc design in code" is superseded by a new me­
dium and methodology for creating and reviewing the logical
structures of a software system prior to implementation.

A definition of the Process Design Language (PDL) is maintained
in an FSD bulletin, with a formal control board, as an example
language that satisfies the requirements of the program ex­
pression practice. PDL is an open-ended specialization of natural

LINGER IBM SYST J • VOL 19 • NO 4 • 1980

- • 1980

Figure 1 Some PDL control structures

sequence:

firstpart

secondpart

nth part

1fthenelse:

l function]

iftest

then [funct ion]

then part

else [function]

elsepart

do [function]

firstpart

secondpart

n th part

od

whiledo:

[function]

wh ile

whi letest

do [function]

dopart

od

dowhiledo:

[function]

dol [function]

do pa rt I

while

whiletest

do2 [function]

dopart2

od

language, not a closed formallanguage, 4 and permits the design­
ing of software from a logical point of view without getting into
the physical storage and operations of specific computing sys­
tems. PDL permits precision for human expression and for direct
human translation into target programming languages.

The principal specialization of PDL from natural language occurs
in a standard outer syntax of control, data, and program struc­
tures , employing a few PDL keywords and a tabular typographic
form. Outer syntax describes how operations are sequenced and
controlled, how data are defined and accessed, and how programs
are organized. A more flexible inner syntax of PDL deals with op­
erations and tests. Outer syntax structures are applied with little
or no variation from project to project, whereas inner syntax is
intended to be specialized according to individual project needs. 28

The outer syntax control structures of PDL include sequence ,
fordo, ifthen, ifthenelse, case, whiledo, dountil, and dowhiledo.
Some of these structures are depicted in Figure 1 along with

lBM SYST J • VOL 19 • NO 4 • 1980 LINGER

outer

syntax

437

438

equivalent flowcharts; the structures are delimited by keywords
shown in boldface, with parts indented for readability in larger
contexts. In their effect on data, each of these single-entry/single­
exit structures can be precisely described by a mathematical
function that defines input and output characteristics, but de­
scribes nothing of internal operations. This function is known as
the program function of the control structure.

In addition to control structures, PDL outer syntax provides high­
level data structures, such as queues, stacks, sets, and se­
quences, together with conventions for their access .

Logical commentary, delimited in PDL programs by square brack­
ets, is an important part of the design language. One type of logi­
cal commentary, known as action or function commentary, is
used to record program functions, as shown in Figure 1. Function
commentary can precede a control structure to define its func­
tion, or be attached to do, then, else, etc. , keywords to define the
function of the corresponding dopart, thenpart, elsepart, etc.
Function commentary makes program designs self-documenting
by recording intermediate abstractions in the design process.
These abstractions make use of the expressive forms of the logi­
cal expression practice. The result is designs that can be read and
understood at any level of detail.

PDL outer syntax program structures permit designs to be orga­
nized into hierarchies of small structured programs called seg­
ments. Each segment is delimited by keywords proc and corp and
is of limited size (usually a page or less of text) and complexity.
Segments are invoked in the hierarchy by statements of the fol­
lowing form:

run segmentname (parameter list)

Data objects are passed to and from segments in parameter lists,
and local data, incidental to the function of a segment, are de­
clared within the segment itself.

A miniature segment-structured program design is shown in Ap­
pendix B, along with logical commentary. Here function com­
ments attached to proc keywords define the function of each seg­
ment. The operation next on the right of an assignment symbol
(: =) reads a member from a sequence, and on the left writes a
member to a sequence.

PDL programs are composed of individual control structures
whose nesting and sequencing define a hierarchy in an algebra of
functions. This function-theoretic algebra provides the principal
source of power in structured programming, both by localizing
and limiting the complexity of design decisions , and by providing
a natural plan of attack for program reading, writing, and veri-

LING ER IBM SYST J • VOL 19 • NO 4 • 1980

de-

Ap-

fication. In program reading, a control structure can be mentally
replaced by its equivalent function with no side effects in other
parts of the program. The containing control structure may then
be likewise abstracted, and so on, to arrive at the function of the
entire program. In program writing, functions can be expanded
into equivalent control structures, again with no side effects else-
·bere, continuing in this fashion until the entire program is elabo­

rated in sufficient detail. Similarly, in verifying program correct­
ness, a desired function and the actua1 function of the corre­
sponding control structure can be compared for equivalence in a
local setting, with no regard for program operations elsewbere. A
PDL program is known to be correct when each of the control
structures in its hierarchy has been shown to be correct.

The program expression practice imposes no restrictions on PDL

inner syntax, beyond requirements for precision, conciseness,
and understandability. Expressive forms for inner syntax must be
chosen with the subject matter, level of design, and intended au­
dience taken into account. For introductory design descriptions
for general audiences, natural language may suffice. For precise
communication of designs among professional programmers,
more rigorous, mathematics-based forms may be required.

The program design practice, depicted in Appendix A, specifies a
function-based methodology for creating and recording correct
program designs. As previously noted, the methodology is based
on a view of structured programs as mathematical objects whose
program functions form an algebra of functions. The starting
point in the methodology is an intended function, which precisely
defines the operations on data that a program is to carry out. It is
a function definition in the mathematical sense, but may be de­
scribed in English, mathematics, programming notation, or other
expressive form. The principal operation in the practice is the
replacement of an intended function by an equivalent structured
program. Thus, an intended function of, for example,

z : = maximum of x and y

appearing anywhere in an evolving program design, may be re­
placed by the following equivalent ifthenelse structure:

) :=maximum of x andy]
if

x >y
then

Z :=X

else
z := y

~e ifthenelse carries out data transformations identical to the

' SYST J • VOL 19 • NO 4 • 1980 LINGER

inner

syntax

program

design

439

stepwise

program

refinement

440

abstract intended function it replaces, which is carried forward
into the expansion as a logical comment.

In application, this process leads to stepwise program refine­
ment ,5 in which a program design is developed as a hierarchy of
control structure expansions, using the replacement of functions
by equivalent expansions as the only rule of construction. A re­
finement step may consist of a single new control structure , or a
miniature structured program composed of nested and sequenced
control structures. Each refinement introduces new intended
functions for subsequent refinement; resulting designs are hier­
archical by construction. Data structures are also introduced in a
hierarchical manner to support the local operations of each re­
finement. The program design segment is a natural unit of refine­
ment for each step.

Stepwise refinement is not a mechanical process. A good under­
standing of overall program and data structures, from top to bot­
tom, is required before recording segment designs . The best de­
sign is not the first design thought up, but the last; many iterations
may be required to arrive at a suitable design structure . The depth
of design varies with complexity. The design process is complete
when further refinements become obvious.

A designer verifies the correctness of each refinement step by
demonstrating that the program function of the refinement is
equivalent to its intended function. The program function defines
the actual data transformations carried out by the refinement ; for
correctness, the program function must match the intended func­
tion. Thus , verification is a two-step process: (1) derive the pro­
gram function , then (2) compare it to the intended function. The
program function may be self-evident and correctness determined
by direct inspection. If the program function is not self-evident, a
simpler design should be considered. Otherwise, verification
techniques with sufficient rigor to determine correctness must be
applied .

The program function of every segment should be defined in a
logical commentary function comment. Important intermediate
program functions should be recorded as well, including those for
program parts that have been informally or formally proved cor­
rect.

The design of a small structured program in three refinement
steps is shown in Appendix C. Intermediate functions are carried
forward into successive versions as logical commentary, to docu­
ment the design amid its detailing. Note the use of design lan­
guage multiple assignments of the form a,b : = c,d with meaning
"compute values c and d and assign them to a and b, respec­
tively. "

LINGER IBM SYST J • VOL 19 • NO 4 • 1980

The program design verification practice defines methods to sub­
tantiate the correctness of program designs. Verification also
sists in designing programs whose correctness is self-evident

and in detecting logical errors, if any, in both intended functions
and their corresponding program designs. Proofs may be carried
out at either a formal, recorded level, or at an informal, un­
recorded level of mental analysis.

A program design or design part is proved to be correct by prov­
ing that all its control structures are correct. The Correctness
Theorem4 summarizes function-theoretic proof requirements for
the control structures of PDL. A control structure is proved to be

orrect by proving that its intended function is e~ui~alent_ to ~or_a
ubset of) its program function. This demonstratiOn ts an mtnnstc

part of the stepwise refinement process, so that program designs
are both reflned and shown to be correct in steps of manageable
-lZe. Formal proofs of correctness based on the Correctness The­
orem ut\.\\.z.e s)ls\ema\\c ~e\\~a.\\~\\~ 'a.\\~ \~~\.'\..'0.\ c..~.:o..\':1~\~ t..~ <ie.te.c­
mine program functions of control structures and to compare
them to intended functions. Formal proofs are recorded using a
special proof syntax. Recording is important because formal
proofs often contain insights not found in the program designs
that are useful for subsequent design review and modification.

A miniature illustration of a formal proof for a PDL sequence pro­
gram design is shown in Appendix D. Part A defines the intended
function f of the sequence , read "assign the values of y and x to x
and y, respectively, " that is , exchange x and y.

Part B is a sequence program composed of three PDL assignment
statements (Sl, S2, and S3). The Correctness Theorem states that
to be correct, the intended function f must be equivalent to (or a
subset of) the program function of the sequence, say p. The pro­
gram function of a sequence program is computed by function
composition. In this case, three functions are involved (composi­
tion denoted by "o" symbol) as follows:

p = S3 o S2 o Sl

That is, compute Sl output data values from Sl input, then S2
output from S2 input (equivalent to Sl output), then S3 output
from S3 input (equivalent to S2 output) . The program function
defines S3 output in terms of S 1 input.

Part C is the proof itself. The program function of a sequence
program is derived by means of a systematic trace table with a
numbered row for each assignment, and a column for each data
item assigned (in this case x and y). Each table entry is an equa­
tion that relates values before the assignment to values after the
assignment. For example, the first row defines x

1
(the value of x

IBM SYST J o VOL 19 o NO 4 o 1980 LINGER

program
design
verification

a proof

I!IDmplo

441

after the first assignment) as x0 + y0 (values before the first as­
signment) and also defines y 1 = y

0
, that is , y is unchanged by the

assignment.

Once the trace table equations are filled in, it is a simple matter to
derive the final values of x andy (after the third assignment) , i.e .,
x3 and y 3 , in terms of the initial values (before the first assign­
ment), i.e. , x

0
and y

0
• As an example, if we write

x3 = x2 - Y2

and substitute expressions as follows:

x3 = x1 - (x1 - Y 1)
= y1
= Yo•

the final derivations for x and y are

x3 = y 0 and y 3 = x0 •

Therefore , the program function p is x,y : = y ,x. This function is
equivalent to the intended function , and the program is indeed
correct. The proof has been recorded for later study and analysis .
Proofs for alternation and iteration control structures can be more
complex than the sequence example, but the logical procedures
to be followed in each case are known.

Informal proofs are carried out by asking and answering correct­
ness questions that verbalize the correctness conditions of the
formal proofs for each control structure. Informality does not
connote a reduction in rigor; the correctness conditions to be
proved are identical, whether formal or informal techniques are
applied.

Systematic design practices

data The data design practice specifies methodology for designing
design abstract data objects and operations. 29 Data abstractions provide

a high-level design framework, and help keep the design process
manageable because the designer deals with fewer concepts at a
time. Design in terms of abstractions also permits changes in
data representations to be made with minimal effect on the ab­
stractions themselves .

442

Data types provide a basis for expressing data structures and the
operations and tests that are permissible for those structures. The
concept of data types can be applied repeatedly by stepwise re­
finements that introduce and focus on only a few structural and
operational ideas at a time . Thus, data types permit very-high­
level data structures and operations to be expressed in a form that
the designer can refine into successively lower-level structures
and operations, finally reaching an implementable level.

LINGER ffiM SYST J • VOL 19 • NO 4 • 1980

is

A data type is defined as a set of data objects and a set of opera­
tions and tests among those objects. A scalar data type defines
data objects with no usable internal structure or parts. A struc­
tured data type defines objects that are data structures whose
parts are objects of other data types, scalar or structured, even
possibly of the same type.

Structured data types permit stepwise refinement by successive
replacement. In a refinement step, a scalar data type is replaced
by a structured data type, introducing additional instances of
scalar data types. The refinement process continues in this fash­
ion until the data types of the programming language at hand have
been reached. In parallel, the operations and tests of the original
scalar data type are redefined in terms of more detailed opera­
tions and tests in the structured data type. For example, a matrix
of complex numbers, regarded as a scalar data type in a high-level
design, can be expanded to a pair of real numbers. These num­
bers are then expanded to a pair of integers (exponent, mantissa).
At each step , operations and tests on the data are also reex­
pressed.

In addition to data design techniques, this practice also specifies
expressive forms for defining data organization. The detailed or­
ganization of data is often expressed in natural language or
graphic descriptions of formats, field layouts, word boundaries,
etc. Data organization, however, can be expressed with greater
clarity using mathematical techniques, such as formal grammars,
regular expressions , and recursive formulas. These techniques
emphasize hierarchical patterns in data organization, and provide
a structural framework for the design of programs that process
the data.

The modular design practice specifies a methodology for design­
ing the synchronous logic of software systems. Modular design is
the principal means for hierarchical decomposition and organiza­
tion, once an overall hardware/software system design has been
completed. 7'

9 1t makes use of techniques described in the program
design and program design verification practices, and introduces
two additional concepts : state machines and modules.

Briefly, a state machine is a mathematical function that can be
used to specify programs and data. A state machine m is defined
in terms of input, output, states, and transitions, as follows :

m = {((input, state), (newstate, output))}

Each member of the set defines a transition from a current state
and an input to a new state and an output (possibly null). In soft­
ware terms, the state machine m corresponds to program opera­
tions on input and state data to produce new state data and out­
put, where the data are regarded as persistent, that is, data that

IBM S.YST J • VOL 19 • NO 4 • 1980 LINGER

stepwise

data

refinement

modular

design

state

machines

and

modules

443

specification

by intended

state

machines

module

program

444

survive (i.e., stored) between program executions. A module is
composed of a specification part and a design part. An intended
state machine is the specification part of a module, just as an
intended function is the specification part of a program. The de­
sign part of a module is normally composed of a single structured
program paired with persistent data.

The use of modular design is intended to control complexity by
organizing a design into a hierarchy of modules, where each mod­
ule hides the implementation of data and operations from module
users. Modular design also maintains data integrity by defining
the persistent data of each module to correspond to a state of the
intended state machine, and by permitting access to those data
only through the module program. This also ensures complete­
ness of the design. The intended state machine idea is a unifying
concept that helps to determine that a collection of program oper­
ations should be grouped into a module and that all required oper­
ations on the data of the module have been defined. That is, the
module carries out the correct data operations in every possible
circumstance.

Modules result in reduced complexity in system design because
they abstract out (or hide) details of representation, residency,
and format of persistent data, and the algorithmic details of data
processing. Because they provide an abstract view of data to their
users, modules are also referred to as data abstractions.

An intended state machine is a precise specification for the func­
tion of a software system or system part , such as a subsystem or
common service. Intended state machines can define services to
module users (including definition of interfaces for invoking those
services) at all levels of decomposition in a software system,
without getting into details of program design and data organiza­
tion and storage . For example, an entire synchronous text pro­
cessing system can be specified in terms of an intended state ma­
chine, as can its individual subsystems, such as text update , text
retrieval, file maintenance , etc., as well as each of its low-level
common services, such as directory management, user status
management , space allocation, etc.

The module program is the sole interface for module users and
provides the only permissible access to the persistent data of the
module. The program may reference the module programs of
other modules in carrying out its operations . (In implementation ,
a module containing multiple programs accessible by users may
be a reasonable alternative, despite the complexity introduced by
multiple interfaces.) A module program' s inputs and outputs cor­
respond to the inputs and outputs of the intended state machine.
Its operations correspond to the state transitions, and its per­
sistent data correspond to a state of the intended state machine.

LINGER IBM SYST J o VOL 19 o NO 4 o 1980

Figure 2 A module-structured design

MODULE A

PROGRAM
SEGMENTS

1
INTENDED r-- I ~£o- ~ \
~~WF~~f~NE---+-+-1 • 1 I

I ISM I I
I A I I
I 11 I I
L __ j I I I

1 I I
I

~--- - -' I
I _ _______ MODULE
I REFERENCE

MODULE B

r---,
I I
I ISM I
I B I

I L __ J

f--- - - - _j
I
I

D £
I I I
I I I

I I

L __ ____ l
MODULE C

r--, ~ D
: ISM : c52J2:J
I c I
I I
L---'

The persistence of data in a module-structured system ranges
from permanent data base data in a resident module, which may
survive indefinitely, to local state data of transient modules,
which may survive only momentarily between successive in­
vocations within an active job or task.

Modular design is carried out by stepwise module refinement of
intended state machines and their designs. The process begins by
describing an intended state machine, which is then elaborated as
a module design consisting of a module program, persistent data,
and possible services defined by additional intended state ma­
chines. The refinement continues in this manner until the lowest­
level modules have been designed. This design process is a direct
extension to stepwise refinement of intended functions into pro­
grams that may reference additional intended functions.

Specifically, the first step in a module design is the definition of its
persistent data and the intended function of its program. Any ab­
stract objects (such as sets) in the state of an intended state ma­
chine are elaborated into persistent data using data refinement
techniques. The intended function is elaborated using stepwise
program refinement techniques. In this process, opportunities

IBM SYST J • VOL 19 • NO 4 • 1980 LINGER

modular

design by

stepwise

refinement

445

correctness

verification

module

implementation

446

may arise to organize data and operations into new intended state
machines at a lower level, to be likewise implemented as mod­
ules. Note that during refinement, modules containing no per­
sistent data may arise . For example, it makes sense to group sci­
entific subroutine operations into a module , even though they
typically reference no persistent data.

A module program undergoes stepwise refinement into a local hi­
erarchy of program segments , any of which may run the programs
of other modules to provide access to their persistent data. Thus,
a module-structured system is composed of a hierarchy of mod­
ules with program refinements defining connections between lev­
els in the hierarchy. Figure 2 depicts an imagined module hier­
archy in graphic form .

The module defines a module state machine as all possible execu­
tions of its program on input and persistent data, just as a pro­
gram defines a program function as all possible executions on
input. A module is correct if its intended state machine is equiva­
lent to (or a subset of) its module state machine . At each refine­
ment step, a designer must demonstrate that this equivalence
holds . Much of the effort in the proof involves proving that the
module program correctly implements its intended function. This
should be done by direct inspection if possible, otherwise by veri­
fication techniques of sufficient rigor, as described in the program
design verification practice. If abstract data objects and opera­
tions are used in the intended state machine description and then
refined into more complex data objects and operations in the
module, correspondence between the levels must be demon­
strated . Finally, it must be shown that the correct persistent data
have been identified.

Many operating systems and languages do not provide adequate
implementation support for data abstraction by modules. For ex­
ample, scope rules in many languages require that files for per­
sistent data intended to be hidden in a module must actually be
declared in a higher-level module.

Concluding remarks

The software design practices summarize technical principles for
creating software system designs out of requirements. And they
define a series of development checkpoints for technical manage­
ment as well, in terms of specific intermediate work products
along the way from requirements to design. These work products
record a progression of reasoning and analysis that permits con­
tinual review and improvement of designs. The practices legiti­
mize these work products and sanction their development. Each
work product can be allocated and managed for cost and quality,
so that the state of development is never in doubt.

LINGER IBM SYST J • VOL 19 • NO 4 • 1980

Appendix A: Elements of the program design practice

Introduction

1.1 SCOPE

This practice specifies a function-based methodology for creating
and recording a correct program design to satisfy a specification
function.

1.2 OBJECTIVES

The use of the methodology is intended to reduce complexity and
maintain intellectual manageability in program design. This is ac­
complished by designing programs to satisfy hierarchies of func­
tions , thereby localizing design decisions and correctness demon­
strations.

1.3 APPLICATION

This practice applies to all new program designs developed by
FSD, including program designs appearing in requirements, speci­
fication, and design documentation, and stored in computer li­
braries.

1.4 AUTHORIZATION

This practice has been approved by the FSD Software Technology
Steering Group and the FSD Standards Manager.

Practice

2.1 DESIGN METHODOLOGY

2.1.1 Responsibility. An individual will be assigned responsibility
for the design of each program, whether that design is developed
as an individual activity , or as a team effort.

2.1.2 Stepwise Refinement. Beginning with a specification func­
tion , a program design is created and recorded as a hierarchy of
control structure expansions by the process of stepwise refine­
ment, using the Axiom of Replacement as the only rule of con­
struction. Data structures are also introduced in a hierarchical
manner, to support the local operations of each refinement. The
program design segment is a natural unit of refinement for each
step. Stepwise refinement is not a mechanical process, and a good
understanding of overall program and data structure is required
before commencing segment design. The depth of design will
vary with complexity; the refinement process should terminate at
the point where further refinements become obvious.

2.1.3 Stepwise Reorganization. In complex design situations, the
strategy of stepwise reorganization should be considered, to keep

IBM SYST J • VOL 19 • NO 4 • 1980 LINGER 447

448

correctness arguments manageable by designing for function
first, and reorganizing for efficiency later.

2.1.4. Correctness Verification. At each refinement step, the de­
signer must be able to convince himself and others that the pro­
gram function of the refinement is equivalent to its specification
(or intended) function. The program function of the refinement
may be self-evident, and the correctness determination made by
direct inspection. If the program function is not self-evident, a
simpler design should be considered; otherwise, correctness veri­
fication techniques with sufficient rigor to verify correctness must
be applied.

2.1.5 Logical Commentary. The program function of every seg­
ment should be defined or referenced in a logical commentary
action comment. Important intermediate program functions
should also be defined , including those for program parts which
have been informally or formally proven correct. Status com­
ments should be included where appropriate, as well.

2.1.6 Design Modification. Program designs should be modified as
necessary, both to correspond to redefinition of their specifica­
tion functions, and to reflect any design improvements discov­
ered in implementation. Verification considerations apply to all
design modifications.

2.2 WORK PRODUCTS

Program designs in the documentation specified in section 1.3
should be developed using the methodology specified in section
2.1. Program designs should be kept current and always available
for study and review.

Appendix B: A miniature segment-structured program
design

proc oddeven(output, input) [set next consecutive output se­
quence members to 1 or 0 depending on whether corresponding
input sequence members are odd or even]

var input, output: sequence of integer
var x: integer
while

input ¥ empty
do [next(output) : = oddeven(next(input))]

x : = next(input)

LINGER

if
x>O

then [convert positive x odd or even into 1 or 0]
run positive(x)

else [convert nonpositive x odd or even into 1 or 0]
run nonpositive(x)

IBM SYST J • VOL 19 • NO 4 • 1980

fi
next(output) := x

od
corp

proc positive(x) [convert positive x odd or even into 1 or OJ
var x: integer
while

do

od
corp

x>1

X:= X- 2

proc nonpositive(x) [convert nonpositive x odd or even
into 1 or OJ

var x: integer
while

do

od
corp

x<O

X:= X+ 2

Appendix C: A structured program in three refinement steps

step 1:
proc maxmin(x,y ,t,n)

var x,y ,n: integer
var t: array(l..n) of integer
x,y : = max(t(l :n)), min(t(l :n))

corp

step 2:
proc maxmin(x,y ,t,n) [x,y : = max(t(l :n)),min(t(l :n))J

var x,y ,n: integer
var t: array(l..n) of integer
x,y := t(l), t(l)
[x,y := max(x,t(2:n)),min(y,t(2:n))J
for

i = 2 ton by 1
do

x,y: = max(x,t(i)),min(y ,t(i))
od

corp

step 3:
proc maxmin(x,y ,t,n) [x,y : = max(t(l :n)),min(t(l :n))J

var x,y ,n: integer
var t: array(l..n) of integer
x,y : = t(l), t(l)

IBM SYST J o VOL 19 o NO 4 o 1980 LINGER 449

450

[x,y := max(x,t(2:n)), min(y,t(2:n))]
for

i = 2 ton by 1
do [x,y: = max(x,t(i)),min(y ,t(i))]

if

od
corp

t(i) >X
then

X:= t(i)
fi
if

t(i) < y
then

y: = t(i)
fi

Appendix D: A miniature correctness proof

A. Intended function
(f)x,y:=y,x

B. Program
(Sl) x: = x+y
(S2) y :=X- y
(S3) X:= X- y

C. Proof
trace table:

row

1
2
3

assignment

X:= X+ y
y :=X - y
X:= X- y

derivations:

xa = x2 - Y2

X

xt = xo + Yo
x2 = xt
xa = x2 - Y2

Ya = Y2

y

Y1 =Yo
Y2 = xt - Y1
Ya = Y2

xa = xt - (xt - Y 1)
xa = Y1

Ya = xt - Y1

xa =Yo
Therefore
p = (x,y := y,x) = f

pass

y 3 = xo + y 0 - y 0

Ya = xo

The author is located at the IBM Federal Systems Division, 10215
Fernwood Road, Bethesda, MD 20034.

LINGER IBM SYST J • VOL 19 • NO 4 • 1980

The management of software engineering
Part IV: Software development practices
by M. Dyer

The IBM Federal Systems Division began a continuing search for
new and better software development methods in the early 1950s
when it was participating in the SAGE air defense system. Since
then, members of FSD have been developing large, complex, real­
time systems exemplified by the manned spacecraft projects Mer­
cury, Gemini, Apollo, and the Space Shuttle. In such projects ,
military and civilian, software development is characterized by
challenging targets and severe constraints. Schedules are tight,
workloads are heavy, computer processing must fit within re­
strictive time slices and memory allocations; yet results are to be
error-free. Added to these stringent requirements is the need to
minimize cost but still make the system robust enough to be oper­
ated and maintained by someone other than the developer.

This experience motivated the merger of things learned on-the­
job with advances in the discipline of software engineering. The
program that evolved covers design, development, and manage­
ment with the objective of intellectual control of the software en­
gineering process.

In this paper on software development, the focus is on the blend
of modern software methods with established development prac­
tices. Reducing diversity , increasing visibility, and improving
productivity in the development process are the principal means
of intellectual control of development. Improved product quality ,
product transportability, and product adaptability are longer­
range goals.

The development methodology is defined in terms of practices
that recognize the increased precision introduced by modern de­
sign methods and that attempt to introduce the rigor of modern
design into the methods of software product development. Code
management practices deal with the implementation of software
and the control of its release as a product. Integration engineering
practices address plans for building software products.

Code management

Contemporary software development methods reflect modern
programming technology. Structured programming techniques,

Copyright 1980 by International Business Machines Corporation. Copying is per­
mitted without payment of royalty provided that (I) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright notice are in­
cluded on the first page. The title and abstract may be used without further per­
mission in computer-based and other information-service systems. Permission to
republish other excerpts should be obtained from the Editor.

IBM SYST J • VOL 19 • NO 4 • 1980 DYER 451

programming

language

452

employed with high-order programming languages, are de facto
standards. The prominence of programming support libraries,
with features to support configuration management and quality
assurance functions, and the growing acceptance of top-down de­
sign methods, program design languages, and design review tech­
niques, are further evidence of new technology acceptance.

The most effective procedures used within FSD form the basis of
code management practices that support the development of soft­
ware products. These tested methods aim toward setting a mini­
mum standard for software development in the following cate­
gories:

• Programming language.
• Coding standards and conventions.
• Computer product support software.
• Hierarchical program control library.
• Software development environment.

The first three categories influence the implementation of the soft­
ware, whereas the latter two focus on the packaging of the soft­
ware into a deliverable product.

Software products should be implemented with High-Order Pro­
gramming Languages (HOLs) that simplify the translation of de­
sign specifications-as documented in a design language-into
code. It is desirable that the syntax of the programming language
include control and data structures and be consistent with the
design language syntax. In the comprehensive FSD software engi­
neering program, a Process Design Language (PDL) is recom­
mended; however, no single high-order programming language
has been specified. The reason for such latituue is that FSD cus­
tomers often require their contractor to use a language that is
both appropriate for the customer's problem environment and fa­
miliar to the customer's programmers. Thus, the programming
language practice identifies for Department of Defense (DOD) ap­
plications languages such as FORTRAN, COBOL, JOVIAL, etc. For
National Aeronautics and Space Administration (NASA) appli­
cations, the HALlS language is identified. For internal IBM appli­
cations, the PL/1, PL!S, and APL languages are identified. Program­
mers are advised to use one high-order language per project,
which should be selected from the set of HOLs listed in the prac­
tice.

System designs, documented with a design language, are entered
in a program support library. The selection of the HOL is influ­
enced by its consistency with the design language. To extend the
list of qualified HOLs, consistency need not be provided directly
by -the HOL; it can be provided by a preprocessor in the program
support library.

DYER IBM SYST J • VOL 19 • NO 4 • 1980

Table 1 Language recommendations for classes of software products

Language recommendation

High-order language (HOL)

HOL with assembly assist

Assembly with HOL elements

Assembly

Class of software product

Program development and generation
Compiler/assembler
Link editor/loader
Utilities

Library support
Data reduction
Applications

Program development and generation
Hardware simulation

System simulation
Diagnostics

Executive

Data recording/measurement
Microcode

In general, programmers are advised to restrict their use of as­
sembly language to those portions of a software product involving
critical time or space constraints (and to those products imple­
mented for processors that have only assembly language sup­
port). The recommendations of the practice as of 1980 for various
classes of software products are shown in Table 1.

Other decisions to be made prior to software implementation
dealing with project standards and conventions are the following:

• Standards for writing code.
• Standard interfaces with operating system software.
• Conventions for using a Program Support Library (PSL) sys­

tem to control the product development and obtain visibility
into the development process.

• Conventions for packaging code into controllable objects.

Standards for written code include rules for naming program and
data variables and rules regarding program commentary. Symbol
names are intended to improve the documentation of software
and ensure code readability. Commentary covers traditional pro­
logues and statement comments as well as the logical com­
mentary that evolves during the design process. Good com­
mentary makes a program intelligible to persons other than the
author , including operations personnel.

To support configuration management goals the coding practice
discusses the use of alphanumeric statement identifiers. These
identifiers permit the inclusion of version number, revision level
within version, and standard statement sequence numbers that
have proved valuable in the control of software products that
change with time.

IBM SYST J o VOL 19 o NO 4 o 1980 DYER

coding

standards and

conventions

453

computer

product

support

software

454

Software development assumes the use of executive software in
the typical project environment for which interrace conventions
must be established. Initialization/termination, interrupt han­
dling, resource allocation and management, and input/output de­
vice handling are the minimum functions to be handled by execu­
tive software. Coding these functions is both difficult and time­
consuming. The purpose of standards in this area is to introduce
consistency in using the executive .

Program Support Library (PSL) systems typically maintain source
statements in both the design and the programmming language
and provide linkage to executive software for compilation and
execution. The PSL system may provide language preprocessors
for structured language forms, as necessary. Through the PSL sys­
tem, the user is supported in interactive, batch, and dedicated
development environments. Conventions for using a PSL system
provide visibility by identifying the requirements for collecting
and reporting status information, such as segment type identifica­
tion, number of source statements, number of source statement
updates, date of last update, and current version and revision
level.

The coding practice also defines conventions for packaging code
into products, considering execution time addressability and the
packaging requirements of peripheral storage devices. A segment
of code implements a unit of function; a segment may range up to
fifty lines in length, but should not exceed a page. Trans­
portability considerations suggest that programs and data be de­
signed to be relocatable to any area in main memory for execution
without requiring any knowledge of absolute addresses . Data files
designed for storage on peripheral input/output devices are orga­
nized in logical records and require no knowkdge of the physical
structures for storage devices.

Within the FSD business environment, software is routinely de­
veloped for special noncommercial machines (some of which are
FSD hardware products) with limited or no support software. The
intent of the computer product software support practice is to
establish the minimum levels of support software that should be
available or developed for these classes of machines. The prac­
tice separates computer products into data processing systems,
central processing units, peripheral storage devices, and terminal
devices. The minimum levels of support software that should be
developed and maintained as part of the hardware development
process include the following:

• Terminal device software supports decoding of keyboard in­
put entries, the generalization of the input data into standard
message formats, and the notification of input message avail­
ability . For the output side, the software uses standard mes-

DYER IBM SYST J • VOL 19 • NO 4 • 1980

sage formats for identifying output data, performs data encod­
ing for symbol generation, graphics generation, and display
control, handles the physical transmission of data, and mon­
itors transmission status.

• Peripheral storage device software handles the transmission
of data to and from a central processing unit and storage de­
vices, supports the definition and use of logical storage units
(files and records) that are function-dependent (as opposed to
device-dependent), processes device controls (e.g., end of
tape), and monitors transmission status.

• Processing unit software handles the identification and pro­
cessing of execution interrupts and the allocation and sched­
uling of the central processing unit resources.

• Data processing system software supports the initialization,
termination, and use of all computer products in the configu­
ration. It also provides Program Support Library (PSL) facili­
ties, language processors, linkage editor functions, and soft­
ware simulations of computer products.

By including these minimum capabilities in every hardware sys­
tem, a base exists on which the software engineering program can
build.

Programming Support Library (PSL) systems have been widely
adopted as productivity aids for the programmer. The PSL auto­
mates the processes of code capture, retention, and retrieval, as
well as program linkage, compilation, and execution, and code
modification and output listing. The same PSL can provide impor­
tant assistance in development control by segregating project
components that are complete from those in progress . The hier­
archical programming control practice identifies the need for a
library structure with at least three levels and for library proce­
dures that permit users to do the following:

• Realize the productivity benefits of the PSL.

• Promote programs from one level to the next.
• Build program products by combining PSL entries.
• Maintain source code integrity during checkout and in­

tegration.
• Support software quality assurance functions.
• Support software configuration management functions.

The levels of PSL should bear a hierarchical relationship to each
other and include the following as a minimum:

• Development level. Programs under development. or testing
by the software implementer enter PSL at this, the lowest,
level of the hierarchy. The implementer interacts directly with
his own code as filed under his identifier. Development level
code is seldom useful to others and may be accessible only to
its author.

IBM SYST 1 o VOL 19 • NO 4 • 1980 DYER

hierarchical

programming

control

library

455

software

development

environment

• Integration level. This level contains developed programs,
fully debugged by their authors, ready to be integrated with
other programs and tested as components of a software prod­
uct. Programs are promoted from the development level to the
integration level; integrated, checked-out software packages
are promoted to the release level.

• Release level. Software ready for delivery to the customer is
stored at the release level. In some cases, users can execute
the code to obtain operational results; however, it is more
likely that users obtain a copy of the release level software
product and run it independently of the PSL, although the PSL

remains the source of the master copy of the latest version of
the software product.

When a user refers to a level of the PSL, he can expect to find
current, approved data. That is, the development level contains
today's version of the implementer's work; the integration level
contains only debugged programs; the release level contains the
version authorized for release to customers. PSL procedures are
designed to deliver what the user expects-a single copy of data
commensurate with development status. At the same time, the
PSL may support multiple copies and additional levels. Such flexi­
bility facilitates fallback; it supports multiple releases to different
users or for different purposes; it permits demotion of programs
undergoing modification while retaining a useful earlier version at
higher levels; and, in general, flexibility protects the integrity of
the library contents at each hierarchical level.

A request should automatically result in a response from a stan­
dard library level. As an option, however, the access mechanism
should allow an authorized user to select data from other levels.
Authorization control, which governs who can read, write, or
modify library entries, is provided by the access mechanism, pos­
sibly using a password technique.

As a rule, customer delivery of software products is made using
source code data. This procedure results in products that can be
created from approved source code (i.e. , free of machine lan­
guage fixes or patches). Customer or contractual requirements
may dictate the release of products containing patches, but these
should be considered as exceptional cases. In such cases, manual
control procedures should be used to manage patches in the re­
leased software, and normal configuration control procedures
should be executed in parallel to ensure source-level integrity of
the released software.

Because of the diversity of the customer set within FSD, different
development environments have evolved to meet individual
needs. A minimum set of development procedures have been
identified as applicable to the various environments.

456 DYER IBM SYST J • VOL 19 • NO 4 • 1980

Table 2 Recommended development tool usage

Activity Interactive Batch Dedicated

Library organization/setup •
Design language input/edit •
Programming language input/edit •
Test case input/edit •
Compilation/assembly

Up to 1000 statements •
Greater than 1000 statements •

Program link edits •
Unit test execution

User test data •
Simulation controlled •

Hierarchical programming •
control library
parameter input/edit

Hierarchical programming control •
library generation

Software integration testing •
Software/hardware integration •

testing
Integration test data reduction •
Status report generation

Queries •
Reports •

For all aspects of software development-from design through
product release-the use of interactive terminals is encouraged.
Batch processing, with its average twenty-four-hour turnaround ,
is restricted to the execution of production programs, where pos­
sible. Dedicated operations, where an entire machine is turned
over to one programmer or test team, is similarly limited, specifi­
cally to integration activities involving specialized hardware re­
quiring computer system reconfiguration. The software develop­
ment environment practices are summarized in Table 2, which
shows how the guidance is broken down by type of activity.

Integration engineering

Integration engineering has emerged as a new methodology, with
roots in advanced software design concepts. Therefore, in­
tegration engineering practices have been organized that support
the phased integration of software and make integration planning
an integral part of the modular design process. Integration engi­
neering encourages the use of the modular design techniques of
stepwise refinement and state machine hierarchical descriptions
to detail the integration process and manage the specification of
system interfaces . These practices also influence the software de­
sign process by introducing the ideas of incremental software de­
velopment and establishing criteria for partitioning the develop-

IBM SYST J • VOL 19 • NO 4 o 1980 DYER 457

incremental

software

development

458

ment process to support phased integration. The integration engi­
neering practices have been used to integrate software with
software and software with hardware. The following four prac­
tices have been defined:

• Incremental software development.
• Software interface specification management.
• Software integration methodology.
• Simulation software.

As a group, these practices govern how a large scope of effort is
broken into manageable parts, how the parts are interconnected,
how they are reintegrated into a software product, and how­
through simulation- the process is controlled throughout the life
cycle.

In any activity where the job to be done is too large for one per­
son to handle, it is necessary to break the job apart . The very act
of partitioning the system introduces development process prob­
lems because interactive components are more complex than
single entities. Integration engineering addresses the plans for
partitioning in such a way that the pieces can be developed inde­
pendently yet come together at the right time to fit software, hard­
ware, and system integration schedules. Simulation is empha­
sized since it permits evaluation of the incomplete, developing
system using simulated components in place of the missing, real
components.

The development of software in increments is a key integration
engineering concept. The incremental software development
practice provides guidelines for developing software products in
increments, for selecting the number of increments, and for deter­
mining the capabilities needed in each increment to support in­
tegration. Software is partitioned into increments, whose devel­
opment is scheduled or phased over the total development cycle.
Each increment is a subset of the planned software product, and
provides a specified system function(s). As a minimum, partition­
ing should satisfy the following requirements:

• Be natural or logical with respect to the operational system or
application.

• Organize each increment to maximize the separation of its
function(s) from function(s) in other increments .

• Structure the phasing of increment development to minimize
modification of previously completed increments due to the
implementation of subsequent increments .

Partitioning is addressed in the software specification and design
process so that increments and their development schedules can
be managed to protect against project schedule erosion.

DYER IBM SYST J • VOL 19 • NO 4 • 1980

As a guideline for a top-down integration strategy, phased in­
tegration should be supported by the following four software in­
crements that would be developed in the indicated sequence:

1. Initial increment -exercises all interfaces with operating sys­
tem software; includes selected processing kernels that repre­
sent high-risk, system-critical functions.

2. Intermediate increment -exercises explicit interface specifi­
cations.

3. Interim increment-exercises selected system function(s), de­
pending on application complexity. Multiple interim in­
crements may be required first to exercise critical (prime sys­
tem) functions and subsequently to exercise secondary func­
tions .

4. Final increment-exercises total system function .

Alternate integration strategies would be based on variations of
this top-down strategy, wherein the role of the intermediate in­
crement has lesser significance. Afunctional integration strategy ,
where major system capabilities are organized into increments
and integrated in successive phases, exercises only those inter­
faces that are significant to a specific functional capability , at any
given phase. A processing flow integration strategy similarly ad­
dresses only subsets of the total interfaces during a given in­
tegration phase.

Data recording is a key element of a software system design and
is incorporated in a manner that minimizes interference and dis­
tortion. The software for each increment is instrumented for mea­
surement of such system resources as prime and secondary stor­
age utilization. The measurements should be performed as part of
the standard integration activity. Instrumentation that permits in­
terfacing with simulations of missing hardware/software function
is also included as required . The PSL system can support this in­
strumentation requirement with the use of program " stubs."

Data recording capabilities implemented to support testing should
also be employed for operational data recording where possible.
Technical performance estimates can then be accompanied by ac­
tual performance measurements. As these actual performance
measurements become available, software simulations that may
have been initialized with estimates should be continually cali­
brated to enhance their fidelity.

Specification and control of interfaces is required for effective
system development. Figure 1 indicates the potential interfaces
found in systems that are typical of the FSD business area. The
interface specification practice establishes criteria for managing
interfaces for any of the following conditions:

IBM SYST J o VOL 19 o NO 4 o 1980 DYER

software

interface

specification

management

459

460

Figure 1 Software system interfaces

~-- PERSONS

: r
I HARDWARE/PERSON

.I
I
I
I

SOFTWARE/PERSON

I
I
I
I

HARDWARE/HAR DWARE
SOFTWARE/ HARDWARE

L _______ _

9
HARDWARE/HARDWARE

HARDWARE/ HARDWARE

HARDWARE/H ARDWARE
SOFTWARE/HARDWARE

~~~TE/Ms -- - I 
I 
I 
I 
I 
I 

-- I 
SOFTWARE/SOFTWARE 

HARDWARE/HARDWARE 
SOFTWARE/ HARDWARE 
SOFTWARE/ SOFTWARE 

I 
I 
I 
I 

_ _______ _j 

• The interfacing elements are different in type (software, hard­
ware, or person). 

• The hardware and software controlling the interface are under 
concurrent development. 

• The hardware and software controlling the interface are sepa­
rately developed, whether for contractual, geographical, or 
organizational reasons. 

The detailed data include an interface specification determined 
through stepwise refinement as part of software design. These 
specifications are recorded and controlled, either as separate 
documents or as part of the software specification. They contain 
descriptions of the external appearance and procedural protocols 
of each participant at an interface. The specification can cover 
connector layouts , signal levels, functions available at the inter­
face, and rules for making contact and invoking functions across 
the interface. As a minimum, the following interfaces should be 
specified: 

• Interfaces between software and hardware: 

DYER 

Interfaces between support software and computer prod­
ucts·, such as processors , when these products are part of 
the development effort. 

IBM SYST J o VOL 19 o NO 4 o 1980 



The programmable instruction set (whether hardwired or 
microprogrammed) for the selected central processing unit, 
as normally documented in a principles of operation man­
ual. 

Interfaces with application-specific hardware that is part of 
the system under development. 

• Interfaces between two software products: 

Interfaces between software under development and exist­
ing support software products, such as operating systems 
whose use is planned for the system development. 

Interfaces between software products that are physically 
separated in different processors and logically connected 
through an intercomputer channel mechanism. 

Interface with shared system-level data structures. This in­
terface is of critical significance with distributed software 
architecture. 

• Interfaces between a software product and the person using it. 
The interfaces between the software and intended system 
users normally involve expansion and clarification of an estab­
lished software/hardware or software/software specification. 

Given an incremental development plan and a well-defined set of 
system interfaces , integration can proceed smoothly, without the 
delays that are caused when components fail to fit together. 

Integration is a controlled process by which software increments 
are integrated in environments that-at successive integration 
phases-more fully approximate the intended software system 
function. Effective control requires planning, design consid­
eration, and product management. Though the emphasis is on 
software integration, the methods are equally applicable to a 
larger system environment that includes the integration of soft­
ware and hardware components. 

Planning for software integration should be initiated as part of the 
software design activity and should support the development of 
software specifications. These specifications record the system­
atic refinement of software requirements to the program level and 
are based on documented system-level requirements. Integration 
considerations are factored into the software design so that the 
software design supports the partitioning rules for incremental 
development. Specifically, the design reflects a separation of sys­
tem function(s) that can be comprehensively tested and that per­
mits the structuring of integration increments. The design also 
permits the testing of all specified system requirements. The 
specification of the software functions identifies the system re-

IBM SYST J o VOL 19 o NO 4 o 1980 DYER 

software 

integration 

methodology 

461 



462 

quirement(s) to be tested. In addition, the identified inputs and 
outputs represent a basis for preparing test plans . 

Software integration plans are recorded in controlled documents 
containing the following minimum information: 

• Scheduled phasing of the integration increments. 
• System functions included in each increment. 
• Test plans to be executed for each increment with an assess­

ment of the test coverage for the system functions embodied 
in the increment. (The successful execution of these test plans 
defines the exit condition from integration.) 

• Support requirements for each increment in terms of system 
hardware simulation, tools, and project resources. 

• Criteria for demonstrating that the increment is ready for in­
tegration. These criteria, a subset of the test plan for the in­
crement, define the exit condition from the unit test. 

• Quality assurance plans for the tracking and follow-up of er­
rors discovered during the integration process. 

Software integration plans should take account of total system 
integration and test plans and organize increments to support the 
system-level planning requirements. This is particularly impor­
tant in major systems developments involving significant num­
bers of hardware and software elements. In such developments, 
hardware plans identify the separate integration and test of hard­
ware, using software diagnostic tools, prior to the integration of 
hardware with system software. Incremental development of the 
system software can support the phased integration of a total sys­
tem by providing subsets of the system software to assist in the 
total system integration. 

Procedures that define the integration process at each increment 
are developed using refinement techniques that are conducted in 
parallel with the stepwise refinement of the software design. The 
procedures document the results of detailing test plans into a hier­
archy of test cases to be executed during the integration activity . 

When multiple functions must be included in a single integration 
increment, a stepwise integration within the increment is per­
formed. Functions are integrated, one at a time, building on the 
existing stable base with single functions tested independently for 
dependability and readiness. The concept of dependability re­
quires careful control of modifications to functions during in­
tegration. Modifications in response to problems found during the 
integration testing process must be made . However, modification 
for function growth - as directed by approved Engineering 
Change Proposals (ECPs) - should be phased into subsequent in­
tegration increments. 

DYER IBM SYST J • VOL 19 • NO 4 • 1980 



Table 3 Primary roles o· sim ation software 

Stage in Type of simulation software 
life cycle 

Processor Intetface Environment Computer system 

System Requirements 
definition allocation 

analysis 

Software Design tradeoff 
design analysis 

Software Unit test Design control 
development support analysis 

Software 
system test Test and Test and 

integration integration 
support support 

System/ Acceptance Acceptance 
acceptance test test 
test support support 

Operations and Training and Training and Design change 
maintenance maintenance maintenance analysis 

support support 

The Program Support Library (PSL) system provides facilities for 
the storage of test-case libraries and for the segregation of soft­
ware elements included in an integration increment. A group sep­
arate from the software developers should have responsibility for 
planning the software integration process, for developing the in­
tegration procedures , and for integrating the software according 
to these procedures. 

Application system 

Concept formulation 
analysis 

Formulative design 
change analysis 

Simulation can be effective in several ways in most software de­
velopments. In the early stages , when little actual software ex­
ists, simulation by analytical methods can be used to evaluate 
designs and check algorithms. Later, as working code becomes 
available, simulators can supplement it to support system tests. 
After release, simulation is still helpful in training and as an up­
dating aid. Various support roles for simulation software are 
listed in Table 3. Five types of simulation software are shown 
with their primary roles arranged in life-cycle sequence. The sim­
ulation software practice recommends that simulation be used for 
the indicated purposes to the extent justified by the nature, size, 
and budget of the project. 

simulation 

software 

Processor simulation permits software development to proceed 
independently of processor development. The simulator consists 
of software representing the instruction-level operations of the 
proposed processor. Support services, including dumps, snap­
shots, traces , and timing routines are normally provided. 

IBM SYST J • VOL 19 • NO 4 • 1980 DYER 463 



464 

Interface simulation permits parallel development of the major 
components of a system-hardware, software, system operators. 
The simulator is software or hardware representing the behavior 
of each component when its functions are invoked. It can be used 
to provide responses expected from missing components and to 
verify the correct implementation of interface protocols. 

Environmental simulation provides controlled conditions in 
which to develop and check out systems under development. The 
simulator represents the functional behavior of the hardware, 
software, and operational environment external to the system un­
der development. It is usually implemented as software and run 
on a separate machine from the development software. The sepa­
rate machine can, of course , be a real machine or a virtual ma­
chine. During a simulation, the environment can be represented 
by function responses as in an interface simulation or it can be set 
up as a script to drive a set of tests. In the latter mode, for ex­
ample, a traffic control software system could be driven by a 
script that supplies traffic slowly to test basic functions, faster to 
test real-time performance, and still faster to test peak-load or 
overload behavior. 

Computer system simulation, as defined in the simulation soft­
ware practice, is an aid to decision-makers concerned with the 
effect of a design change on a complex system. Mathematical 
models are used to represent computer system resources and 
their utilization in terms of program path lengths, memory alloca­
tion, disk accesses, etc., as defined by the software design for a 
given operational scenario. Initial designs are modeled at a fairly 
gross level. As the design matures, the models get more precise. 
At each stage, the models support tradeoff analyses of alternative 
design decisions. After the first release of a software product, the 
same modeling approach can be used with performance measure­
ments to obtain quite precise evaluations of design change pro­
posals. 

Application system simulation uses software to simulate a phys­
ical process associated with an application problem for which a 
system solution may or may not be implemented. The simulation 
is actually an alternative to actual system development. Simula­
tions to determine the feasibility of a system concept or the re­
quirements for a proposed system solution are typical of this sim­
ulation type. 

Concluding remarks 

The IBM Federal Systems Division has pioneered the develop­
ment of large-scale, complex software products for various gov-

DYER IBM SYST J • VOL 19 • NO 4 • 1980 



ernment ag en eering program has at-
tempted o of thi unique experience with 
evolving so ·e to establish a set of uniform soft-
ware de elo a; · e . These practices include code man-
agement acti' · ·es for oftware implementation that promote the 
use of uniform, consistent techniques and tools for improved pro­
ductivity and quality. These practices also address integration en­
gineering activities for software product development and focus 
on the control of the most difficult aspect of software develop­
ment-the coordination of independently developed, closely re­
lated, complex elements. Control is achieved by careful system 
partitioning, incremental product construction, and constant 
product evaluation. Overall , the FSD software development prac­
tices stress product visibility, dependable tools, easily under­
stood procedures, and positive feedback at project checkpoints. 
The practical result of this approach has been an increase in the 
manageability of FSD contracts. 

The author is located at the IBM Federal Systems Division, 10215 
Fernwood Road, Bethesda, MD 20034. 

IBM SYST J • VOL 19 • NO 4 • 1980 DYER 465 



466 

The management of software engineering 
Part V: Software engineering management 
practices 
by R. E. Quinnan 

The IBM Federal Systems Division software engineering program 
was organized to support the design and development of software 
products. This program includes design practices that deal with 
the systematic decomposition of software designs into hierar­
chically related programs. This procedure results in products with 
structural integrity that are easy to use, maintain, and adapt. De­
velopment practices in the software engineering program deal 
with software implementation and integration engineering. The 
discipline of management practices closes and strengthens the tri­
angle model of software engineering. 

This part of our paper focuses on these management practices 
and discusses the plans and controls they provide to monitor 
progress and performance during the software life cycle. The 
software engineering management practices reflect the experi­
ences of successful management teams and are familiar to most 
software managers. However, the effectiveness of these practices 
is significantly improved when the associated design and develop­
ment practices are implemented. Uniformity and consistency re­
sulting from good design and orderly development underlie the 
predictability and responsiveness of the management practices. 

Software engineering management model 

Our software engineering management model is composed of 
three sets of practices: (l) technical review; (2) cost management; 
and (3) software program management. The technical reviews are 
conducted during the development of a software product at speci­
fied checkpoints and for well-defined purposes. Cost management 
prescribes a method of planning, estimating, measuring, and con­
trolling a developing software product to meet a cost objective. 
The software program management practice establishes a project 
environment and management relationships that foster complete, 
precise, and efficient communications within and between 
groups. The model is based on the software life-cycle activities 
described by O'Neill in Part II of this paper. 

Copyright 1980 by International Business Machines Corporation. Copying is per­
mitted without payment of royalty provided that (I) each reproduction is done 
without alteration and (2) the Journal reference and IBM copyright notice are in­
cluded on the first page. The title and abstract may be used without further per­
mission in computer-based and other information-service systems. Permission to 
republish other excerpts should be obtained from the Editor. 

QUINN AN IBM SYST J • VOL 19 • NO 4 • 1980 



Table 1 Software life cycle 

Activity 

System 
definition 

Software 
design 

Software 
develop­
ment 

Software 
system test 

System/ 
acceptance 
test 

Operational 
support 

General 
support 

Work components Outputs 

Software requirements definition Software system requirements 
specifications 

Software system description Software system description 
document 

Software development planning Software development plan 
Engineering change analysis Engineering change proposals 

Functional design 
Program design 
Test design 
Software tools 
Design evaluation 

Module development 
Development testing 

Problem analysis and correction 

Software system test procedures 

Software integration and test 

System test support 
Acceptance test support 

System operation support 

Training 

Site deployment support 

Project management . 
Configuration management/ 

control 
Software cost engineering 

Functional design specifications 
Program design specifications 
Test design specification 
Utilities, debugging aids 

Development (module) libraries 
Development test procedures/ 

reports 
Program modifications 

Software system test 
procedures 

Software system integration 
library , test reports 

System library, test reports 
Delivered software system/ 

acceptance library 

Level of effort assistance , 
maintenance 

Level of effort training manuals , 
courses 

Level of effort assistance 

Level of effort 
Procedures, standards, library 

control 
Cost management practice 

support 
Quality assurance Audits , quality assurance plans 
Administration centers/technical Level of effort 

publications 

Each of these activities is in turn composed of the set of work 
components shown in Table 1, which identify the work per­
formed , the expected end products, and criteria for completion. 
In a typical project, these activities and components overlap; 
baseline releases are defined to indicate when a component out­
put has satisfied its completion criteria. 

FSD projects can cover complete software product life cycles 
from concept formulation through end-of-life . Quite often, how­
ever, our responsibility spans system definition through accept­
ance test with a limited responsibility for operational support . 
The customer does his own requirements definition and runs his 

in the ase . There areal o some projects usu-
·are ubcontraJ tors hare 

IBM SYST J • VOL I • 



technical 

reviews 

468 

Table 2 Technical reviews within the software life cycle 

Software Related work components Technical reviews 
life-cycle 
activities 

System Software requirements definition System requirements 
definition Software system description Software system specification 

Test plan 

Software development planning Documentation outline 

Software Functional design Software system design 
design Integration plan 

Program design Module design 

Test design Test plan 
Test specification 

Software tools 

Design evaluation 

Software Module development Module implementation 
development Unit test procedure 

Development testing Module qualification 
Test procedure 

Software Software system test procedures Test procedures 
system System integration and test Software system qualification 
test 

System and System test support Software system acceptance 
acceptance Acceptance test support Documentation completion 
test 

Operational System operation support 
support Training 

Site deployment support 

the workload. Our role in such situations can span any or all of 
the life-cycle activities. Thus the life-cycle model provides a stan­
dard for determining the scope of software engineering in a partic­
ular project and serves as an improved communications method. 
The latter is especially important on larger projects where there is 
significant interaction between software engineering and other 
functional groups, such as program management and systems en­
gineering. 

It is well known that early detection of problems and errors is the 
most cost-effective method of quality control. 30 Since the person 
who generates a problem or an error can easily overlook it, we 
rely on technical reviews for thoroughness. This procedure brings 
the talent of a wider group of people to bear on each work prod­
uct, quickly and efficiently. 

Technical reviews develop a strategy within the software life 
cycle that permits the assessment and control of software activ-

QUINN AN IBM SYST 1 • VOL 19 • NO 4 • 1980 



ity. The strategy is associated with the life cycle just mentioned 
so that the technical results of each activity can be evaluated. 
Table 2 illustrates the correspondence of the technical reviews 
with the software life-cycle activities and the resulting work com­
ponents. The number of actual reviews may vary, depending on 
individual project characteristics. Some reviews reoccur each 
time an event occurs, such as completion of a document outline . 
Multiple reviews can be conducted at one time; documentation, 
test, and integration reviews are normally conducted in con­
junction with other reviews . In some cases, it may be convenient 
to run a review of nontechnical issues, such as contract com­
pliance, budget tracking, and resource plans, immediately before 
or after a technical review. By such scheduling, technical prob­
lems may be completely resolved then and there by lining up all 
the resources and administrative approvals that might be needed. 

Each review in Table 2 has a stated purpose outlined as follows: 

• System requirements. Determine that software requirements 
for system capability are completely and correctly stated to 
permit development and use by the planned system user. 

• Software system specification . Determine that software sys­
tem specifications are complete and correct; ensure that each 
requirement for system capability can be traced through to the 
delivered software product. 

• Test plan. Determine that the implementation of the software 
system is tested against the software system specification and 
that all requirements are checked out. 

• Documentation outline. Determine that the outline for any 
planned document satisfies its objectives. 

• Software system design. Determine that module designs com­
ply with the software system specification and collectively im­
plement the software system specification. 

• Integration plan. Verify that there is a systematic approach to 
the implementation and testing of the software system. 

• Module design. Determine that program and data designs 
comply with their module designs and implement their in­
tended function. 

• Test specification. Verify that test methods and materials 
comply with an approved test plan; evaluate functional and 
performance details of the tests versus the test objectives. 

• Module . Verify that programs and modules are correctly im­
plemented in accordance with their design and that unit test 
procedures have been established. 

• Test procedure. Verify that test methods and materials com­
ply with an approved test specification; evaluate the test oper­
ational scenario and machine execution control details. 

• Module qualification. Determine that the module complies 
with the software specification; certify the module so that the 
code can be promoted from the project development library to 
the integration library. 

SYST J • VOL 19 • NO 4 • 1980 QUINNAN 469 



cost 

management 

470 

• Software system qualification. Determine that the imple­
mented software system complies with the software system 
specification; certify the system so that the code can be pro­
moted from the integration library to the release library. 

• Software system acceptance. Verify that the software system 
complies with all project deliverable objectives; certify the 
system so that the code for the software can be released to the 
customer (or the integration activity in a hardware/software 
system project). 

• Documentation completion . Verify that the completed docu­
mentation satisfies its objectives and complies with its ap­
proved outline. 

All these reviews are tools for project managers to use in assess­
ing how well objectives are being met. To a large degree, the re­
views deal with documents-specifications, test plans, test re­
ports, procedure descriptions, and, ultimately, code. Reviewers 
can read the documents to assess the content and quality; they 
can talk to the developers to assess the intent of the implementa­
tion and to clarify unclear statements. Intuition and judgment are 
required, besides technical knowledge. Reviewers must spot 
weaknesses in the work products, propose fixes, and establish 
criteria for subsequent reviews to verify that the fixes are suc­
cessful. The final acceptance reviews certify that we are con­
fident that the software product is ready for the customer and can 
pass his acceptance test. 

Software systems are built to provide specific capabilities for the 
user. Inevitably, the capabilities delivered depend on how much 
the user can afford to spend. In government contracts, as in busi­
ness information systems, value/cost tradeoffs reflected in project 
budgets place constraints on software development plans. Our 
goal is to give our managers planning and control procedures that 
permit them to manage technical progress and cost at the same 
time. 

The cost management process, illustrated in Figure 1, starts when 
the software design is sufficiently detailed to support cost esti­
mates and identify areas of risk. The planning and estimation 
steps are depicted in Figure 2. By spelling out all these steps in 
the cost management practice, we tend to avoid oversights . 
Looking back to 1964, when many large projects were severely 
underestimated, we now see that simple oversights can be identi­
fied as major sources of error. 31 Estimating methodology at that 
time focused only on actual programming activity; technical sup­
port, administration, and management were routinely omitted . 
Since the omissions were large - typically 150 percent of the di­
rect programming-cost target misses were large. The solution 
for many years was to adjust the basic programming estimate by a 
factor that compensated for omissions. Meanwhile , an effort was 

QUINN AN IBM SYST J • VOL 19 • NO 4 • 1980 



Figure 1 Cost management process 

PRELIMINARY SYSTEM 
DEFINITION AND 

SOFTWARE DESIGN 

COST PLANNING 
AND 

ESTIMATION 

COST 
PERFORMANCE 

PLANNING 

YES 

COST 
PERFORMANCE 
MONITORING 

COST PLANNING 
AND 

ESTIMATI ON 

OTHER PROJECTS 

made to collect enough historical project data to replace the rule­
of-thumb adjustment with more reliable methods. Now, we can 
tell our managers how to estimate each stage of the life cycle and 
how to deal explicitly with overhead support activities. 32 Our cost 
management practice, moreover, reminds managers to carry out 
each step without omissions. As a result, our proposals to cus­
tomers contain a cost plan that can be tracked throughout the life 
cycle. 

IBM SYST J • VOL 19 o NO 4 • 1980 QUINN AN 471 



472 

Figure 2 Planning and estimating 

ASSESS 
PRODUCT 

REQUIREMENTS 

1 

PRODUCT 
SIZING 

RISK 
ASSESSMENT 

"T 
FORMAL 

PRICE 

PRELIM INARY 
SOFTWARE 

SYSTEM 
REQUIREMENTS 

AND 
DESCRIPTION 

-

The cost plan contained in the proposal is refined further after 
contract award. At this time, detailed budgets are prepared and 
checkpoints are established. Procedures are also set up to collect 
performance measurements to permit an assessment of progress 
versus plan at checkpoints. The challenge in this process is that of 
obtaining a direct link between costs and technical progress. The 
fact that the expected amount of money has been spent by a given 
date does not necessarily indicate that the project is on schedule. 
Here again, our emphasis on tying the cost plan to the activities of 
the life cycle helps us. Expenditures are not merely projected on 
a month-by-month basis; they are related to specific work com­
ponents and completion dates. Thus, reviews assess cost status, 
technical status, and expected cost status for the given technical 
status. A variance between actual results and expected results 
indicates potential problems or areas for improvement. 

QUINN AN IBM SYST J • VOL 19 • NO 4 • 1980 



Figure 3 Desig o-cos 

DESIGN PROCE>S 

~-----------, 
I I 

I I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

DESIGN 

ESTIMATE 
COST 

YES 

0 

l__ - -- - ----- - - -------- __j 

Modifications or growth in the estimated scope of work, devia­
tions in expected productivity, or erroneous initial assumptions 
may require another cost planning and estimation cycle. For each 
iteration, the planning data are retained in the project data file for 
subsequent cost performance monitoring. The life-cycle model 
provides a checklist for assessing all the implications of changes, 
and the project data file provides actual performance data for cost 
planning and estimation. 

Cost management, as described , yields valid cost plans linked to 
technical performance. Our practice carries cost management far­
ther by introducing design-to-cost guidance. Design, develop­
ment, and management practices are applied in an integrated way 
to ensure that software technical management is consistent with 
cost management. The method, illustrated in Figure 3, consists of 
developing a design, estimating its cost, and ensuring that the de­
sign is cost-effective . To do this , design-to-cost goals are estab-

IBM SYST J • VOL 19 • NO 4 • 1980 QUINN AN 

DEVELOP AND 
TEST NEXT 
INCRWENT 

design­

to-cost 

473 



software 

program 

management 

474 

lished, based on an understanding of the capabilities of the soft­
ware and the related design solution. Plans to achieve these goals 
are developed by allocating costs to particular work components 
of the software system life cycle. 

Design is an iterative process in which each design level is a re­
finement of the previous level. At each stage, design and cost 
alternatives are examined. Those that best satisfy the project ob­
jectives are prepared for review and selection by the project spon­
sor. If no alternative fits the cost target, several courses of action 
are available. The most common one is to go back to the design­
ers and ask for a less costly, and perhaps less attractive, design . If 
the target has been missed by a large amount-and cost is criti­
cal-redesign may not produce an answer. In this case, the spon­
sor has to consider giving up some of the planned capability of the 
system. Otherwise, he has to recognize that the capability cannot 
be acquired without increasing the cost target. The design pro­
cess is followed until the program design for a specific software 
increment has been completed. From that point, development of 
each increment can proceed concurrently with the program de­
sign of the others. 

When the development and test of an increment are complete, an 
estimate to complete the remaining increments is computed. The 
algorithms used in this computation should reflect the various ac­
tual productivity rates experienced in developing and testing pre­
vious increments. An alternative plan is prepared and reviewed, 
as previously described, whenever a cost projection is inconsis­
tent with its cost plan. This may also require changes to a baseline 
design. 

Thus software cost management practices provide a uniform 
methodology for planning, estimating, measurement, and control. 
The life-cycle definition provides a structure for the identification 
of cost-estimating parameters and a standard set of references for 
the entire development process from proposal through contract 
performance. The design-to-cost practice describes the manage­
ment control procedures that balance cost, schedule, and func­
tional capability. 

Practices described thus far are directed at all project participants 
and department managers. They deal with specific details of de­
sign and implementation. They also cover technical and cost-con­
trol procedures. One more set of practices is needed to hold the 
software engineering program together. This final set is directed 
at the program manager and identifies the project-level plans, 
controls, and technical management considerations that are nec­
essary for effective software development in a functional organi­
zation. Since, in a functional organization, project resources are 
drawn from several discipline-oriented departments, the program 

QUINN AN IBM SYST J • VOL \9 • NO 4 • \980 



manager does not have direct line authority over all the partici­
pants. Program management is much like managing subcon­
tractors in a building construction project. Each subcontractor is 
highly qualified in a fairly narrow area and is most effective when 
carrying out a task in that area. The program manager, then, must 
define tasks clearly, assign them to appropriate departments, de­
fine working relationships and technical interfaces between de­
partments, and establish reports and controls to see that the func­
tional groups are carrying out their assignments. 

Program management responsibilities include developing and 
maintaining an organization plan that identifies departments in­
volved, their reporting relationships, and individual department 
charters. A project work responsibility matrix lists each work 
task, the responsible manager, and the prime and support roles of 
the functional groups. The work responsibility matrix should in­
clude a dependency network that indicates the predecessor and 
successor relationships for each task. All cost accounting , status 
reporting, management accountability, and technical perform­
ance are structured around the listed tasks. 

From a control viewpoint, program management responsibility 
includes ensuring system requirement traceability through design 
and test, providing an architecture control methodology, and 
managing computer resource loading reserves. These reserves 
are determined at design time to accommodate design and imple­
mentation uncertainties. 

Each functional group-hardware engineering, software engi­
neering, product assurance, etc. -must respond to the program 
manager with a plan of action and a commitment to carry out that 
plan to fulfill the assigned responsibility. 

The software function produces a Software Development Plan 
(SDP) that describes each assigned task from the work responsibil­
ity matrix. The description should cover product schedule, inter­
mediate milestones and schedules, and external dependencies 
with required scheduled dates. The program manager is respon­
sible for monitoring and controlling the external dependencies 
specified by the software function. The SDP is updated monthly 
and incorporates accomplishments, problems, and plans for the 
subsequent month. It is used as a control document within the 
software function and as a coordination document in the program 
manager's office. 

Concluding remarks 

The software management practices describe the plans and con­
trols for the software engineering environment. These plans and 

IBM SYST J o VOL 19 o NO 4 o 1980 QUINN AN 475 



476 

controls reflect the business responsibility of the software func­
tion to increase the visibility and understanding of its developing 
product. Cost management emphasizes cost estimation planning 
and control. Program management emphasizes effective commu­
nication between the software function and the other functions on 
the project. The technical reviews and design-to-cost practices 
integrate the application of the design and development practices 
with the management of the software process. Collectively, these 
components of software engineering define a structured and pre­
dictable approach to managing software projects. 

Application of these practices in the Federal Systems Division 
has improved our ability to predict program behavior. Capability, 
cost, and schedule still vary from initial program estimates; how­
ever, the variances are typically less than experienced in the past. 
Early identification of deviations from plan has led to timely cor­
rective action. The net result is that the integrated software engi­
neering practices of FSD permit us to deliver high-quality, cost­
effective software products with low business risk. 

CITED REFERENCES 

1. H. D. Mills, "Software development," IEEE Transactions on Software Engi­
neering SE-2, No. 4, 265- 273 (December 1976). 

2. 0. J . Dahl, E. W. Dijkstra, and C. A. R. Hoare, Structured Programming , 
Academic Press, Inc ., New York (1972). 

3. C. A. R. Hoare,'' An axiomatic basis for computer programming,' ' Communi­
cations of the ACM 12, No . 10, 576-583 (October 1969). 

4. R. C. Linger, H. D. Mills, and B. L. Witt, Structured Programming: Theory 
and Practice, Addison-Wesley Publishing Co., Inc., Reading, MA (1979). 

5. N. Wirth, Systematic Programming: An Introduction, Prentic'e-Hall, Inc. , 
Englewood Cliffs, NJ (1976). 

6. N. Wirth, Algorithms +Data Structures =Programs, Prentice-Hall, Inc., 
Englewood Cliffs, NJ (1973). 

7. A. B. Ferrentino and H . D. Mills, "State machines and their semantics in 
software engineering, " Proceedings of IEEE Comsac '77 , IEEE Catalog No. 
77Ch1291-4C, 242-251, IEEE Service Center, 445 Hoes Lane, Piscataway , 
NJ 08854 (1977). 

8. H . D. Mills, On the development of systems of people and machines, 
Springer-Verlag, New York (1975). 

9. D. L. Parnas, "The use of precise specifications in the development of soft­
ware," Proceedings of IFIP Congress 77, Toronto, August 8-12, 1977, B. 
Gilchrest, Editor, North-Holland Publishing Co., New York (1977) , pp . 861-
867. 

10. P. Brinch Hansen, The Architecture a/Concurrent Programs, Prentice-Hall, 
Inc ., Englewood Cliffs, NJ (1977). 

II. C. A. R. Hoare, " Monitors: An operating system structure concept," Com­
munications of the ACM 17, No. 10, 549- 557 (October 1974); "Corrigen­
dum," Communications of the ACM 18, No. 2, 95 (February 1975). 

12. N. Wirth, "Toward a discipline of real-time programming," Communications 
of the ACM 20, No. 8, 577-583 (August 1977). 

13. H . D. Mills, " Software engineering," Science 195, No. 4283 , 1149-1205 
(March 18, 1977) . 

14. G. M. Weinberg, The Psychology of Computer Programming , Van Nostrand 
Reinhold Co ., New York (1971) . 

15. F. T . Baker, "Chief programmer team management of production program­
ming," IBM Systems Journalll, No. 1, 56-73 (1972). 

QUINN AN IBM SYST J o VOL 19 o NO 4 o 1980 



16. M. A. Jackson, Principles of Program Design, Academic Press , Inc ., New 
York (1975). 

17. B. W. Boehm, ··software and its impact: A quantitative assessment ," Data­
mation 14, No. 5, 48-59 (May 1973) . 

18. R. W. Wolverton , ··The cos t of developing large-scale software ," IEEE 
Transa ction s on Computers C-23, No. 6, 615-636 (1974) . 

19. T. C. Jones, ··Measuring programming quality and productivity, " IBM Sys­
tems Journal 17, No. 1, 39-63 (1978). 

20. C. E. Walston and C. P . Felix," A method of programming measurement and 
estimation," IBM Systems Journal16, No. 1, 54-73 (1977). 

21. R. Yeh , Editor, Current Trends in Programming Methodology, Vol. l , Pren­
tice-Hall, Inc., Englewood Cliffs, NJ (1977). 

22. G. J. Myers , Composite /Structured Design, Van Nostrand Reinhold Co. , 
New York (1978). 

23 . R. C. McHenry and C. E. Walston, "Software life-cycle management: Weap­
ons process developer," IEEE Transactions on Software Engineering SE-4, 
No. 4, 334-344 (July 1978). 

24. F. P. Brooks, The Mythical Man-Month: Essays on Software Engineering, 
Addison-Wesley Publishing Co. , Inc., Reading, MA (1975). 

25. C. L. McGowan and R. C. McHenry, "Software management," Research 
Directions in Software Technology, P. Wegner and W. Wolf, Editors; to be 
published. 

26 . E. A. Goldberg; "Applying corporate software development policies," Soft­
ware Development: Management, the Seventy-First Infotech State of the Art 
Conference , London, May 12- 14, 1980, Infotech , Ltd. , Maidenhead , England 
(1980). 

27. E. W. Dykstra, "Co-operating sequential processes ... Programming Lan ­
guages, Academic Press , Inc. , London (1968). pp. 43-112 . 

28. M. V. Wilkes , ' "The outer and inner syntax of a programming language, .. The 
Computer Journal 11 , 260-263 (May- ovember 1968). 

29 . B. H. Liskov and S. N. Zilles . "An introduction to formal specifications of 
data abstractions ,' · Current Trends in Programming Methodology, Vol. 1, R. 
Yeh , Editor, Prent ice-Hall. Inc .. Englewood Cliffs. 1 J (1977), pp. 1-32. 

30. M. E. Fagan , "Design and code inspections to reduce errors in program de­
velopment ," IBM Systems Journa l 15, No. 3. 182-211 (1 976) . 

31. J. D. Aron , ··Estimating resource s for large programmi ng systems ," Software 
Engineering, Concepts and Techniques , P. Naur. B. Randell , and J. N. Bux­
ton , Editors , Petrocell i/Charter, New York (1976). 

32. M. R. Seldon, Life Cycle Costing: A Better Method of Government Pro­
curement, Westview Press, Inc. , Boulder, CO (1979). 

The author is located at the IBM Federal Systems Division, 18100 
Frederick Pike , Gaithersburg, MD 20760. 

Reprint Order No. G321-5133. 

IBM SYST J • VOL 19 • NO 4 • 1980 QUINN AN 477 


	Management of Software Engineering, The - Part I: Principles of Software Engineering
	Recommended Citation

	tmp.1317409644.pdf.G_Iqu

