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Cell Metabolism

Short Article
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SUMMARY

Liver X receptors (LXRs) are nuclear receptors
that play crucial roles in lipid metabolism
in vivo and are activated by oxysterol ligands
in vitro. The identity of the ligand that activates
LXRs in vivo is uncertain. Here we provide two
lines of evidence that oxysterols are LXR ligands
in vitro and in vivo. First, overexpression of an
oxysterol catabolic enzyme, cholesterol sulfo-
transferase, inactivates LXR signaling in several
cultured mammalian cell lines but does not alter
receptor response to the nonsterol agonist
T0901317. Adenovirus-mediated expression of
the enzyme in mice prevents dietary induction
of hepatic LXR target genes by cholesterol
but not by T0901317. Second, triple-knockout
mice deficient in the biosynthesis of three oxy-
sterol ligands of LXRs, 24S-hydroxycholesterol,
25-hydroxycholesterol, and 27-hydroxycholes-
terol, respond to dietary T0901317 by inducing
LXR target genes in liver but show impaired
responses to dietary cholesterol. We conclude
that oxysterols are in vivo ligands for LXR.

INTRODUCTION

The liver X receptors a and b (LXRa and LXRb) are nuclear

receptors and heterodimeric partners of the retinoid X re-

ceptor (Apfel et al., 1994; Song et al., 1994; Willy et al.,

1995). LXRs are activated by oxysterol ligands in vitro

(Forman et al., 1997; Janowski et al., 1996; Lehmann

et al., 1997) and regulate the expression of genes involved

in fatty acid and cholesterol metabolism in vivo (Li and

Glass, 2004; Tontonoz and Mangelsdorf, 2003).

Oxysterols were initially identified as ligands for LXRs

using in vitro assays in which candidate compounds

were added to the medium of cultured cells transfected

with LXR reporter systems. Direct binding of oxysterols

to the LXR ligand binding domain was demonstrated

next (Janowski et al., 1999), as was the ability of bound

ligand to recruit coactivator proteins to the receptor

(Schultz et al., 2000). Nonsterol agonists of LXR were iden-

tified subsequently by the pharmaceutical industry.

It has proven more difficult to identify LXR ligands re-

sponsible for activation in vivo. Controversy exists as to

whether naturally occurring oxysterols such as 24S-

hydroxycholesterol, 25-hydroxycholesterol, and 27-hy-

droxycholesterol subserve the same LXR activating func-

tion in the whole animal as they do in vitro (Bjorkhem,

2002). The strongest lines of evidence supporting an

in vivo role for oxysterols are the observations that inhibi-

tors of cholesterol biosynthesis, which presumably reduce

intracellular levels of oxysterols, attenuate LXR responses

in cultured cells (DeBose-Boyd et al., 2001; Wong et al.,

2004) and, conversely, that cholesterol feeding, which

presumably increases oxysterol levels, induces LXR tar-

get genes in mice (Peet et al., 1998). Similarly, inhibition

of the enzyme 2,3-oxidosqualene:lanosterol cyclase,

which elevates intracellular levels of 24,25-epoxycholes-

terol, activates LXR signaling in cultured macrophages

(Rowe et al., 2003).

The current studies were designed to accomplish two

goals: first, to identify a catabolic enzyme that could be

used to inactivate oxysterol ligands and thereby deter-

mine whether oxysterols activate LXRs in different biolog-

ical systems in vitro and in vivo, and second, to determine

whether mice deficient in oxysterol biosynthetic enzymes

exhibit impaired LXR signaling in response to dietary cho-

lesterol. To these ends, we show that expression of the

enzyme cholesterol sulfotransferase (SULT2B1b) sulfates

oxysterols and attenuates LXR signaling in cultured cells

and whole animals and that knockout mice that do not

synthesize 24S-hydroxycholesterol, 25-hydroxycholes-

terol, and 27-hydroxycholesterol fail to induce certain

LXR target genes in the liver when fed cholesterol.

RESULTS

Cholesterol Sulfotransferase Metabolizes

Oxysterols

Sulfotransferases are a family of cytosolic and membrane-

bound enzymes that metabolize diverse substrates rang-

ing from xenobiotics to steroids (Strott, 2002). Family
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members that act on steroids transfer an SO3
�1 group

from the cofactor 30-phosphoadenosine 50-phosphosul-

fate to the 3-hydroxyl position of a substrate. We intro-

duced a full-length cDNA encoding the mouse SULT2B1b

cholesterol sulfotransferase (Shimizu et al., 2003) into cul-

tured human embryonic kidney 293 (HEK293) cells and

confirmed that the expressed enzyme had the capacity

to sulfate cholesterol as well as several oxysterols (Javitt

et al., 2001), including the LXR ligands 22-hydroxycholes-

terol, 24S-hydroxycholesterol, 25-hydroxycholesterol,

27-hydroxycholesterol, and 24,25-epoxycholesterol (see

Figure S1 in the Supplemental Data available with this

article online).

Sulfotransferase Inactivates LXR Signaling

in HEK293 Cells

To determine whether expression of sulfotransferase

inactivates the transcriptional activity of LXR, a receptor-

reporter system consisting of plasmids encoding GAL4-

LXR, RXRa, and a luciferase gene linked to a GAL4-

responsive promoter was introduced into HEK293 cells

in the presence or absence of an expressible sulfotrans-

ferase cDNA. The addition of different oxysterol ligands

stimulated luciferase expression 3- to 12-fold, and with

each sterol, coexpression of sulfotransferase decreased

the stimulatory response (Figure 1A). In contrast, activa-

tion of LXR-mediated luciferase gene expression medi-

ated by a nonsterol agonist, T0901317, was unaffected

by the presence of sulfotransferase at the concentration

used (0.1 mM) and at lower concentrations (data not

shown). To examine the receptor specificity of the inhibi-

tory response, the ability of the sulfotransferase to inacti-

vate bile acid ligands of the farnesoid X receptor (FXR) was

determined. Sulfotransferase expression resulted in a

modest (�2-fold) but reproducible stimulation of FXR tran-

scriptional activity in the absence of ligand (Figure 1B).

The addition of chenodeoxycholate led to a 32-fold stim-

ulation of luciferase gene expression that was unaffected

by coexpression of sulfotransferase (Figure 1B). Similarly,

activation of FXR by the nonsterol agonist GW4064 was

not influenced by sulfotransferase.

The ability of sulfotransferase to affect activation of the

LXRa/RXRa heterodimer mediated by 9-cis-retinoic acid

was tested next (Figure 1C). A receptor-reporter system

consisting of plasmids encoding full-length LXR and

RXRa and an LXR-responsive luciferase gene was intro-

duced into HEK293 cells in the presence or absence of

the sulfotransferase expression vector. When different

amounts of 9-cis-retinoic acid were added alone to the

medium of the transfected cells, a hyperbolic dose-

response curve was generated. Coexpression of the sul-

fotransferase did not change this response. Addition of

24,25-epoxycholesterol plus 9-cis-retinoic acid increased

luciferase gene expression in an additive fashion, and the

presence of the sulfotransferase reduced this response to

that observed in the presence of 9-cis-retinoic acid alone.

The combination of the retinoid and T0901317 also acti-

vated transcription of the reporter gene, and this response

was not altered by expression of sulfotransferase. We

concluded that sulfation of 24,25-epoxycholesterol did

not result in the production of an antagonist, as if this

were the case, the response to the RXR ligand would

have been diminished. Sulfation of 24,25-epoxycholes-

terol also did not affect the response of LXR to

T0901317 (data not shown).

Figure 1. Inactivation of Oxysterol, but Not Nonsterol,

Ligands by Sulfotransferase

(A) HEK293 cells were transfected with plasmids of the GAL4-LXRa/

GAL4-luciferase receptor-reporter system for 4 hr. Thereafter, the indi-

cated ligands were added to the medium at either 1.25 mM (sterols) or

0.1 mM (T0901317) concentration, and the incubation was continued

for 16 hr. Cells were harvested and luciferase activity was determined.

(B) HEK293 cells were transfected with plasmids of the full-length FXR/

FXRE-luciferase receptor-reporter system as above. The ligands che-

nodeoxycholic acid (CDCA) and GW4064 were added at concentra-

tions of 25 and 0.5 mM, respectively.

(C) HEK293 cells were transfected with plasmids of the full-length

LXRa/RXRa/LXRE-luciferase receptor-reporter system. Ligands

added were 24,25-epoxycholesterol (24,25-EC, 0.625 mM), T1091317

(0.1 mM), and 9-cis-retinoic acid at the indicated concentrations.
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Sulfotransferase Inactivates Endogenous LXR

Signaling in Cultured Cells

Several CHO cell lines that expressed sulfotransferase in

response to ecdysone were generated, and the behavior

of an endogenous LXR target gene, ABCA1 (Venkates-

waran et al., 2000), was monitored. Induction of the en-

zyme in these cells had no effect on the ability of

T0901317 to induce ABCA1; however, sulfotransferase

efficiently counteracted stimulation by 24,25-epoxycho-

lesterol (Figure S2).

RAW 264.7 cells are a transformed line of mouse mac-

rophages sensitive to the stimulatory effects of LXR

ligands. We found that infection of RAW cells with re-

combinant adenoviruses expressing sulfotransferase in-

activated the ability of four different oxysterols to induce

the LXR target genes ABCA1 and SREBP-1c but had no

effect on induction mediated by T0901317 (Figure S3).

RAW cells infected with a control adenovirus expressing

E. coli b-galactosidase responded normally to oxysterols

and the synthetic agonist.

Sulfotransferase Inactivates Insulin-Mediated

Induction of SREBP-1c

Transcription of the SREBP-1c gene is activated by in-

sulin in hepatocytes, and this stimulation is dependent

on LXR (Chen et al., 2004; Repa et al., 2000). To deter-

mine whether expression of the sulfotransferase would

block this activation, primary hepatocytes were pre-

pared from rats and infected with adenoviruses encod-

ing either sulfotransferase or b-galactosidase, and the

response to insulin and T0901317 was measured. In

uninfected cells, the level of SREBP-1c mRNA was

increased 24-fold and 36-fold by treatment with insulin

and T0901317, respectively (Figure 2A). When the sulfo-

transferase adenovirus was added to cells at a multiplic-

ity of infection of 2, the response of the SREBP-1c gene

to insulin was abolished, while that for T0901317 was

not affected. A similar outcome was observed when

a multiplicity of infection of 6 was used (Figure 2A). Nei-

ther insulin nor sulfotransferase affected the expression

of other LXR target genes in these cells (data not

shown).

In a second experiment, uninfected cells again re-

sponded to insulin with a 27-fold induction of SREBP-1c

mRNA levels (Figure 2B). This induction was not dimin-

ished by infection with the b-galactosidase adenovirus

but was eliminated by the sulfotransferase adenovirus.

These data allowed three conclusions to be drawn. First,

sulfotransferase inactivated the response of the SREBP-

1c gene to insulin in primary hepatocytes. Second, given

the results shown in Figure 1C, the insulin effect on

this gene was most likely mediated by LXR and not RXR.

Third, given the substrate specificity of the sulfotransfer-

ase enzyme and the biology of LXR, insulin must in

some manner stimulate the production of an endogenous

sterol ligand of LXR that is selective for activation of the

SREBP-1c gene or that affects the response of the system

to an oxysterol.

Sulfotransferase Inactivates LXR Signaling In Vivo

To establish whether expression of sulfotransferase af-

fected LXR responses in vivo, wild-type C57BL/6 male

mice were infected with adenovirus expressing either b-

galactosidase or sulfotransferase and then fed diets con-

sisting of normal chow or chow supplemented with 1%

cholesterol or 0.025% T0901317 for a period of 4 days.

The addition of cholesterol to the diet led to an induction

of known LXR target genes, including cholesterol 7a-hy-

droxylase (CYP7A1), SREBP-1c, ABCG5, and ABCG8, in

mice infected with the control b-galactosidase virus (Fig-

ure 3). Feeding T0901317 to similarly infected animals

led to a more robust induction of this gene quartet. Infec-

tion with the sulfotransferase virus blocked the ability of

dietary cholesterol to stimulate expression of these genes

but had little effect in T0901317-fed mice.

Figure 2. Sulfotransferase Blocks the Ability of Insulin to

Activate LXR in Primary Hepatocytes

(A) Cells were prepared from rat liver and plated on collagen-coated

dishes for 3–4 hr. The plating medium was replaced with fresh medium

containing either no adenovirus (�) or adenovirus expressing the

mouse cholesterol sulfotransferase cDNA at the designated multiplic-

ities of infection (MOI). After an additional 14–16 hr incubation, cells

were washed, and medium containing vehicle or the indicated concen-

trations of insulin or T0901317 was added. Nine hours later, total RNA

was extracted from the cells, and levels of SREBP-1c mRNA were de-

termined by real-time RT-PCR.

(B) Primary hepatocytes were prepared, plated, and infected with ad-

enovirus expressing either the E. coli b-galactosidase gene (b-Gal) or

the mouse cholesterol transferase gene (ST) and then treated with ve-

hicle or insulin as described in (A). The experiments in (A) and (B) were

performed on different days.
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Mice with Oxysterol Biosynthetic Deficiencies Have

Altered LXR Responses

Because sulfotransferase utilizes both cholesterol and

oxygenated sterols as substrates (Figure S1), it was not

clear from the above data which sterol class was acting

as a ligand for LXR. To clarify this issue, dietary studies

were carried out in mice deficient in three known oxysterol

biosynthetic enzymes, cholesterol 24-hydroxylase, cho-

lesterol 25-hydroxylase, and sterol 27-hydroxylase. The

introduced mutations eliminated enzyme activity in each

case and reduced endogenous levels of side-chain oxy-

sterols to below the levels of detection by mass spectrom-

etry (unpublished data). Male triple-knockout mice to-

gether with wild-type controls were fed unsupplemented

chow or chow supplemented with 1% cholesterol or

0.025% T0901317. A small amount of cholic acid

(0.025%) was included in all diets. This supplementation

restored bile acid pool size and composition in the mutant

mice but did not affect these parameters in wild-type mice.

As expected, feeding cholesterol and T0901317 to wild-

type mice for 7 days induced the expression of known

LXR target genes, including CYP7A1, lipoprotein lipase

(LPL), SREBP-1c, ABCG5, and ABCG8 (Figure 4). In

contrast, while the responses of the mutant mice to dietary

T0901317 were similar to those of wild-type controls, LXR

target-gene induction by cholesterol feeding was elimi-

nated (LPL, ABCG5, and ABCG8), impaired (SREBP-1c),

or unaffected (CYP7A1). These data suggested that the

side-chain oxysterols 24S-, 25-, and 27-hydroxycholes-

terol activate LXR to induce LPL, ABCG5, and ABCG8 in

mouse liver and that other ligands, e.g., 24,25-epoxycho-

lesterol, produced by different biosynthetic enzymes,

served this purpose for the CYP7A1 and SREBP-1c

genes. In support of this interpretation, infection of choles-

terol-fed triple-knockout mice with the sulfotransferase

adenovirus prevented the induction of all LXR target genes

by dietary cholesterol (Figure S4).

DISCUSSION

The current data provide two lines of evidence that sup-

port a role for oxysterols as endogenous ligands for

LXR. First, forced expression of cholesterol sulfotransfer-

ase, an enzyme that metabolizes oxysterol ligands, led to

inactivation of LXR signaling in HEK293 cells, CHO cells,

RAW mouse macrophages, primary hepatocytes, and

cholesterol-fed mice. Second, genetic elimination of three

oxysterol biosynthetic enzymes attenuated the response

of some, but not all, LXR target genes in mouse liver.

The levels of ligands for nuclear receptors are regulated

by catabolic enzymes to ensure that excess signaling

does not take place. The enzymes involved in these deg-

radative pathways are often redundant and expressed in

both target and nontarget tissues (Penning, 2003). In

some cases, the expression of catabolic enzymes, includ-

ing sulfotransferases, protects a tissue from the actions of

a circulating ligand (Tong et al., 2005); in others, the ligand

induces the expression of genes encoding catabolic en-

zymes in a feed-forward regulatory loop (Chawla et al.,

2001). Here, we exploited this knowledge to develop

a generally applicable method in which ectopic expres-

sion of a catabolic enzyme is used to gain insight into

nuclear receptor signaling.

Circulating oxysterols are normally metabolized to bile

acids in the liver through a multienzyme pathway in which

7a-hydroxylation is a key step (Russell, 2003). That extra-

hepatic pathways for inactivation must also exist is sug-

gested by the observation that elimination of the mouse

CYP7B1 oxysterol 7a-hydroxylase, which blocks the

synthesis of bile acids from oxysterols and causes their

accumulation in the plasma, does not hyperactivate LXR

signaling (Li-Hawkins et al., 2000). Cholesterol sulfo-

transferase is not expressed in the liver but is expressed

in the skin and epididymis (Shimizu et al., 2003) and

thus may represent an example of an extrahepatic

Figure 3. Expression of Sulfotransferase

in Mice Disrupts LXR-Mediated Gene

Activation

Male C57BL/6 mice (n = 3 per group) were in-

fected with the indicated adenovirus (7.8 3

108 pfu/mouse) on day 0 of the experiment

and then maintained on diets containing

0.02% cholesterol (�), 1% cholesterol (C), or

0.025% T0901317 (T). On day 4, animals

were killed, and total RNA was prepared from

individual livers. Equal amounts of RNA from

each animal in an experimental group were

pooled, and levels of four LXR target-gene

mRNAs were determined by real-time RT-

PCR. The results are representative of two sep-

arate infection/feeding experiments using the

same number of animals of each genotype.
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oxysterol-metabolizing enzyme. In agreement with this

notion, LXR ligands activate several biological processes

in the dermis (Man et al., 2006) and increase sulfotransfer-

ase expression in human keratinocytes (Jiang et al., 2005).

Overexpression of sulfotransferase inactivated the re-

sponse of LXR to multiple oxysterol ligands when the latter

were added exogenously to cultured cells. Dose-re-

sponse experiments with 9-cis-retinoic acid (Figure 1C)

and T0901317 (data not shown) suggested that the mech-

anism of attenuation involved inactivation of the oxysterol

rather than conversion to an antagonist. In two experimen-

tal situations, reduction of the LXR response was less ro-

bust. In the first, incubation of RAW cells with acetylated

LDL led to an approximately 70-fold increase in the level

of ABCA1 mRNA, and this increase was reduced only

50% by expression of sulfotransferase (Figure S3). This at-

tenuated response may be due to the large amounts of

cholesterol delivered to cells upon endocytosis of acety-

lated LDL, which would be predicted to compete with oxy-

sterol substrates for sulfotransferase access. Alterna-

tively, the intracellular itinerary taken by endocytosed

sterols may be different from that of sterols added exoge-

nously in an organic solvent. It also is possible that acety-

lated LDL contains LXR agonists that are not substrates

for sulfotransferase.

The second situation in which the LXR response was

varied occurred in mice in which three oxysterol biosyn-

thetic genes were knocked out (Figure 4). Cholesterol

feeding induced five established LXR target genes in

wild-type mice, and three of these, lipoprotein lipase,

ABCG5, and ABCG8, were not induced in the triple-

knockout mice. This is an expected result if the side-chain

oxysterols synthesized by the three biosynthetic enzymes

are responsible for activating LXR upon consumption of

dietary cholesterol. One target gene, SREBP-1c, re-

sponded partially to cholesterol feeding in the mutant

mice, and another, cholesterol 7a-hydroxylase, re-

sponded normally. The latter responses may reflect prior

observations showing that nuclear receptors activate dif-

ferent classes of target genes depending on the ligand

present (Downes et al., 2003; Dussault et al., 2003; Li-

Hawkins et al., 2002; Miao et al., 2004; Quinet et al.,

2004). Here, endogenous ligands that are not synthesized

by the deleted biosynthetic enzymes, such as 24,25-

epoxycholesterol (Zhang et al., 2001), sterol intermediates

in the cholesterol biosynthetic pathway (Yang et al., 2006),

or nonsterol ligands, may regulate the SREBP-1c and

cholesterol 7a-hydroxylase genes. The observation (Fig-

ure S4) that adenoviral infection prevented the induction

of these genes by cholesterol feeding in the mutant mice

supports this notion.

EXPERIMENTAL PROCEDURES

HEK293 Cell Transfections

Cells (CRL 1573, American Type Culture Collection) were grown, trans-

fected, and treated with ligands as described in detail in Supplemental

Experimental Procedures. Cells were harvested 16 hr posttreatment

and disrupted by addition of 0.5 ml of detergent buffer, and the result-

ing lysates were assayed for luciferase and b-galactosidase enzyme

activities as described (Cheng et al., 2003).

Primary Hepatocytes

Hepatocytes were prepared from male Sprague-Dawley rats as

described (Chen et al., 2004). Adherent cells were washed once with

4 ml of PBS and then incubated for 14–16 hr in medium B (medium

199 supplemented with 100 nM dexamethasone, 100 nM 3,30,5-

triiodo-L-thyronine, 100 units/ml penicillin, and 100 mg/ml streptomy-

cin sulfate). Insulin (1 nM) and purified recombinant adenovirus (Ad-

b-gal or Ad-mouseST) were then added to the medium at the indicated

Figure 4. Knockout of Oxysterol Biosynthetic Genes Attenuates LXR-Mediated Gene Transcription in Liver

Male wild-type (+/+) or Cyp46a1�/�Ch25h�/�Cyp27a1�/� (3KO) C57BL/6;129S6/SvEv mice (n = 6 per group) were fed chow with 0.025% cholic acid

and 0.02% cholesterol (�), 1% cholesterol (C), or 0.025% T0901317 (T) for 7 days. Animals were killed, total RNA was prepared from individual livers,

and equal amounts of RNA from each animal were pooled. The levels of five LXR target-gene mRNAs were determined by real-time RT-PCR. The

results are representative of two separate feeding experiments using the same number of animals for each genotype.
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multiplicities of infection, and the incubation was continued an addi-

tional 14–16 hr. Cells were then washed once with 4 ml PBS and incu-

bated with 3 ml of medium B supplemented with the indicated ligands

and/or hormone for 9 hr prior to harvest and isolation of total RNA.

Adenovirus Infection of Mice

Recombinant adenoviruses expressing E. coli b-galactosidase (lacZ)

or mouse cholesterol sulfotransferase were constructed using a kit

from Qbiogene. On day 0 of each experiment, 3- to 4-month-old

C57BL/6 male mice were injected via the tail vein with 7 3 108 pfu

per mouse of recombinant adenovirus and then placed on powdered

chow diets (Harlan Teklad #7001) supplemented with 0.02% choles-

terol (ICN, #101380, lot 2530F), 1% cholesterol, or 0.025%

T0901317 (all w/w). Animals were killed on day 4 at the middle of the

light cycle. Total hepatic RNA was isolated using RNA STAT-60 (Tel-

Test ‘‘B’’ Inc.), and individual mRNA levels were quantitated by real-

time RT-PCR.

Diet Studies in Oxysterol-Deficient Mice

The triple-knockout mice used in these studies were generated by

crossing cholesterol 24-hydroxylase-deficient (Lund et al., 2003), cho-

lesterol 25-hydroxylase-deficient (unpublished data), and sterol 27-hy-

droxylase-deficient (Rosen et al., 1998) mice. The introduced mutation

in each case produced a null allele. The genetic background of the an-

imals was mixed (C57BL/6;129S6/SvEv). On day 0 of each experiment,

male 3- to 4-month-old animals were placed on powdered chow diets

(Harlan Teklad #7001) supplemented with 0.025% cholic acid (Sigma)

and 0.02% cholesterol, 1% cholesterol, or 0.025% T0901317 (all w/w).

Animals were killed on day 7 at the middle of the light cycle. Gene ex-

pression was monitored by real-time RT-PCR.

Supplemental Data

Supplemental Data include Supplemental Experimental Procedures,

Supplemental References, and four figures and can be found with

this article online at http://www.cellmetabolism.org/cgi/content/full/

5/1/73/DC1/.
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