
Exercise 5.5.76. Rev. R. D. Carmichael in 1907 offered the following formula [Car
1907]:

12 + 52 + 142 + ...+

(
n(n+ 1)(2n+ 1)

6

)2

=

=
n(n+ 1)(n+ 2)(2n+ 1)(2n+ 3)(5n2 + 10n− 1)

1260
. (5.5.77)

Prove it and then show that

∑

a|N

(∑

b|a
d(b)2

)2

= d(N)d(N1/2)d(N1/3)d(N2/3)d(N2/5)
∑

a|N
(
15

14
)ω(a)d(a2/3).

(5.5.78)

Exercise 5.5.79. Show that

n∑
s=0

(1 + s)(1 +
1

2
s)3 = (1 + n)(1 +

1

2
n)(1 +

1

3
n)(1 +

63

80
n+

3

20
n2) : (5.5.80)

∑

a|N
d(a)d(a1/2)3 = d(N)d(N1/2)d(N1/3)

∑

a|N

(
51

80

)ω(a)

d(a8/17). (5.5.81)

Exercise 5.5.82. Show that for

α = const, α 6= ±1, (5.5.83)

n∑
s=0

(1+s)(1+
1

1− α
s)(1+

1

1 + α
s) = (1+n)(1+

1

2
n)(1+

3

2(1− α2)
n+

1

2(1− α2)
n2) :

(5.5.84)∑

a|N
d(a)d(a1/(1−α))d(a1/(1+α)) =

∑

a|N
d(a))(

∑

a|N
(1− α2)−ω(a)d(a)). (5.5.85)

(The latter formula is another natural generalization of the original {α = 0}-identity
we had started with.)

Exercise 5.5.86. Show that

( n∑
s=0

(1 + s)2
)2

=
n∑

s=0

(1 + s)3(1 +
2

3
s+

1

3
s2) : (5.5.87)

(∑

a|N
d(a)2

)2

=
∑

a|N
d(a)3

∑

b|a
3−ω(b)d(b2). (5.5.88)

Exercise 5.5.89. Show that

( n∑

i=0

(1 + i)

)( n∑

j=0

(1 + j)2
)

=
n∑

k=0

(1 + k)2(1 +
5

3
k +

5

6
k2) : (5.5.90)
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(∑

a|N
d(a)

)(∑

b|N
d(b)2

)
=

∑

a|N
d(a)2

∑

b|a

(
5

6

)ω(b)

d(b2). (5.5.91)

Exercise 5.5.92. Convert formula (3.1.45) into

∑

a|N
1/d(a)d(a1/4) = d(N)

(∑

a|N

(
59

108

)ω(a)

d(a22/59)

)
/d(N1/2)d(N1/3)d(N1/4).

(5.5.93)

Why don’t you guys do what you do best,
find something simple and complicate it.

Bart Simpson’s advice to
government types in Tremors III

§§§ 5.6. Linear Transformations‡

If you have an apple, and I have an apple, and we
exchange the apples, then you and I will still each
have one apple. But if you have an idea, and I have
an idea, and we exchange these ideas, then each of
us will have two ideas.

George Bernard Shaw

Let F (N) be a multiplicative p-independent arithmetic function, and let f(n)
be its symbol:

f(n) = F (pn), n ∈ Z+, any p. (5.6.1)

We assume, as before, that f(n) is a polynomial, of degree = L, say.

In §§5.2-5.4 we tackled the problem of factorization of f(n), to lower the degree
of f from L to L − 1 and then all the way to 1. We didn’t manage to find a
representation

F = ζ ∗G : (5.6.2a)

f(n) =
n∑

s=0

g(s), n ∈ Z+, (5.6.2b)

where g(n) is a polynomial, of degree 1 less than the degree of f . Let us now
examine why we didn’t.

Recall that the equality F = ζ ∗G is equivalent to the equality

G = µ ∗ F, (5.6.3)

‡ §5.6 and §5.7 can be safely skipped by the reader unfamiliar with the terms
employed in these two Sections.
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where µ(N) is the classical Möbius function (1.3.11):

µ(pn) =

{ 1, n = 0
−1, n = 1
0, n > 1

(5.6.4)

With a slight abuse of notations, we shall write the local form of the formula (5.6.3)
as

g = µ ∗ f. (5.6.5)

The meaning of this equality can be inferred from the conversion of the system
(5.6.2b) into the equivalent system

f(0) = g(0), (5.6.6a)

f(n+ 1)− f(n) = g(n+ 1), n ∈ Z+. (5.6.6b)

This is, of course, the same as

g(n) =
n∑

s=0

µ(ps)f(n− s), (5.6.7)

which we get directly from formula (5.6.3) by evaluating each side of it on N = pn.

Now, if f and g were to be polynomials, the equality (5.6.6b) would be equiv-
alent to the equality

f(x+ 1)− f(x) = g(x+ 1),

or
g(x) = f(x)− f(x− 1). (5.6.8)

For x = 0, the values of g(0) provided by formulae (5.6.6a) and (5.6.8) must agree:

g(0) = f(0) = f(0)− f(−1). (5.6.9)

This relation is satisfied when
f(−1) = 0. (5.6.10)

In other words, f(n) must be divisible by 1+n; equivalently, F (N) must be divisible
by d(N) (in an obvious sense).

Since, in general, f(−1) 6= 0, we can’t apply the operator µ∗ to the space of
polynomials and end up inside the same space.

But we can if we first multiply f(n) by 1 + n and then apply µ∗:

f(n) 7→ f̃(n) = µ ∗ ((1 + n)f(n)) : (5.6.11a)

F 7→ F̃ = µ ∗ (dF ) (5.6.11b)

This linear operator preserves degrees and is invertible: denoting the inverse oper-
ator by L1, we get:

L1(F ) =
ζ ∗ F
d

: (5.6.12a)

110



L1(f)(n) =
1

1 + n

n∑
s=0

f(s). (5.6.12b)

The direct operator (5.6.11a), now denoted L̄1 = L−1
1 , acts by the rule:

L̄1(f)(n) = (1 + n)f(n)− nf(n− 1) = (5.6.13a)

= f(n) + n(f(n)− f(n− 1)) = (5.6.13b)

= (1 + n∆)f(n). (5.6.13c)

The form (5.6.13b) makes explicit the property of the operator L̄1 to preserve the
degree of every polynomial L̄1 acts upon.

Remark 5.6.14. Formula (5.6.12b) shows that the operator L1 can be considered
as a sort of an averaging operator. Its inverse, the operator L−1

1 = L̄1, is given by
formula (5.6.13c). It’s not obvious from these 2 formulae that both L1 and L̄1 are
acting inside the space of polynomials, and moreover, are degree-preserving, but
the preceding discussion makes this non-obvious fact explicit.

Before continuing further, let’s pause and consider an instructive example.

Let’s fix a nonzero constant
ψ 6= 0 (5.6.15)

and consider the sum ∑

a|N
d(aψ)2. (5.6.16)

For N = pn, this sum becomes

n∑
s=0

(1 + ψs)2 = (1 + n)(1 + n(ψ +
1

6
ψ2) + n2 1

3
ψ2). (5.6.17)

The polynomial

f(n) = 1 + n(ψ +
1

6
ψ2) + n2 1

3
ψ2 (5.6.18)

takes the value

f(−1) = 1− ψ +
1

6
ψ2. (5.6.19)

Therefore,
f(−1) 6= 1 (5.6.20a)

precisely when
ψ 6= 6, (5.6.20b)

since ψ 6= 0 (5.6.15). Therefore, for ψ 6= 6, the recipe (5.4.53,54) returns:

1 + n(ψ +
1

6
ψ2) + n2 1

3
ψ2 =

n∑
s=0

(ψ − 1

6
ψ2)1−δ(s;0)(1 +

4ψ

6− ψ
s) : (5.6.21a)

∑

a|N
d(aψ)2 = d(N)

∑

a|N
(ψ − 1

6
ψ2)ω(a)d(a4ψ/(6−ψ)), ψ 6= 6. (5.6.21b)
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But what happens when ψ = 6? If we apply the procedure of §5.3 to the
polynomial

(1 + n)(1 + n(ψ +
1

6
ψ2) + n2 1

3
ψ2)|ψ=6 = (1 + n)(1 + 12n+ 12n2), (5.6.22)

we recover precisely the LHS of the equality (5.6.16) we had started with. A
result correct but worthless. Instead, let us apply the operator L1 (5.6.12b) to the
polynomial

f(n) = 1 + 12n+ 12n2. (5.6.23)

We get:

f̃(n) =
1

1 + n

n∑
s=0

(1 + 12s+ 12s2) = 1 + 8n+ 4n2. (5.6.24)

Since
f̃(−1) = −3 6= 1,

we can apply formula (5.5.55) to f̃(n) and find:

f̃(n) = L1(f)(n) =
n∑

s=0

41−δ(s;0)(1 + 2s). (5.6.25)

Hence,
n∑

s=0

(1 + 6s)2 = (1 + n)f(n) = (1 + n)(µ ∗ df̃)(n), (5.6.26a)

which can be rewritten equivalently as

ζ ∗ 1

1 + n

n∑
s=0

(1 + 6s)2 = (1 + n)
n∑

s=0

41−δ(s;0)(1 + 2s) : (5.6.26b)

∑

a|N

1

d(a)

∑

b|a
d(b6) = d(N)

∑

a|N
4ω(a)d(a2). (5.6.26c)

This was the result of applying the operator L1 to the resonance-prone poly-
nomial f(n) = 1 + 12n + 12n2. If, instead of L1, we apply the inverse operator
L−1
1 = L̄1 (5.6.13) to f(n), we get a different and a slightly less interesting result.

Set ˜̃
f(n) = L̄1(f) = f(n) + n(f(n)− f(n− 1)) =

= 1 + 12n+ 12n2 + n · 12(1 + (2n− 1)) = 1 + 12n+ 36n2 = (1 + 6n)2. (5.6.27)

Since
˜̃
f(−1) = 25 6= 1, the recipe (5.4.53,54) yields

˜̃
f(n) = 1 + 12n+ 36n2 =

n∑

k=0

(−24)1−δ(k;0)(1− 3k). (5.6.28)
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(i) Show that
L1(f)(n) = 1 + ũ1n+ ṽ1n

2 : (5.6.65a)
(
ũ1

ṽ1

)
=

(
1/2 1/6

0 1/3

)(
u

v

)
; (5.6.65b)

(ii) Show that
L1(f)(n) = 1 + u1n+ v1n

2 : (5.6.66a)
(
u1

v1

)
=

(
2 − 1

0 3

)(
u

v

)
; (5.6.66b)

(iii) More generally, if
Lr(f)(n) = 1 + ũrn+ ṽrn

2, (5.6.67a)

L̄r(f)(n) = 1 + urn+ vrn
2, (5.6.67b)

show that (
ũr

ṽr

)
=

1

(r + 1)(r + 2)

(
r + 2 r

0 2

)(
u

v

)
, (5.6.68a)

(
ur

vr

)
= (r + 1)

(
1 − r/2

0 1 + r/2

)(
u

v

)
. (5.6.68b)

Exercise 5.6.69. (i) Check that

n∑

i=0

(0+1+ ...+ i)2 = (1+ η)(1+
1

2
η)(1+

1

3
η)(1+

6

5
η+

3

10
η2), n = 1+ η; (5.6.70)

(ii) Show that

L1(1 +
6

5
n+

3

10
n2) = (1 +

1

4
n)(1 +

2

5
n) : (5.6.71a)

∑

a|N
(
∑

b|a
d(b))2 = D3(N)(µ ∗ (dd(1/4)d(2/5)))(N); (5.6.71b)

(iii) Show that
n∑

k=1

∑n
i=1(

∑i
j=1 j)

2

k(k + 1)(k + 2)
=

n(n+ 3)(2n+ 3)

120
. (5.6.72)

Exercise 5.6.73. Define the operators Ōr acting on the space of multiplicative
functions:

Ōr(F ) =
1

Dr−1
(µ ∗ (DrF )), r ∈ N. (5.6.74)

Show that, acting on symbols of p-independent multiplicative functions,

Ōr = 1 +
n

r
∆. (5.6.75)

In particular,

Ōr(f)(n) = f(n) +
1

r
n(f(n)− f(n− 1)). (5.6.76)
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Exercise 5.6.77. Let, by formulae (5.5.19, 20),

f(n) = 1 +
9

5
n+

3

5
n2 =

s4(n+ 1)

s2(n+ 1)
. (5.6.78)

Show that

1 +
9

5
n+

3

5
n2 = L̄2

1((1 +
n

3
)(1 +

n

5
)) : (5.6.79a)

∑

a|N

1

d(a)

∑

b|a
(
∑

c|b
d(c)4)/(

∑

c|b
d(c)2) = d(N)d(N1/3)d(N1/5). (5.6.79b)

Yes, but they have a great
defect: they are so short.

Walter Berry’s canonical reply on being
asked if he had read Proust’s novels

§§§ 5.7. Nonlinear Transformations

The best dressed of every age have always
been the worst men and women.

The Habits of Good Society (1859)

In the preceding Section we met the degree-preserving linear operator L1

(5.6.12a):

L1(F ) =
ζ ∗ F
d

. (5.7.1)

Since
ζ = d(0), (5.7.2)

formula (5.7.1) can be equivalently rewritten as

L1(F ) =
d(0) ∗ F

d
. (5.7.3)

This form suggests that it might be worthwhile to consider the more general linear
operators

N(α)(F ) =
d(α) ∗ F

d
, α = const. (5.7.4)

Unfortunately, for α 6= 0 the operators N(α) do not preserve the degrees, they
increase said degrees by 1. (Recall that we consider F to be a p-independent
arithmetic function whose symbol f(n) = F (pn) is a polynomial in n.)

For example, formula (4.5.5b) shows that

N(α))(d(ψ))(p
n) = 1 + n(

α+ ψ

2
− αψ

6
) + n2αψ

6
. (5.7.5)
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However, with F fixed, a judicious choice of α, now depending upon F , can in
effect lower the degree of Nα)(F ) back to the degree of F .

There exist various ways to exercise such a judicious choice. The canonical
way, guaranteed to work always no matter what F is, is to demand that N(α)(F )
be divisible by d(−1). This amounts to the requirement that

d(α) ∗ F
d

(p) = 0. (5.7.6)

But
(d(α) ∗ F )(p) = d(α)(p

0)F (p) + d(α)(p)F (p0) = F (p) + (1 + α) =

= f(1) + 1 + α. (5.7.7)

Thus,
α = −1− f(1) = −1− F (p), (5.7.8)

and we obtain the following nonlinear degree-preserving action on the space of
p-independent arithmetic functions of polynomial type:

N1(F ) =
d(−1−F (p)) ∗ F

dd(−1)
. (5.7.9)

For example, formula (5.7.5) implies that

d(−2−ψ) ∗ d(ψ) = dd(−1)d(ψ(ψ+2)/6), (5.7.10)

so that
N1(d(ψ)) = d(ψ(ψ+2)/6). (5.7.11)

If, instead of requiring N(α)(F ) to be divisible by d(−1), we ask it to be divisible
by d(−1/k) for some other k ∈ N, we’d have to satisfy the equation

0 = (d(α) ∗ F )(pk) =
k∑

i=0

d(α)(p
i)F (pk−i) =

k∑

i=0

(1 + αi)F (pk−i) =

= (ζ ∗ F )(pk) + α
k∑

i=0

iF (pk−i), (5.7.12)

so that

α = −(ζ ∗ F )(pk)/
k∑

i=1

iF (pk−i). (5.7.13)

However, for k > 1, the denominator of formula (5.7.13) may vanish for an unlucky
F ; therefore, the resulting nonlinear degree-preserving map

Nk(F ) =
d(α) ∗ F
dd(−1/k)

(5.7.14)

is now defined for most but not all F when k > 1. When F is fixed, the denominator∑k
i=1 iF (pk−i) is, as can be easily seen, a polynomial in k of degree = 2+deg(f), so
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this denominator can vanish for at most a finite number of the values of k; therefore,
the map Nk (5.7.14), for a given F , is defined for all positive integers k apart from
a finite number of possible exceptions.

In fact, since f(n) is a polynomial in n, the index k in formula (5.7.14) can be
considered as an arbitrary (non-zero) parameter and not necessarily as a positive
integer: the same conclusion then applies: that Nk(F ), for a fixed F , is defined
always save for at most a finite number of exceptional values of k.

For k = −1, formula (5.7.14) takes the form

N−1(F ) =
d(α) ∗ F

d2
. (5.7.15)

Combining the map N−1 with the operator L1 (5.6.11b), we end up with the map

N (F ) = L1N−1(F ) = µ ∗
(
d(α) ∗ F

d

)
. (5.7.16)

The parameter α in this formula is understood to be chosen in such a way that
d(α) ∗ F is divisible by d2.

Let us consider in detail the 1st non-trivial case, when f(n) = F (pn) is a
polynomial of degree = 2:

f(n) = 1 + un+ vn2. (5.7.17)

A straight-forward calculation shown that

d(α) ∗ (1 + un+ vn2)

d
(n) =

= 1 + n(
α+ u

2
+

v − αu

6
) + n2(

αu

6
− αv

12
+

v

3
) + n3αv

12
. (5.7.18)

The RHS of formula (5.7.18) vanishes at n = −1 provided

0 = 1− α+ u

2
− v

6
+

αu

6
+

αu

6
− αv

12
+

v

3
− αv

12
=

= (1− u

2
+

v

6
)− α(

1

2
− u

3
+

v

6
), (5.7.19)

whence

α = (1− u

2
+

v

6
)/(

1

2
− u

3
+

v

6
). (5.7.20a)

To get N (1 + un + vn2), we have to apply the operator µ∗, or ∆, to the RHS of
formula (5.7.18), resulting in:

N (1 + un+ vn2) = 1 + ũn+ ṽn2, (5.7.20b)

ũ = α(
u

3
− 5v

12
) +

2v

3
, ṽ =

αv

4
. (5.7.20c)

In particular,
u = v ⇒ α = 2 ⇒ ũ = u/2, ṽ = v/2 : (5.7.21)
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N (1 + un+ un2) = 1 +
u

2
n+

u

2
n2. (5.7.22)

Let’s consider a few examples, with deg(f) = 2 still.

By formula (5.5.26),

s5(n+ 1)

s1(n+ 1)2
= 1 + 2n+

2

3
n2. (5.7.23)

Formulae (5.7.20) applied to the polynomial 1 + 2n+ 2
3n

2 return:

α = −2, ũ = −1/3, ṽ = −1/3 : (5.7.24a)

N (1 + 2n+
2

3
n2) = 1− 1

3
n− 1

3
n2. (5.7.24b)

Applying next formula (5.7.22) to the RHS of formula (5.7.24b), we get:

N (1− 1

3
n− 1

3
n2) = 1− 1

6
n− 1

6
n2 = (1 +

n

3
)(1− n

2
). (5.7.25)

Hence, inverting, we find:

1 + 2n+
2

3
n2 = d∗−1

(−2) ∗ (d(ζ ∗ (1−
1

3
n− 1

3
n2))), (5.7.26a)

1− 1

3
n− 1

3
n2 = d∗−1

(2) ∗ (d(ζ ∗ (d(1/3)d(−1/2))))(n) ⇒ (5.7.26b)

1 + 2n+
2

3
n2 = d∗−1

(−2) ∗ (d(ζ ∗ d
∗−1)
(2) ∗ (d(ζ ∗ (d(1/3)d(−1/2))))))(n) : (5.7.26c)

∑

a|N
d(N2/a2)

1

d(a)

∑

b|a
d(b2/a2)(

∑

c|b
d(c)5)/(

∑

c|b
d(c))2 =

=
∑

a|N
d(a)

∑

b|a
d(b1/3)d(b−1/2). (5.7.26d)

Remark 5.7.27. Formulae (5.7.22) and (5.7.24b) show that the nonlinear map N
is not one-to-one:

N (1 + 2n+
2

3
n2) = 1− 1

3
n− 1

3
n2 = N (1− 2

3
n− 2

3
n2). (5.7.28)

Remark 5.7.29. Take the identity

∑

a|N
D2(a

2) = d(N)d(N1/2)d(N4/3), (5.7.30)

and for N = pn, consider the polynomial

d(N1/2)d(N4/3) = (1 +
1

2
n)(1 +

4

3
n) = 1 +

11

6
n+

2

3
n2. (5.7.31)
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For this polynomial, the map N−1, and therefore also the map N , are not defined:
the denominator of the formula (5.7.20a) for α vanishes:

1

2
− 1

3
· 11
6

+
1

6
· 2
3
= 0. (5.7.32)

Exercise 5.7.33. Show that

1 + 2n+ 2n2 =
d(2) ∗ d(6)

d
(pn). (5.7.34)

Exercise 5.7.35. Use formulae (5.7.14) and (5.5.55) to show that

N−1(1 + un+ un2) = 1 +
u

3
n+

u

6
n2 = (5.7.36)

=
n∑

i=0

(
u

6

)1−δ(i;0)

(1 + 2i). (5.7.37)

Exercise 5.7.38. Use formulae (5.6.66) to show that

L̄1(1 + 2un+ un2) = 1 + 3un+ 3un2. (5.7.39)

Exercise 5.7.40. Show that
n∑

i=0

(
2 + 3i

2

)
= (1 + n)(1 + 3n+

3

2
n2) (5.7.41a)

and deduce that∑

ab=N

d(a)
1

d(b)

∑

c|b
D2(c

3) = d(N)
∑

a|N
d(a)d(a3/8). (5.7.41b)

Exercise 5.7.42. Show that
n∑

i=0

(
3 + 2i

3

)
=

n∑

i=0

(1 + 2i)(1 + i)(1 +
2

3
i) = (1 +

n

2
)(1 + 2n+

2

3
n2) : (5.7.43a)

(
∑

a|N
d(a))2(

∑

a|N
D3(a

2)) = d(N1/2)
∑

a|N
d(a)5. (5.7.43b)

Exercise 5.7.44. Show that

1 + 2n+
2

3
n2 = µ ∗ d(2) ∗ d(2/3)

d
(pn) : (5.7.45a)

∑

a|N
(
∑

b|a
d(b)5)/(

∑

b|a
d(b))2 =

1

d(N)

∑

ab=N

d(a2)d(b2/3). (5.7.45b)

Exercise 5.7.46. Show that

1− 1

3
n− 1

3
n2 = N 2(d(2/3)d(−2))(n). (5.7.47)

Spin, stir, crackle, sizzle, and buzz,
How quickly the Land of Oz turns to Was.

Anonymous
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CHAPTER 6. LET THEM THAT DO NOT CARE FOR AN IDENTITY BE
LEFT UNIDENTIFIED

When chaos has not yet separated
into Heaven and Earth, all was
misty vastness with no human be-
ings to be seen.

The opening line of Wu Cheng’en’s
Journey to the West

Anyone who doesn’t take this Chapter seriously will be lost eventually. Anyone
who does take it seriously, will be lost at once.

§§§ 6.1. The Faulhaber Phenomenon

Rimsky-Korsakov − what a name! It sug-
gests fierce whiskers stained with vodka!

Musical Courier

Johannes Faulhaber (1580-1635), an energetic engineer and a promiscuous
numbers-lover, developed an extensive theory of the sacred numbers of the Bible
and published a book Miracula arithmetica, among many other things (now all
forgotten, as befits most of the 17th Century’s non-mathematical passions.)

We met his name briefly in §5.1, in connection with formula (5.1.19).

The Faulhaber phenomenon is the following pair of properties of the polyno-
mials sk(n)’s, proved in Remark 4.7.6 and formula (4.7.19), respectively:

s2k+1(n) is a polynomial in s1(n), k ∈ Z+, (6.1.1)

s2m(n)/s2(n) is a polynomial in s1(n), m ∈ N. (6.1.2)

Since

s2(n) =
1 + 2n

3
s1(n), (6.1.3)

the property (6.1.2) can be equivalently reformulated as:

s2m(n) is (1 + 2n) times a polynomial in s1(n), m ∈ N. (6.1.4)

The Faulhaber phenomenon reflects a hidden symmetry of the power-sums.
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In this Chapter we shall be interested in the degree to which the Faulhaber phe-
nomenon survives some very natural extensions, when the straightforward power-
sums

sk(n) = 1k + ...+ nk =
n−1∑

i=0

(1 + i)k (6.1.5)

are replaced by:

Sk(n;ϕ) =
n−1∑

i−0

(1 + iϕ)k, ϕ = const, (6.1.6)

the sums of powers of the terms of an arithmetic progression;

sk||−1(n) =
n−1∑

i=0

(−1)i(1 + i)k, (6.1.7)

the alternating power-sums;

S̄k(n) =
n∑

s=0

(n− 2s)k, k even, (6.1.8)

the central power-sums; and

S(k, `;n) =
n∑

j=0

jk(n− j)`, (6.1.9)

the so-called convolved sums.

What survives − or otherwise − of the Faulhaber phenomenon is not at all
obvious and can not be predicted a priori.

First they came for the identities,
and I not only said nothing, I gave
them directions.

Gustav Noble, Sr.
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§§§ 6.2. Odd-Powered Sums

If you smoke a pack of cigarettes a day for
80 years, you’ll live to a ripe old age.

US Surgeon General (attrib.)

The behavior of the sums Sk(n;ϕ) (6.1.6) is dissimilar for odd and even k’s.
This Section addresses the case of odd k’s. The case of even k’s is treated in the
next Section.

For the first few k’s, we can readily find:

S1(n;ϕ) = n(1 +
ϕ

2
(n− 1)), (6.2.1)

S2(n;ϕ) = n(1 +
ϕ

6
(ϕ+ 6)(n− 1) +

ϕ2

3
(n− 1)2), (6.2.2)

S3(n;ϕ) = n(1 +
ϕ

2
(n− 1))(1 +

ϕ

2
(ϕ+ 2)(n− 1) +

ϕ

2

2
(n− 1)2), (6.2.3)

S4(n;ϕ) = n{1 + ϕ

30
(60 + 30ϕ− ϕ3)(n− 1) +

ϕ2

30
(60 + 30ϕ+ ϕ2)(n− 1)2+

+
ϕ3

10
(10 + 3ϕ)(n− 1)3 +

ϕ4

5
(n− 1)4}. (6.2.4)

We see that

S3(n;ϕ)/S1(n;ϕ) = 1 + ϕ{ϕ+ 2

2
(n− 1) +

ϕ

2
(n− 1)2} =

= 1 + ϕ(S1(n;ϕ)− 1), (6.2.5)

because

S1(n;ϕ) = n(1 +
ϕ

2
(n− 1)) = (1 + (n− 1)) + ((n− 1) + 1)

ϕ

2
(n− 1) =

= 1 + (n− 1) + (n− 1)2
ϕ

2
+ (n− 1)

ϕ

2
= 1 + (1 +

ϕ

2
)(n− 1) +

ϕ

2
(n− 1)2. (6.2.6)

Thus,
S3(n;ϕ) = S1(n;ϕ){ϕS1(n;ϕ) + (1− ϕ)}. (6.2.7)

This is the fate of the identity
s3 = s21 (6.2.8)

when ϕ, previously masquerading as 1, comes out of the closet.

We see from formula (6.2.7) that S3(n;ϕ) is still a polynomial in S1(n;ϕ). Let
us prove that this half of the Faulhaber phenomenon survives being attacked by ϕ:
that S2k+1 = S2k+1(n;ϕ) is a polynomial in S1 = S1(n;ϕ) divisible by S1.

Clearly, the method of §4.7 is not going to work for the general ϕ 6= 1, at least
I couldn’t see how one should modify that method. Instead, we are going to use
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the Gessel ([Ges 1987]) method of generating functions which not only proves that
S2k+1 is a polynomial in S1 but actually provides that polynomial as well‡.

We have:

∞∑

k=0

(−1)k
x2k+1

(2k + 1)!
S2k+1(n;ϕ) =

∞∑

k=0

(−1)k
x2k+1

(2k + 1)!

n−1∑

i=0

(1 + iϕ)2k+1 =

=
n−1∑

i=0

∞∑

k=0

(−1)k
x2k+1(1 + iϕ)2k+1

(2k + 1)!
=

n−1∑

i=0

sin((1 + iϕ)x). (6.2.9)

Now, from the trigonometric identity

2sin(α) · sin(β) = cos(β − α)− cos(β + α), (6.2.10)

we find:

n−1∑

i=0

2sin(
ϕ

2
x)sin((1 + iϕ)x) =

n−1∑

i=0

{cos((1 + (i− 1

2
)ϕ)x)− cos((1 + (i+

1

2
)ϕ)x)} =

= cos((1− ϕ

2
)x)− cos((1 + (n− 1

2
)ϕ)x). (6.2.11)

Therefore, the RHS of formula (6.2.9) becomes:

n−1∑

i=0

sin((1 + iϕ)x) =
cos((1− ϕ

2
)x)− cos((1 + (n− 1

2 )ϕ)x)

2sin

(
ϕx

2

) . (6.2.12)

Next,

cos(z) = 1 +
∞∑
r=1

(−1)r
z2r

(2r)!
. (6.2.13)

Therefore,

cos((1 + (n− 1

2
)ϕ)x) = 1 +

∞∑
r=1

(−1)rx2r

(2r)!
((1 + (n− 1

2
)ϕ)2)r. (6.2.14)

But

(1 + (n− 1

2
)ϕ)2 = ((1− 1

2
ϕ) + nϕ)2 = (1− 1

2
ϕ)2 + (2− ϕ)nϕ+ n2ϕ2 =

‡ “A soul ... is easily defined negatively: it is simply what curls up and hides
when there is any mention of algebraic series.” (From Robert Musil’s The man
without qualities.)
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= (1− 1

2
ϕ)2 + 2ϕn(1− ϕ

2
+ n

ϕ

2
) [by (6.2.1)] = (1− 1

2
ϕ)2 + 2ϕS1(n;ϕ). (6.2.15)

Thus, n enters into the RHS’s of formulae (6.2.14) and (6.2.12) only through the
combination S1(n;ϕ). Therefore, equating the coefficients in the like-powers on the
LSH of formula (6.2.9) and on the RHS of formula (6.2.12), we see that indeed
S2k+1 is a polynomial in S1 for all k ∈ Z+.

Moreover, the numerator of the ratio in the RHS of formula (6.2.12) can be
rewritten with the help of formula (6.2.15) as

cos((1− ϕ

2
)x)− cos((1 + (n− 1

2
)ϕ)x) =

=
∞∑
r=1

(−1)r
x2r

(2r)!

{((
1− ϕ

2

)2)r

−
((

1− ϕ

2

)2

+ 2ϕS1

)r}
, (6.2.16)

so that this numerator is divisible by S1. And therefore so is S2k+1, for each and
every k.
Exercise 6.2.17. Show that

n−1∑

i=0

(1 + iϕ)3 = n(1 +
ϕ

2
(n− 1))(1 + ϕ(1 +

ϕ

2
)n+

ϕ2

2
n2) (6.2.18)

and deduce that

∑

a|N
d(aϕ)3 = (

∑

a|N
d(aϕ))

{∑

a|N
ϕω(a)d(aϕ)

}
. (6.2.19)

(This is perhaps the most natural generalization of the Liouville formula we had
started with, ∑

a|N
d(a)3 = (

∑

a|N
d(a))

{∑

a|N
d(a)

}
. (6.2.20)

At least half the mystery novels published
violate the law that the solution, once
revealed, must seem to be inevitable.

Raymond Chandler

§§§ 6.3. Even-Powered Sums

You never want a job that provides a
car and a chauffeur; when the job ends,
you’ll miss the convenience sorely.

Malcolm Muggeridge

Let us now attend to the even-powered sums. A quick glance at the formulae
(6.2.1-4) shows that, for general ϕ, S1(n;ϕ) does not divide S2(n;ϕ) and S2(n;ϕ)
does not divide S4(n;ϕ). This is baffling. Let us, therefore, resort to magic.
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For ϕ = 1, the case we know everything about, formulae (6.2.1) and (6.2.2)
yield:

S1(n; 1) = n(1 +
1

2
(n− 1)), (6.3.1)

S2(n; 1) = n(1 +
7

6
(n− 1) +

1

3
(n− 1)2) = n(1 +

1

2
(n− 1))(1 +

2

3
(n− 1)) =

= (1 +
2

3
(n− 1))S1(n; 1) =

2

3
(1 + (n− 1

2
))S1(n; 1). (6.3.2)

For ϕ 6= 1, S2(n;ϕ) is not divisible by S1(n;ϕ). (As always, we exclude the
trivial case ϕ = 0.) But what is the next best thing to being divisible? Well, in the
case of polynomials, it is to be left after the division of one polynomial by another
with the remainder of the lowest possible degree. We are thus well-advised to look
for a linear polynomial x+ y(n− 1) such that S2(n;ϕ)− (x+ y(n− 1))S1(n;ϕ) is
a polynomial of smallest possible degree: 1 would be the best possible case, since
both S2(n;ϕ) and S1(n;ϕ) are divisible by n. A short and painless calculation
shows that

x+ y(n− 1) =
2

3
(1 + ϕ(n− 1

2
)) (6.3.3)

and then that

S2(n;ϕ) =
1− ϕ

3
n+

2

3
(1 + ϕ(n− 1

2
))S1(n;ϕ). (6.3.4)

For ϕ = 1 we recover the RHS of formula (6.3.2). Moreover, formula (6.3.4)
feels right, since we’ve ended up with the factor 1 + ϕ(n − 1

2 ) which was also
responsible for the odd-powered sums in §6.2 to behave Faulhaberably, see formula
(6.2.12).

We are again, like in the preceding Section, going to use Gessel’s method of
generating functions. So:

∞∑

k=1

(−1)k
x2k

(2k)!
S2k(n;ϕ) =

∞∑

k=1

(−1)k
x2k

(2k)!

n−1∑

i=0

(1 + iϕ)2k =

=
n−1∑

i=0

∞∑

k=1

(−1)k
(x(1 + iϕ))2k

(2k)!
= −n+

n−1∑

i=0

∞∑

k=0

(−1)k
(x(1 + iϕ))2k

(2k)!
=

= −n+
n−1∑

i=0

cos((1 + iϕ)x). (6.3.5)

Next, from the trigonometric identity

2sin(α) · cos(β) = sin(β + α)− sin(β − α) (6.3.6)

we deduce that

n−1∑

i=0

2sin

(
ϕx

2

)
cos((1 + iϕ)x) =

n−1∑

i=0

(sin((1 + ϕ(i+
1

2
))x)− sin((1 + ϕ(i− 1

2
)x)) =
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= sin((1 + ϕ(n− 1

2
))x)− sin((1− ϕ

2
)x). (6.3.7)

Thus, the RHS of formula (6.3.5) becomes:

−n+
1

2sin(
ϕx

2
)

{
sin ((1 + ϕ(n− 1

2
))x)− sin((1− ϕ

2
)x)

}
= (6.3.8a)

=
sin((1 + ϕ(n− 1

2 ))x)

2sin

(
ϕx

2

) −
(
n+

sin((1− ϕ

2
)x)

2sin

(
ϕx

2

)
)
. (6.3.8b)

Now,

sin((1 + ϕ(n− 1

2
))x) = (1 + ϕ(n− 1

2
))x

∞∑
r=0

(−1)r
x2r

(2r + 1)!
((1 + ϕ(n− 1

2
))2)r

[by (6.2.15)] = x(1+ϕ(n− 1

2
))

∞∑
r=0

(−1)r
x2r

(2r + 1)!
((1− ϕ

2
)2+2ϕS1(n;ϕ))

r. (6.3.9)

Therefore, if we set

sin((1− ϕ

2
)x)

2sin

(
ϕx

2

) =
∞∑

k=0

(−1)k c̃2k
x2k

(2k)!
, c̃2k = c̃2k(ϕ), (6.3.10)

then formula (6.3.8b) implies that

S2k(n;ϕ)− c̃2k = (1 + ϕ(n− 1

2
))× {a polynomial in S1(n;ϕ)}. (6.3.11)

This is not entirely satisfactory since we have the right to expect that obscure
polynomial in S1 = S1(n;ϕ) be actually divisible by S1. This defect can be fixed
up by evaluating the expression (6.3.8a) at S1 = 0, as follows: the coefficient in
front of

(−1)r
x2r+1

(2r + 1)!
(6.3.12)

in

sin((1 + ϕ(n− 1

2
))x)− sin((1− ϕ

2
)x)) (6.3.13)

equals, by formula (6.3.3), to

(1 + ϕ(n− 1

2
))((1− ϕ

2
)2 + 2ϕS1)

r − (1− ϕ

2
)(1− ϕ

2
)2r. (6.3.14)

At S1 = 0, this becomes:

(1 + ϕ(n− 1

2
))(1− ϕ

2
)2r − (1− ϕ

2
)(1− ϕ

2
)2r = ϕn(1− ϕ

2
)2r. (6.3.15)
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Therefore,

S2k(n;ϕ) = (1 + ϕ(n− 1

2
))S1(n;ϕ)× {a polynomial in S1(n;ϕ)}+

+nc2k(ϕ), (6.3.16)

where c2k(ϕ) is some polynomial in ϕ.

Let’s now look at the 1st nontrivial entry in our long series of identities,
S2(n;ϕ). Expanding modulo x3 the expression (6.3.8a), we find:

−n+
1

2
ϕx

2
(1− ϕ2

4
· x

2

6
)

{x(1 + ϕ(n− 1

2
))(1− (1 + ϕ(n− 1

2
))2

x2

6
)−

−x(1− ϕ

2
)(1− (1− ϕ

2
)2
x

6

2
))} = −n+(

1

ϕ
+n− 1

2
){1+ (

ϕ2

4
− (1+ϕ(n− 1

2
))2)

x2

6
−

−(
1

ϕ
−1

2
){1+(

ϕ2

4
−(1−ϕ

2
)2)

x2

6
} [by (6.2.15)] =

x2

6
{( 1

ϕ
−1

2
+n)(

ϕ2

4
−(1−ϕ

2
)2−2ϕS1)−

−(
1

ϕ
− 1

2
)(
ϕ2

4
− 1 + ϕ− ϕ2

4
)} =

=
x2

6
{−2S1(1 + ϕ(n− 1

2
)) + n(ϕ− 1)}. (6.3.17)

The x2-coefficient in the LHS of formula (6.3.5) is − 1
2S2. Thus,

−1

2
S2 =

1

6
{−2(1 + ϕ(n− 1

2
))S1 + n(ϕ− 1)} ⇒ (6.3.18)

S2 =
2

3
(1 + ϕ(n− 1

2
))S1 +

n(1− ϕ)

3
. (6.3.19)

This is exactly formula (6.3.4), which can be viewed now as part of a general series
of relations.

Exercise 6.3.20. (i) Show that, as a polynomial in n,

S2k(−n; 2) = −S2k(n; 2); (6.3.21)

(ii) Show that
∞∑

k=1

(−1)k
x2k

(2k)!
S2k(n; 2) =

sin (2nx)

2sin(x)
− n. (6.3.22)

Exercise 6.3.23. (i) Show that S1(n;α)|S2(n;β) provided

3α2 − αβ(6 + β) + 4β2 = 0; (6.3.24)

(ii) Deduce that
S1(n; 4/3)|S2(n; 2), (6.3.25a)

S1(n; 4/3)|s2(n), (6.3.25b)
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S1(n; 4)|S2(n; 2), (6.3.25c)

S1(n; 13)|S2(n;−13); (6.3.25d)

(iii) Show that equation (6.3.24) has the following general solution:

α = 3γ2 − 6γ + 4, β = 3γ − 6 + 4/γ, 0 6= γ = const, (6.3.26a)

α = β = 0. (6.3.26b)

Exercise 6.3.27. (i) Show that S1(n;α)|S3(n;ϕ) provided

α = ϕ, (6.3.28a)

or
α2 − αϕ(2 + ϕ) + 2ϕ2 = 0; (6.3.28b)

(ii) Deduce that
S1(n; 2)|s3(n), (6.3.29a)

S1(n; 5)|S3(n;−5), (6.3.29b)

S1(n; 10)|S3(n;−5); (6.3.29c)

(iii) Show that the general solution of the equation (6.3.28b) is:

α = γ2 − 2γ + 2, ϕ = γ − 2 + 2/γ, 0 6= γ = const, (6.3.30a)

α = ϕ = 0. (6.3.30b)

Exercise 6.3.31. (i) Show that S2(n;ψ)|S4(n;ψ) provided

ψ(ψ − 1)(ψ − 2) = 0; (6.3.32)

(ii) Show that

S2(n; 2) = n(1 + 2(n− 1))(1 +
2

3
(n− 1)); (6.3.33)

(iii) Show that

S4(n; 2) = S2(n; 2)(1 +
24

5
(n− 1) +

12

5
(n− 1)2); (6.3.34)

(i4) Deduce that

∑

a|N
d(a2)4 = (

∑

a|N
d(a2)2)(

∑

a|N

(
12

5

)ω(a)

d(a2)); (6.3.35)

(i5) Show that S2(n; 2)|S2k(n; 2) for all k ∈ N, and that the ratio S2k(n; 2)/S2(n; 2)
is a polynomial in S1(n; 2).
Exercise 6.3.36. Show that

S0(n;ϕ)S2(n; 2) = S1(n; 4)S1(n; 4/3). (6.3.37)
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Exercise 6.3.38. Show that the identity

S0(n;x)S3(n; y) = S1(n;u)S2(n; v) (6.3.39)

is impossible for rational nonzero x, y, u, v.
Exercise 6.3.40. Let Bn denote the Bernoulli number #n. Set

Bϕ
n (x) =

n∑

j=0

(
n

j

)
ϕj−1Bjx

n−j . (6.3.41)

Show that

Sk(n;ϕ) =
n−1∑

i=0

(1 + iϕ)k =
1

k + 1

{
Bϕ

k+1(1 + nϕ)−Bϕ
k+1(1)

}
. (6.3.42)

We find things beautiful somewhat
in proportion as they are costly.

Thorstein Veblen

§§§ 6.4. She Loves Me, She Loves Me Not,...

As to the Democrats or the Repub-
licans, let a man choose which he
will, he is sure to repent.

Gregory Nunn

We have already met some alternating power-sums in §1.1, formulae (1.1.47-
52,54,56,58-63,66). In the notation (1.1.29), these sums are:

sk||−1 = sk||−1(n) =
n−1∑

i=0

(−1)i(1 + i)k, n ∈ N. (6.4.1)

What are the basic properties of these sums? Formula (4.6.26),

sk||−1(n) = (−1)n−1

⌊
n+ 1

2

⌋
, n ∈ N, (6.4.2)

suggests that these alternating sums are no longer polynomial in n, unlike the pure
power-sums. In this Section we determine how far these alternating sums deviate
from being polynomials.

For each k ∈ Z+, let Ek(x) be a polynomial in x, of degree = k, satisfying the
relation

Ek(x) + Ek(x+ 1) = 2xk, k ∈ Z+. (6.4.3)
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At the moment we do not know if such a polynomial exists, but if it does, it is
clearly unique: the difference between any two polynomials satisfying the equality
(6.4.3) would be a polynomial, f(x) say, for which

f(x+ 1) = −f(x). (6.4.4)

Thus, f(x) is periodic with period 2. Being a polynomial, f(x) must be a constant.
Then, formula (6.4.4) says that f(x) must be identically 0.

To get a handle on the polynomials Ek(x), multiply (6.4.3) by tk/k! and sum
on k ∈ Z+. Denoting

E(x, t) =
∞∑

k=0

Ek(x)
tk

k!
, (6.4.5)

we can rewrite the infinite number of defining relations (6.4.3) as a single relation

E(x, t) + E(x+ 1, t) = 2ext. (6.4.6)

Since
ext + e(x+1)t = (1 + et)ext, (6.4.7)

we find a solution of the equation (6.4.6) in the form:

E(x, t) = 2

1 + et
ext. (6.4.8)

Set
2

1 + et
=

∞∑

h=0

ēn
tn

n!
. (6.4.9)

Then

∞∑

k=0

Ek(x)
tk

k!
= E(x, t) = 2

1 + et
ext =

( ∞∑
n=0

ēn
tn

n!

)( ∞∑

`=0

x`t`

`!

)
, (6.4.10)

whence

Ek(x) =
n∑

s=0

(
k

s

)
ēk−sx

s, (6.4.11)

which is a polynomial of degree = k. (Because ē0 = 1.)

The polynomials Ek(x) are called the Euler polynomials. (More about them
can be found in [ASt 1972] and [Dil 1988].) These polynomials serve the alternating
power-sums in the same way the Bernoulli polynomials of §5.1 serve the pure power-
sums, as follows:

sk||−1(n) =
n∑

i=1

(−1)i−1ik [ by (6.4.3)] =
n∑

i=1

(−1)i−1(Ek(i) + Ek(i+ 1))/2 =

=
1

2

n∑

i=1

(−1)i−1Ek(i)+
1

2

n+1∑
s=2

(−1)sEk(s) =
1

2
Ek(1)+

1

2
(−1)n+1Ek(n+1). (6.4.12)
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Thus,

sk||−1(n) = (−1)n−1Ek(n+ 1) + (−1)n−1Ek(1)

2
= (6.4.13a)

= (−1)n−1Ek(n+ 1)

2
+

1

2
Ek(1), n ∈ N. (6.4.13b)

The last formula, (6.4.13b), shows that (−1)n−1sk||−1(n) differs from a poly-
nomial in n of degree = k by an oscillating (with n) term

(−1)n−1 1

2
Ek(1). (6.4.14)

Exercise 6.4.15 Show that

2

1 + e−t
= 2− 2

1 + et
(6.4.16)

and deduce that
ē0 = 1; ē2n = 0, n ∈ N. (6.4.17)

Exercise 6.4.18. Show that

ēn = −1

2

n−1∑

k=0

(
n

k

)
ēk, n ∈ N, (6.4.19)

and deduce that
2nēn ∈ Z, n ∈ Z+. (6.4.20)

Exercise 6.4.21. (i) Show that

En(1) = (−1)nEn(0) = (−1)nēn = (6.4.22)

=

{
ēn, n =0
−ēn, n > 0

(6.4.23)

(ii) Deduce that

sk||−1(n) = (−1)n−1Ek(n+ 1) + (−1)nEk(0)

2
, n ∈ N. (6.4.24)

Exercise 6.4.25. Show that

dEx(x)

dx
= kEk−1(x), k ∈ N. (6.4.26)

Exercise 6.4.27. Set
1

cosh(t)
=

2

et + e−t
=

∞∑

k=0

Ek
tk

k!
. (6.4.28)

The Ek’s are called the Euler numbers. Show that

Ek = 2kEk(
1

2
), k ∈ Z+, (6.4.29)
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Ek =
k∑

s=0

(
k

s

)
ēs2

s, k ∈ Z+, (6.4.30)

and deduce that

Ek ∈ Z, k ∈ Z+, (6.4.31a)

E2k+1 = 0, k ∈ Z+. (6.4.31b)

Exercise 6.4.32. Show that

Ek(1− x) = (−1)kEk(x), k ∈ Z+, (6.4.33)

Ek(−x) = (−1)k+1(Ek(x)− 2xk), k ∈ Z+. (6.4.34)

Imagination was given to man to compensate
him for what he is not, and a sense of humor
was provided to console him for what he is.

Horace Walpole

§§§ 6.5. Even-Powered Alternating Sums

We will do it!! What is it?

The ancient motto of the British
cavalry

Formula (6.4.13b) shows that the alternating sum

(−1)n−1sk||−1(n) = (−1)n−1
n−1∑

i=0

(−1)i(1 + i)k (6.5.1)

is a polynomial in n of degree = k, plus an oscillating constant

(−1)n−1 1

2
Ek(1). (6.5.2)

Thus, the first time the degree of that polynomial is > 1 is when k = 2: s2||−1 seems
to play the same role in the alternating case as s1 does in the pure power-sum case.

Moreover, formulae (6.4.22,23) and (6.4.17) show that, for even k, the oscillat-
ing term vanishes: (−1)n−1s2k||−1(n) is a honest polynomial in n of degree = 2k.

For k = 1, 2, formulae (1.1.49) and (1.1.51) say, in effect, that

(−1)n−1s2||−1(n) =
n(n+ 1)

2
, (6.5.3)
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(−1)n−1s4||−1(n) =
n(n+ 1)(n2 + n− 1)

2
. (6.5.4)

If we denote
s̃2k = (−1)n−1s2k||−1(n), (6.5.5)

then formulae (6.5.3) and (6.5.4) imply:

s̃4 = s̃2(2s̃2 − 1). (6.5.6)

This equality suggests that s̃2k is a polynomial in s̃2 for all k ∈ N. Let’s prove that
our guess is correct.

We have:

∞∑

k=1

x2k

(2k)!
s̃2k =

∞∑

k=1

x2k

(2k)!

n∑

j=1

(−1)n−jj2k =
n∑

j=1

(−1)n−j
∞∑

k=1

(xj)2k

(2k)!
=

=
n∑

j=1

(−1)n−j(−1 +
∞∑

k=0

(jx)2k

(2k)!
) =

=
n∑

j=1

(−1)n+1−j+ (6.5.7a)

+
n∑

j=1

(−1)n−jcosh(jx). (6.5.7b)

The sum (6.5.7a) is invariant with respect to the shift n 7→ n+ 2, and it takes
the values −1 and 0 for n = 1 and n = 2, respectively, exactly as the expression

(−1)n

2
− 1

2
.

Therefore,
n∑

j=1

(−1)n+1−j =
(−1)n

2
− 1

2
. (6.5.8a)

The sum (6.5.7b) we transform as follows:

n∑

j=1

(−1)n−jcosh(jx) =
n∑

j=1

(−1)n−j e
jx + e−jx

2
=

(−1)n

2

n∑

j=1

((−ex)j + (−e−x)j) =

=
(−1)n

2

{
(−ex)

(−ex)n − 1

−ex − 1
+ (−e−x)

(−e−x)n − 1]

−e−x − 1

}
=

=
(−1)n

2

1

ex + 1

{
ex((−1)nenx − 1) + ((−1)ne−nx − 1)

}
=

=
(−1)n

2

1

ex + 1

{
− (ex + 1) + (−1)n(e(n+1)x + e−nx)

}
=
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= − (−1)n

2
+ (6.5.8b)

+
1

2

1

ex + 1
(e(n+1)x + e−nx). (6.5.8c)

Now,

e(n+1)x + e−nx = ex/2(e(n+
1
2x) + e(−n+ 1

2 )x) = 2ex/2cosh((n+
1

2
)x), (6.5.9)

and

cosh((n+
1

2
)x)) =

∞∑
r=0

x2r

(2r)!
((n+

1

2
)2)r =

∞∑
r=0

x2r

(2r)!
(n2 + n+

1

4
)r = (6.5.10a)

=
∞∑
r=0

x2r

(2r)!
(2s̃2 +

1

4
)r. (6.5.10b)

Collecting formulae (6.5.7-10) together, we obtain:

∞∑

k=1

x2k

(2k)!
s̃2k = −1

2
+

ex/2

ex + 1

∞∑
r=0

x2r

(2r)!
(2s̃2 +

1

4
)r. (6.5.11)

Therefore, s̃2k is indeed a polynomial in s̃2.

Moreover, s̃2k is divisible by s̃2. Indeed, the RHS of formula (6.5.11) becomes,
for s̃2 = 0:

−1

2
+

ex/2

ex + 1

∞∑
r=0

x2r

(2r)!
(
1

4
)r = −1

2
+

ex/2

ex + 1
cosh(

x

2
) =

= −1

2
+

1

ex/2 + e−x/2
.
ex/2 + e−x/2

2
= 0. (6.5.12)

Remark 6.5.13. The above calculation hides an interesting moral. Notice that
we’ve ended up with s̃2k being a polynomial in s̃2, not the original s2k we had
started with. Why? Formula (6.5.6) can be rewritten as

s4||−1(n) = (−1)n−12(s2||−1(n))
2 − s2||−1(n). (6.5.14)

Thus, s2k||−1 is not a polynomial in s2||−1. The proper object of study, then, is not
sk||−1 itself but

(−1)n−1sk||−1(n) = (−1)n−1
n−1∑

j=0

(−1)j(1 + j))k =
n−1∑

j=0

(−1)n−1−j(1 + j)k =

= (λ ∗ dk)(pn−1); (6.5.15)

recall that λ(N) (1.1.28) is the Liouville function:

λ(N) = (−1)ord(N). (6.5.16)
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Moreover, there is nothing sacred about −1, and we can equally well replace λ(N) =
= λ−1(N) (1.1.27) by

λξ(N) = ξord(N) (6.5.17)

where ξ is a complex root of unity. (This replacement of λ−1 by λξ is related
to the additive version of the so-called Dirichlet characters. See p. 29 in [Hof
1995] for a quick and clear explanation of what a Dirichlet character is, and the
first few pages in [Dil 1988] on the basics of power-sums in the presence of these
characters.) It would be very interesting to determine what happens with the
Faulhaber phenomenon in these more general circumstances.
Exercise 6.5.18. Show that

∑

ab=N

λ(a)d(b)4 = d(N)d(N1/2)
∑

a|N
2ω(a)d(a). (6.5.19)

When we remember we are all mad,
the mysteries disappear and life
stands explained.

Mark Twain

§§§ 6.6. Odd-Powered Alternating Sums

Let us now attend to the odd-powered alternating sums. Formulae (1.1.48,50,52),
in the form:

s1||−1(n) =
∑n−1

j=0 (−1)j(1 + j) = (−1)n−1

{
(n+ 1)/2, n odd

n/2, n even
(6.6.1)

s3||−1(n) =
∑n−1

j=0 (−1)j(1 + j)3 = (−1)n−1

{
(n+ 1)2(2n− 1)/4, n odd

n2(2n+ 3)/4, n even
(6.6.2)

s5||−1(n) =
∑n−1

j=0 (−1)j(1+j)s = (−1)n−1

{
(n+ 1)2(2n3 + n2 − 4n+ 2)/4, n odd

n2(2n3 + 5n2 − 5)/4, n even

(6.6.3)

are not too revealing. A few things can be observed, however.

First, s̃3 = (−1)n−1s3||−1(n) is not a polynomial in s̃1. Indeed,

4s̃3 − 2(2s̃1)
3 =





(n+ 1)2(2n− 1)− 2(n+ 1)3 = −3(n+ 1)2

= (−1)n3(2s̃1)
2.

n2(2n+ 3)− 2n3 = 3n2

(6.6.4)

However,
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4s̃5−2(2s̃1)
5 =





(n+ 1)2(2n3 + n2 − 4n+ 2)− 2(n+ 1)5 = −5(n+ 1)2(n2 + 2n)

n2(2n3 + 5n2 − 5)− 2n5 = 5n2(n2 − 1)

= (−1)n5(2s̃1)
2((2s̃1)

2 − 1). (6.6.5)

These two calculations suggest that, in general,

s̃2k+1 = s̃31Pk(s̃
2
1) + (−1)ns̃21Qk(s̃

2
1), k ∈ N, (6.6.6)

where Pk and Qk are some polynomials of degree = k − 1.

Second, from formulae (6.6.1) and (6.6.2) we see that

s3||−1/s1||−1 =





(n+ 1)(2n− 1)/2
= n(n+ 1)+

n(2n+ 3)/2





−(n+ 1)/2
=

n/2
(6.6.7a)

= 2s̃2 − s1||−1 : (6.6.7b)

s3||−1 = s1||−1(2s̃2 − s1||−1). (6.6.8)

Third, from formula (6.6.2) we get:

4s̃3 =





(n+ 1)2(2n− 1)
=

n2(2n+ 3)





2n3 + 3n2 − 1
= 2n3 + 3n2 + n−

2n3 + 3n2





n+ 1
=

n

= (1 + 2n)n(n+ 1)− 2s̃1 = 2(1 + 2n)s̃2 − 2s̃1 : (6.6.9)

s̃3 = (n+
1

2
)s̃2 − 1

2
s̃1. (6.6.10)

Formulae (6.6.8) and (6.6.10) do not exhibit any clearly discernible pattern. It
is also not obvious at the moment how to establish the truth or otherwise of the
representation (6.6.6). Let us then turn to the doomsday weapon of last resort: the
method of generating functions.

We have:

∞∑

k=0

x2k+1

(2k + 1)!
s2k+1||−1(n) =

n∑

k=0

x2k+1

(2k + 1)!

n∑

j=1

(−1)n−1j2k+1 =

=
n∑

j=1

(−1)j−1
∞∑

k=0

(jx)2k+1

(2k + 1)!
=

n∑

j=1

(−1)j−1sinh(jx) =

=
n∑

j=1

(−1)j−1 1

2
(ejx − e−jx) = −1

2

n∑

j=1

((−ex)j − (−e−x)j) =
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= −1

2

{
(−ex)

(−ex)n − 1

−ex − 1
− (−e−x)

(−e−x)n − 1

−e−x − 1

}
=

= −1

2

{
ex

ex + 1

(
(−1)nenx − 1)− 1

ex + 1
((−1)ne−nx − 1)

}
=

= −1

2

{
− ex − 1

ex + 1
+

(−1)n

ex + 1
(e(n+1)x − e−nx)

}
=

=
ex − 1

2(ex + 1)
+

(−1)n−1ex/2

2(ex + 1)
(e(n+

1
2 )x − e−(n+ 1

2 )x) =

=
1

2

(
1− 2

ex + 1

)
+ (6.6.11a)

+(−1)n−1 1

2cosh(x/2)
sinh((n+

1

2
)x). (6.6.11b)

By formulae (6.4.9) and (6.4.17),

1

2

(
1− 2

ex + 1

)
=

1

2

(
1−

∞∑
n=0

ēn
xn

n!

)
= −1

2

∞∑

k=0

ē2k+1
x2k+1

(2k + 1)!
. (6.6.12)

Next,

sinh

(
(n+

1

2
)x)

)
= (n+

1

2
)

∞∑
r=0

x2r+1

(2r + 1)!

(
(n+

1

2
)2
)r

[by (6.5.10a)] =

=

(
n+

1

2

) ∞∑
r−0

x2r+1

(2r + 1)!
(2s̃2 +

1

4
)r. (6.6.13)

Thus,
∞∑

k=0

x2k+1

(2k + 1)!
(s2k+1||−1(n) +

1

2
ē2k+1) =

= (−1)n−1(n+
1

2
)

1

2cosh(x/2)

∞∑
r=0

x2r+1

(2r + 1)!
(2s̃2 +

1

4
)r. (6.6.14)

Therefore,

s2k+1||−1(n) = −1

2
ē2k+1 + (−1)n−1(n+

1

2
)×Rk(s̃2), (6.6.15)

where Rk is a polynomial of degree = k.

In particular, extracting from the equation (6.6.14) the x1-terms and using the
equality

ē1 = −1/2, (6.6.16)
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we find:

s1||−1(n) =
1

4
+

(−1)n−1

2

(
n+

1

2

)
= (6.6.17a)

= (1 + (−1)n−1(2n+ 1))/4. (6.6.17b)

Hence,

s̃1 =
n

2
+

1

4
+ (−1)n−1 1

4
= (6.6.18a)

=
n

2
+

1 + (−1)n−1

4
. (6.6.18b)

Also, we can determine the value of the polynomials Rk(s̃2) at s̃2 = 0. Indeed,
setting s̃2 = 0 in the RHS of formula (6.6.14) we get:

(−1)n−1(n+
1

2
)

1

2cosh(x/2)

∞∑
r=0

x2r+1

(2r + 1)!

(
1

2

)2r+1

· 2 =

= (−1)n−1(n+
1

2
)tanh(x/2). (6.6.19)

On the other hand,

tanh(x/2) =
ex/2 − ex/2

ex/2 + e−x/2
=

ex − 1

ex + 1
= 1− 2

ex + 1
[by (6.6.12)] =

= −
∞∑

k=0

ē2k+1
x2k+1

(2k + 1)!
. (6.6.20)

Thus,

s2k+1||−1(n)

∣∣∣∣
s̃2=0

= −1

2
ē2k+1 + (−1)n−1(n+

1

2
)(−ē2k+1). (6.6.21)

By formula (6.6.18a), this can be rewritten as

s̃2k+1

∣∣∣∣
s̃2=0

= −2ē2k+1s̃1. (6.6.22)

Altogether,

s2k+1||−1(n) = −2ē2k+1s1||−1(n) + (−1)n−1(n+
1

2
)s̃2R̄k(s̃2), (6.6.23)

where R̄k is a polynomial of degree = k − 1. Equivalently,

s̃2k+1 = −2ē2k+1s̃1 + (n+
1

2
)s̃2R̄k(s̃2). (6.6.24)
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Let us return now to the unfinished business of representation (6.6.6). We
have:

4s̃21 =





(n+ 1)2 = n(n+ 1) + (n+ 1)
= n(n+ 1)

n2 = n(n+ 1)− n
+





n+ 1
= 2s̃2 + 2s1||−1 :

−n
(6.6.25)

s̃2 = 2s̃21 − s1||−1 = (6.6.26a)

= 2s̃21 + (−1)ns̃1 = s̃1(2s̃1 + (−1)n). (6.6.26b)

Also, from formula (6.6.18a) we see that

n+
1

2
= 2s̃1 + (−1)n

1

2
. (6.6.27)

Substituting formulae (6.6.26b,27) into the equality (6.6.24), we get:

s̃2k+1 = −2ē2k+1s̃1 + (2s̃1 + (−1)n
1

2
)s̃1(2s̃1 + (−1)n)R̄k(2s̃

2
1 + (−1)ns̃1). (6.6.28)

This equality shows that

s̃2k+1 = s̃1(X(s̃1) + (−1)nY (s̃1)) (6.6.29)

with some polynomials X and Y . It’s not quite the more informative form (6.6.6)
to which we shall return below.

Remark 6.6.30. Formulae (6.4.13b,23) imply that

s2k+1||−1(n) = −1

2
ē2k+1 + (−1)n−1 1

2
E2k+1(n+ 1). (6.6.31)

Comparing this to formula (6.6.15) we see that

E2k+1(n+ 1) = (2n+ 1)Rk(
n(n+ 1)

2
). (6.6.32)

This is an interesting property of the odd-indexed Euler polynomials.

Remark 6.6.33. In the previous Section, while studying s2k||−1(n), the even-
powered alternating sums, we have arrived at the plausible conclusion that the
proper object to work with is not sk||−1(n) itself but s̃k = (−1)n−1sk||−1(n). At
least it was plausible for even k. It may be not so for odd k. Indeed, formula
(6.6.4) shows that s̃3 is not a polynomial in s̃1. However, by formulae (6.6.1,2).

s3||−1(n)/s
2
1||−1(n)− 4s1||−1(n) =

= (−1)n−1





2n− 1− 2(n+ 1) = −3
= −3 :

2n+ 3− 2n = 3
(6.6.33)

s3||−1(n) = s21||−1(n)

(
4s1||−1(n)− 3

)
. (6.6.34)
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This calculation suggests that s2k+1||−1(n) is a polynomial in s1||−1(n), divisible by
s21||−1(n) for k > 0. At least the polynomial part of this suggestion is true. If we

substitute into formula (6.6.23) the relations (6.6.26a) and (6.6.27), in the form:

s̃2 = 2s21||−1 − s1||−1 = s1||−1(2s1||−1 − 1), (6.6.35)

(−1)n−1(n+
1

2
) = 2s1||−1 −

1

2
, (6.6.36)

we find that s2k+1||−1 is indeed a polynomial in s1||−1, divisible by s1||−1. The more
precise property of s2k+1||−1, to be divisible by s21||−1, requires an extra effort to
establish, for example as follows.

Fix k. We know already that s2k+1||−1(n) is a polynomial in s1||−1(n), so let’s
write.

s2k+1||−1(n) =
2k+1∑
r=0

αrs
r
1||−1(n), (6.6.37)

where αr’s are some constants. We’d like to prove that

α0 = α1 = 0. (6.6.38)

Now, take n odd:
n = 2L+ 1, L ∈ Z+. (6.6.39)

By formula (6.6.1),
s1||−1(2L+ 1) = L+ 1. (6.6.40)

On the other hand,

sk||−1(2L+ 1) = 1k − 2k + ...+ (2L+ 1)k =

= (1k + 3k + ...+ (2L+ 1)k)− (2k + 4k + ...+ (2L)k) =

= (1k + 2k + ...+ (2L+ 1)k)− 2(2k + ...+ (2L)k) =

= sk(2L+ 1)− 2k+1sk(L) :

sk||−1(2L+ 1) = sk(2L+ 1)− 2k+1sk(L), (6.6.41)

where, as usual,

sk(n) =
n∑

i=0

ik. (6.6.42)

For k odd, formula (6.6.41) becomes:

s2k+1||−1(2L+ 1) = s2k+1(2L+ 1)− 22k+2s2k+1(L). (6.6.43)

However, in Remark 4.7.6 we noted that s2k+1(n) is divisible by s21(n) = n2(n+
1)2/4. Hence, s2k+1(2L+ 1) is divisible by (2L+ 2)2 = 4(L+ 1)2, and s2k+1(L) is
divisible by (L+ 1)2. Therefore, by formula (6.6.43), s2k+1||−1(2L+ 1) is divisible
by (L+ 1)2 = s21||−1(2L+ 1). This proves our formula (6.6.38) .
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Summarizing, we can write

s2k+1||−1(n) =
2k+1∑
r=2

αrs
r
1||−1(n) =

= s31||−1(n) · Pk(s
2
1||−1(n))− s21||−1(n) ·Qk(s

2
1||−1(n)), (6.6.44)

where Pk and Qk are some polynomials of degree = k − 1. Multiplying both parts
of the formula (6.6.44) by (−1)n−1 and remembering that

s̃21 = s21||−1(n), (6.6.45)

we arrive at the formula (6.6.6), which is thereby proved.

§§§ 6.7. Central Sums

Blessed are they who can laugh at
strange formulae, for they shall never
cease to be amused.

Gustav Noble, Sr.

Set

S̄k = S̄k(n) =
n∑

j=0

(n− 2j)k. (6.7.1)

Changing j into n− j, we get

S̄k(n) =
n∑

j=0

(2j − n)k = (−1)kS̄k(n). (6.7.2)

Hence,

S̄k(n) = 0, k odd. (6.7.3)

From now on, the exponent k in formula (6.7.1) is taken to be even.

Now,

S̄2k(n) =
n∑

j=0

(n− 2j)2k =
n∑

j=0

2k∑

i=0

(
2k

i

)
n2k−i(−2j)i =

=
2k∑

i=0

(
2k

i

)
(−2)in2k−isi(n). (6.7.4)
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Since si(n) is a polynomial in n of degree = i + 1, we see that S̄2k(n) is itself a
polynomial in n, of degree ≤ 2k + 1. In fact, the degree of the polynomial S̄2k is
exactly 2k + 1, because

S̄2k(n+ 2) = S̄2k(n) + 2(n+ 2)2k, (6.7.5)

so that
S̄2k(x+ 2) = S̄2k(x) + 2(x+ 2)2k, (6.7.6)

whence

S̄2k(x) =
x2k+1

2k + 1
+ ... (6.7.7)

Moreover, the polynomial S̄2k(x) can be readily found. To do this, notice that
the relation (6.7.6) defines S̄2k(x) uniquely up to a function periodic with period
2, and if we look for polynomial solutions of the equation (6.7.6), S̄2k(x) is defined
by this equation up to an additive constant. That constant can be nailed down by
the condition

S̄2k(0) = δ0k (6.7.8a)

or by the condition
S̄2k(1) = 2, (6.7.8b)

both of which follow from the definition of S̄2k(n) as the sum (6.7.1).

Next, the equation (6.7.6), in the form

S̄2k(x+ 2)− S̄2k(x) = 2(x+ 1)2k, (6.7.9)

resembles the defining property of the Bernoulli polynomials (5.1.1):

Bk(x+ 1)−Bk(x) = kxk−1. (6.7.10)

So, let us fix k and suppose that

S̄2k(x) = αB2k+1(βx+ γ), (6.7.11)

with some to-be-determined constants α, β, γ. Equation (6.7.9) then becomes:

B2k+1(βx+ γ)−B2k+1(βx+ γ − 2β) = 2x2k/α. (6.7.12)

Take
β = −1/2, γ = 0, α = −22k+1/(2k + 1). (6.7.13)

Equation (6.7.12) then turns into:

B2k+1(−x/2)−B2k+1(−x/2 + 1) [by (6.7.10)] =

= (−1)(2k + 1)(−x/2)2k = −(2k + 1)2−2kx2k = 2x2k/α, (6.7.14)

which is an identity. Thus,

S̄2k(x) = − 22k+1

2k + 1
B2k+1(−x/2), (6.7.15)
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provided the boundary condition (6.7.8a) is satisfied, which it is: by formulae
(5.1.14),

− 22k+1

2k + 1
B2k+1(0) = − 2k+1

2k + 1
B2k+1 = − 2k+1

2k + 1
(−1

2
)δ0k = δ0k. (6.7.16)

As a bonus, from formulae (6.7.8b) and (6.7.15) we find:

2 = S̄2k(1) = − 22k+1

2k + 1
B2k+1(−1/2) ⇔

B2k+1(−1/2) = −2k + 1

22k
. (6.7.17)

This, of course, can be proved directly from formulae (5.1.5,8):

∞∑

k=0

Bk(x)
tk

k!
=

t

et − 1
ext ⇒

∞∑

k=0

B2k+1(x)
t2k+1

(2k + 1)!
=

1

2

(
text

et − 1
− (−t)e−xt

e−t − 1

)
=

=
1

2

t

et − 1
(ext − e(1−x)t). (6.7.18)

For x = −1/2, this becomes:

∞∑

k=0

B2k+1(−1/2)
t2k+1

(2k + 1)!
=

t

2(et − 1)
(e−t/2 − e3t/2) =

=
te−t/2

2(et − 1)
(1− e2t) = − t

2
e−t/2(1 + et) = −tcosh(t/2) =

= −
∞∑

k=0

t2k+1

(2k)!

1

22k
=

∞∑

k=0

t2k+1

(2k + 1)!
(−1)

2k + 1

22k
, (6.7.19)

which is equivalent to formula (6.7.17).

Exercise 6.7.20. Show that:

S̄2k(2L) = 22k+2s2k(L), k > 0, L ∈ Z+; (6.7.21a)

and that

S̄2k(2L+ 1) = 2S2k(L+ 1; 2), L ∈ Z+, (6.7.21b)

in the notation (6.1.6):

Sk(n;ϕ) =
n−1∑

i=0

(1 + iϕ)k. (6.7.22)
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Exercise 6.7.23. Show that

n∑

j=0

(j − n

2
)2k = − 2

2k + 1
B2k+1(−n/2). (6.7.24)

Exercise 6.7.25. Show that

d2S̄2k(x)

dx2
= 2k(2k − 1)S̄2k−2(x). (6.7.26)

§§§ 6.8. Faulhaber Representation For The Central Sums

The trouble with treating people like equals
is that the first thing you know they may
be doing the same thing to you.

Peter deVries

Calculating the first 2 central sums, we find:

S̄0(n) =
n∑

j=0

(n− 2j)0 = n+ 1, (6.8.1)

S̄2(n) =
n∑

j=0

(n− 2j)2 =
n∑

j=0

n(n− 2j)−
n∑

j=0

2j(n− 2j) =

= −2n
n∑

j=0

j + 4
n∑

n=0

j2 = −2n
n(n+ 1)

2
+ 4

n(n+ 1)(2n+ 1)

6
=

=
n(n+ 1)

6

{
− 6n+ 4(2n+ 1)

}
=

n(n+ 1)(n+ 2)

3
: (6.8.2)

S̄0(n) = n+ 1,

S̄2(n) =
n(n+ 1)(n+ 2)

3
. (6.8.3)

Transforming the last formula, we get:

S̄2(n) =
n+ 1

3
n(n+ 2) =

n+ 1

3
(n2 + 2n) =

n+ 1

3
((n+ 1)2 − 1) =

=
1

3
S̄0(n)(S̄

2
0(n)− 1). (6.8.4)

This suggests that, in general,

S̄2k = S̄0Zk(S̄
2
0), (6.8.5)
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where Zk is some polynomial of degree = k. Let’s prove this supposition.

Resorting to our lucky weapon, the method of generating functions, we have:

∞∑

k=0

S̄2k(n)
x2k

(2k)!
=

∞∑

k=0

n∑

j=0

(n− 2j)2k
x2k

(2k)!
=

n∑

j=0

∞∑

k=0

((n− 2j)x)2k

(2k)!
=

=
n∑

j=0

cosh((n− 2j)x) =
n∑

j=0

1

2
(e(n−2j)x + e−(n−2j)x)

=
1

2

n∑

j=0

(enx(e−2x)j + e−nx(e2x)j) =

=
1

2

{
enx

1− e−2(n+1)x

1− e−2x
+ e−nx e

2(n+1)x − 1

e2x − 1

}
=

=
1

2(ex − e−x)

{
e(n+1)x(1− e−2(n+1)x) + e−(n+1)x(e2(n+1)x − 1)

}
=

=
e(n+1)x − e−(n+1)x

ex − e−x
=

sinh(n+ 1)x)

sinh(x)
= (6.8.6)

= (n+ 1)x
∞∑

i=0

(n+ 1)2ix2i

(2i+ 1)!

/
x

∞∑

j=0

x2j

(2j + 1)!
= (6.8.7a)

= S̄0(n)
∞∑

i=0

x2iS̄2i
0 (n)

(2i+ 1)

/ ∞∑

j=0

x2j

(2j + 1)!
. (6.8.7b)

Formula (6.8.5) is thereby proven. However, this is not the end of the story.
Let’s calculate S̄4(n). By formula (6.7.26),

d2S̄4(x)

dx2
= 4 · 3 · S̄2(x) [by (6.8.3)] = 4(x3 + 3x2 + 2x). (6.8.8)

Hence,
dS̄4(x)

dx
= x4 + 4x3 + 4x2 + c0, (6.8.9a)

and then

S̄4(x) =
x5

5
+ x4 +

4

3
x3 + c0x+ c1, (6.8.9b)

where c0 and c1 are some constants. We determine these constants from the con-
ditions (6.7.8), obtaining

c1 = 0, c0 = 2− 1

5
− 1− 4

3
= −1

5
− 1

3
= − 8

15
. (6.8.10)
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Thus,

S̄4(x) =
x5

5
+ x4 +

4

3
x3 − 8

15
x =

x

15
(3x4 + 15x3 + 20x2 − 8) =

=
x

15
(x+ 1)(3x3 + 12x2 + 8x− 8) =

x

15
(x+ 1)(x+ 2)(3x2 + 6x− 4) = (6.8.11a)

=
x(x+ 1)(x+ 2)

3
· 3(x+ 1)2 − 7

5
= S̄2(x) · 3S̄

2
0(x)− 7

5
. (6.8.11b)

The last formula suggests that

S̄2k = S̄2Z̃+(S̄
2
0), k ∈ N, (6.8.12)

where Z̃+ is some polynomial of degree = k − 1. Since, by formula (6.8.4),

S̄2 =
1

3
S̄0(S̄

2
0 − 1), (6.8.13)

the form (6.8.12) is equivalent to the property of S̄2k to be divisible by S̄2
0−1. That

the latter property is true, can be inferred from formula (6.8.7a), as follows:

∞∑

k=1

S̄2k(n)
x2k

(2k)!
= −S̄0(n) +

∞∑

k=0

S̄2k(n)
x2k

(2k)!
=

= −(n+ 1) + (n+ 1)
∞∑

i=0

(n2 + 2n+ 1)ix2i

(2i+ 1)!

/ ∞∑

j=0

x2j

(2j + 1)!
=

=

( ∞∑

j=0

x2j

(2j + 1)!

)−1

(n+ 1)

{ ∞∑

i=0

x2i

(2i+ 1)!

{
(n2 + 2n+ 1)i − 1

}
, (6.8.14)

and (n2 + 2n+ 1)i − 1 is divisible by

(n2 + 2n+ 1)− 1 = n2 + 2n = n(n+ 2) = S̄2
0 − 1 = S̄2(n)/(n+ 1). (6.8.15)

Exercise 6.8.16. Show that

S̄2k(x) =
x2k+1

2k + 1
+ x2k + ... (6.8.17)

Exercise 6.8.18. Show that

S̄6(x) =
x(x+ 1)(x+ 2)

21
(3x4 + 12x3 − 24x+ 16) = (6.8.19a)

= S̄2(x) · 3S̄
4
0(x)− 18S̄2

0(x) + 31

7
. (6.8.19b)

Exercise 6.8.20. Show that

S̄2k(n) =
∑

a|NNred

d(a)2k, N = pn−1, (6.8.21)
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and deduce that

∑

a|NNred

d(a)4 =

( ∑

a|NNred

d(a)2
)(∑

b|N

(
9

5

)ω(b)

d(b2/3)

)
. (6.8.22)

§§§ 6.9. Convolved Sums

The idea really came to me the day
I got my new false teeth.

Opening line of Orwell’s Coming
Up for Air

The convolved sums (6.1.9)

S(k, `;n) =
n∑

j=0

jk(n− j)`, (6.9.1)

where k and ` are nonnegative integers, generalize the straightforward power-sums
which result when one of the parameters k or ` is 0. These general sums were
studied by Glaisher [Gla 1911, 1912], Neuman and Schonbach [NSc 1977], Carlitz
[Car 1977], and Gould [Gou 1978].

The sums are, in fact, divisor-type. This can be seen as follows. Assume that
both k and ` are nonzero. Then

S(k, `;n+ 2) =
n+1∑

j=1

jk(n+ 2− j)` =
n∑

i=0

(1 + i)k(1 + n− i)` =

=
n∑

i=0

d(pi)kd(pn/pi)` = (dk ∗ d`)(pn). (6.9.2)

This also explains the appellation convolved, as referring to the Dirichlet con-
volution of powers of the divisor function d(N).

As is every sum of the form

f̃(n) =
n∑

j=0

f(j, n), (6.9.3)

where f(j, n) is a polynomial in j and n, f̃(n) is itself a polynomial in n, of degree
≤ 1 + deg(f).

What the general form of the Faulhaber phenomenon for the convolved sums
(6.9.1) is, is not clear at the moment − assuming such a general form exists in the
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1st place. To get a clearer picture, in the next 4 Sections we shall examine the form
of this phenomenon for the following particular 1-parameter subsets of the general
2-parameter set of objects S(k, `;n) :

S(k, 1;n) =
n∑

j=0

jk(n− j); k odd; (6.9.4)

S(k, 1;n) =
n∑

j=0

jk(n− j), k even; (6.9.5)

S(k, k;n) =
n∑

j=0

jk(n− j)k; (6.9.6)

S̃(k, k;n) =
n∑

j=0

jk(n− j)k(n− 2j)2. (6.9.7)

The last sum is not exactly of the form (6.9.11), but it is close enough.

The impossible can only be overborne
by the unprecedented.

Sir Ian Hamilton, Gallipoli Diary (1920)

§§§ 6.10. Odd Convolved Sums

Let us consider the sums

σk = S(k, 1;n) =
n∑

j=0

jk(n− j). (6.10.1)

For odd k ≤ 9, Neuman and Schonbach [NSc 1977, p. 93] noticed that

σ2k+1 = σ1Xk(n
2), (6.10.2)

where Xk is a polynomial of degree = k, and

σ1 =
n∑

j=0

j(n− j) =
1

6
n(n− 1)(n+ 1). (6.10.3)

Let us prove that formula (6.10.2) holds true for all k ∈ Z+.

Set:

Lo =
∞∑

k=0

σ2k+1
x2k+1

(2k + 1)!
, (6.10.4)
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q = ex, (6.10.5)

∇ = q1/2 − q−1/2 = 2sinh(x/2). (6.10.6)

Then:

Lo =
∞∑

k=0

σ2k+1
x2k+1

(2k + 1)!
=

∞∑

k=0

n∑

j=0

(n− j)j2k+1 x2k+1

(2k + 1)!
=

=
∞∑

j=0

(n−j)
∞∑

k=0

(jx)2k+1

(2k + 1)!
=

n∑

j=0

(n−j)sinh(jx) =
1

2

n∑

j=0

(n−j)(ejx−e−jx). (6.10.7)

Now,
n∑

s=0

Qs =
Qn+1 − 1

Q− 1
⇒ (6.10.8)

n∑

j=0

sQs = Q
d

dQ

(
Qn+1 − 1

Q− 1

)
=

Q

(Q− 1)2
{nQn(Q− 1)− (Qn − 1)}. (6.10.9)

Therefore, equation (6.10.7) can be rewritten as

2Lo = n
n∑

j=0

(qj − q−j)−
n∑

j=0

j(qj − q−j) =

= n

(
qn+1 − 1

q − 1
− 1− q−n−1

1− q−1

)
− (6.10.10a)

− q

(q − 1)2
{nqn(q − 1)− (qn − 1)}+ q−1

(1− q−1)2
{nq−n(q−1 − 1)− (q−n − 1)

}
.

(6.10.10b)

Since

qn+1 − 1

q − 1
=

qn+1 − 1

q1/2(q1/2 − q−1/2)
=

1

∇q−1/2(qn+1 − 1) =
1

∇ (qn+
1
2 − q−1/2),

and

1− q−n−1

1− q−1
=

1− q−n−1

q−1/2(q1/2 − q−1/2)
=

1

∇q1/2(1− q−n−1) =
1

∇ (q1/2 − q−n− 1
2 ),

(6.10.11)
the expression (6.10.10a) becomes:

n

∇ (qn+
1
2 + q−n− 1

2 − q1/2 − q−1/2) =

=
n

∇2
(q1/2 − q−1/2)(qn+

1
2 + q−n− 1

2 − q1/2 − q−1/2) =
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=
n

∇2
{qn+1 + q−n − qn − q−n−1 − (q − q−1)}. (6.10.12)

Next,

q

(q − 1)2
=

q

(q1/2(q1/2 − q1/2))2
=

1

∇2
=

q−1

(q−1 − 1)2
, (6.10.13)

so that the expression (6.10.10b) can be transformed into

1

∇2
{−nqn(q − 1) + (qn − 1) + nq−n(q−1 − 1)− (q−n − 1)} =

=
1

∇2
{−n(qn+1 − q−n−1) + (n+ 1)(qn − q−n}. (6.10.14)

Thus, the equation (6.10.10) becomes:

2∇2Lo = n(qn+1 − q−n−1)− n(qn − q−n)− n(q − q−1)−

−n(qn+1 − q−n−1) + (n+ 1)(qn − q−n) = (qn − q−n)− n(q − q−1), (6.10.15)

or

∇2Lo = sinh(nx)− nsinh(x) =
∞∑

k=0

(nx)2k+1

(2k + 1)!
− n

∞∑

k=0

x2k+1

(2k + 1)!
=

= nx
∞∑

k=0

(n2x2)k − x2k

(2k + 1)!
= nx3

∞∑

k=0

x2k

(2k + 3)!
(n2k+2 − 1) =

= n(n2 − 1)x3
∞∑

k=0

x2k

(2k + 3)!

n2k+2 − 1

n2 − 1
. (6.10.16)

Altogether,

Lo =
∞∑

k=0

σ2k+1
x2k+1

(2k + 1)!
= 6σ1

x3

4sinh2(x/2)

∞∑

k=0

x2k

(2k + 3)!
X̃k(n

2), (6.10.17)

where

X̃k(z) =
zk+1 − 1

z − 1
=

k∑

i=0

zi. (6.10.18)

Representation (6.10.2) is thereby confirmed.
Exercise 6.10.19. Show that

n∑

j=0

(1 + i)3(1 + n− i) =
(1 + n)(2 + n)(3 + n)

6
(1 +

6

5
n+

3

10
n2) : (6.10.20)

∑

a|N
d3(a)d(N/a) = d(N)d(N1/2)d(N1/3)

∑

a|N

(
9

10

)ω(a)

d(a2/3). (6.10.21)
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§§§ 6.11. Even Convolved Sums

Continuing with the notations of the preceding Section, for even 2 ≤ k ≤ 10,
Neuman and Schonbach [NSc 1977, p. 93] noticed that

σ2k = nσ1Υk(n
2), (6.11.1)

where Υk is a polynomial of degree = k − 1.

Since

nσ1 = n
n(n− 1)(n+ 1)

6
=

1

6
n2(n2 − 1), (6.11.2)

formula (6.11.1) can be recast into the form:

σ2k = Υ̃k(n
2), deg(Υ̃k) = k + 1, k ∈ N, (6.11.3a)

Υ̃k(0) = Υ̃k(1) = 0. (6.11.3b)

Let us prove formulae (6.11.3). Setting

Le =
∞∑

k=1

σ2k
x2k

(2k)!
, (6.11.4)

we find:

2Le = 2
∞∑

k=1

σ2k
x2k

(2k)!
= 2

∞∑

k=1

n∑

j=0

(n− j)j2k
x2k

(2k)!
=

= 2
n∑

j=0

(n− j)
∞∑

k=1

(jx)2k

(2k)!
= 2

n∑

j=0

(n− j)(−1 + cosh(jx)) =

= −2
n∑

j=0

(n− j) +
n∑

j=0

(n− j)(ejx + e−jx) =

= −n(n+ 1) + n
n∑

j=0

(qj + q−j)−
n∑

j=0

j(qj + q−j). (6.11.5)

By formulae (6.10.8,9), we get:

2Le + n(n+ 1) = n

(
qn+1 − 1

q − 1
+

1− q−n−1

1− q−1

)
−

− q

(q − 1)2
(nqn(q − 1)− (qn − 1))− q−1

(q−1 − 1)2
(nq−n(q−1 − 1)− (q−n − 1)) =

=
n

∇
{(

qn+
1
2 − q−1/2

)
+

(
q1/2 − q−(n+ 1

2 )

)}
− (6.11.6a)

154



− 1

∇2

{
nqn(q − 1)− (qn − 1) + nq−n(q−1 − 1)− (q−n + 1)

}
. (6.11.6b)

We transform the expression (6.11.6a) thusly:

n

∇2

{
(q1/2 − q−1/2)(qn+

1
2 − q−n− 1

2 + q1/2 − q−1/2)

}
=

=
n

∇2

{
(qn+1 + q−n−1)− (qn + q−n) +∇2

}
. (6.11.7)

Substituting this into the equation (6.11.6), we find:

2Le + n2 =
1

∇2

{
n(q−n−1 + q−n−1)− n(qn + q−n)

}
−

− 1

∇2

{
n(qn+1 + q−n−1)− (n+ 1)(qn + q−n)− 2

}
=

=
1

∇2
(qn + q−n − 2) =

(qn/2 − q−n/2)2

(q1/2 − q−1/2)2
=

(
sinh(nx/2)

sinh(x/2)

)2

=

=

{
nx

2

∞∑
r=0

n2r(x/2)2r

(2r + 1)!

/
x

2

∞∑
r=0

(x/2)2r

(2r + 1)!

}2

. (6.11.8)

Thus,

2Le = 2
∞∑

k=1

σ2k
x2k

(2k)!
=

= n2

{
− 1 +

( ∞∑
r=0

n2r(x/2)2r

(2r + 1)!

/ ∞∑
r=0

(x/2)2r

(2r + 1)!

)2}
. (6.11.9)

Formula (6.11.9) shows that σ2k is a polynomial in n2 which is divisible by n2

and which vanishes when n2 = 1. Representation (6.11.3) is thereby proven.

Exercise 6.11.10. Show that

n∑

i=0

(1 + i)4(1 + n− i) =
(1 + n)(2 + n)2(3 + n)

12
(1 +

8

5
n+

2

5
n2) : (6.11.11)

∑

a|N
d(a)4d(N/a) = d(N)d(N1/2)2d(N1/3)

∑

a|N

(
6

5

)ω(a)

d(a2/3). (6.11.12)

Hey, no problem.

What God didn’t say after Moses
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had thanked Him for parting the
Red Sea, according to Joseph Epstein

§§§ 6.12. Diagonal Convolved Sums

People don’t understand.
I am naturally artificial.

Ravel

Let us consider the sums

S(k, k) = S(k, k;n) =
n∑

j=0

jk(n− j)k, k ∈ N. (6.12.1)

Neuman and Schonbach [NSc 1977, p. 94] noticed that, for 1 ≤ k ≤ 6,

S(k, k) = S(1, 1)Z̄k(n
2), (6.12.2)

where Z̄k is a polynomial of degree = k − 1. Let’s try to prove that this represen-
tation persists for all k.

Setting

L =
∞∑

k=1

S(k, k)
xk

k!
, (6.12.3)

we find:

L =
∞∑

k=1

S(k, k)
xk

k!
=

∞∑

k=1

n∑

j=0

jk(n− j)k
xk

k!
=

=
n∑

j=0

∞∑

k=1

(j(n− j)x)k

k!
=

n∑

j=0

(−1 + exp(j(n− j)x)) =

= −(1 + n) +
n∑

j=0

ej(n−j)x. (6.12.4)

We have ended up with the object,
∑n

j=0 e
j(n−j)x, which is quite difficult to

handle. The method of generating functions has failed us. We need to use some
other tool.

Let us first make precise what we should prove. Since

S(1, 1) =
n∑

j=0

n∑

j=0

j(n− j) =
1

6
n(n− 1)(n+ 1) =

1

6
n(n2 − 1), (6.12.5)
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formula (6.12.2) can be rewritten as

S(k, k) =
1

6
n(n2 − 1)Z̄k(n

2). (6.12.6)

This is equivalent to the triple-property

S(k, k;−n) = −S(k, k;n), (6.12.7a)

S(k, k;n)

∣∣∣∣
n=0

= 0, (6.12.7b)

S(k, k;n)

∣∣∣∣
n=1

= 0. (6.12.7c)

Indeed, (6.12.7a) says that S(k, k;n) is an odd function of n, and since it’s a
polynomial in n, it is of the form

S(k, k;n) = nZk(n
2), (6.12.8)

where Zk is a polynomial. The property (6.12.7b) is then automatically satisfied
and the property (6.12.7c) says that n = 1 is a root of Zk(n

2), but since Zk is
an even function of n, n = −1 is also a root, and therefore Zk(n

2) is divisible by
(n− 1)(n+ 1) = n2 − 1; formula (6.12.6) then results.

We are going to prove formulae (6.12.7) directly from the definition (6.12.1).
This proof works equally well with the general case of

S(k, `;n) =
n∑

j=0

jk(n− j)`, k, ` ∈ N. (6.12.9)

The triple-property (6.12.7) is now replaced by:

S(k, `;−n) = (−1)k+`+1S(k, `;n), (6.12.10a)

S(k, `;n)

∣∣∣∣
n=0

= 0, (6.12.10b)

S(k, `;n)

∣∣∣∣
n=1

= 0. (6.12.10c)

As above, these 3 properties guarantee that

S(k, `;n)/S(1, 1;n) = nεZk,`(n
2), (6.12.11)

where Zk,` is a polynomial, and

ε = ε(k, `) =

{
0, k + ` is odd
1, k + ` is even

(6.12.12)

Now, the properties (6.12.10b, c) are obviously satisfied in view of the definition
(6.12.9). It remains to verify the parity property (6.12.10a).

157



We have:

S(k, `;n) =
n∑

j=0

jk(n− j)` =
n∑

j=0

jk
∑̀
r=0

(
`

r

)
(−j)rn`−r =

=
∑̀
r=0

(
`

r

)
(−1)rn`−r

n∑

j=0

jk+r. (6.12.13a)

Similarly, since ` > 0,

S(k, `;n) =
n−1∑

j=0

jk(n− j)` =
∑̀
r=0

(
`

r

)
(−1)rn`−r

n−1∑

j=0

jk+r. (6.12.13b)

By formulae (5.1.3,12), we get:

S(k, `;n) =
∑̀
r=0

(
`

r

)
(−1)rn`−rBk+r+1(n+ 1)−Bk+r+1

k + r + 1
= (6.12.14a)

=
∑̀
r=0

(
`

r

)
(−1)rn`−rBk+r+1(n)−Bk+r+1

k + r + 1
(6.12.14b)

Therefore, formula (6.12.10a) will be established once we verify that

(−n)`−r(Bk+r+1(1− n)−Bk+r+1) =

= (−1)k+`+1n`−r(Bk+r+1(n)−Bk+r+1), (6.12.15)

which is equivalent to

Bk+r+1(1− x)−Bk+r+1 = (−1)k+r+1(Bk+r+1(x)−Bk+r+1), (6.12.16)

which is finally equivalent to

BL(1− x)−BL = (−1)L(BL(x)−BL), L ≥ 2, (6.12.17)

because k ≥ 1.

But
Br(1− x) = (−1)rBr(x), r ∈ Z+. (6.12.18)

Indeed,

∞∑
r=0

Br(1− x)
tr

r!
=

te(1−x)t

et − 1
= e−xt tet

et − 1
= ex(−t) t

1− e−t
=

=
(−t)ex(−t)

e−t − 1
=

∞∑
r=0

Br(x)
(−t)r

r!
=

∞∑
r=0

Br(x)(−1)r
tr

r!
. (6.12.19)
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Substituting (6.12.18) into (6.2.17) we obtain:

(−1)LBL(x)−BL = (−1)L(BL(x)−BL), L ≥ 2, (6.12.20)

which reduces to
BL = (−1)LBL, L ≥ 2, (6.12.21)

which is true because, by formula (5.1.14b), BL = 0 for L odd > 1.

Formula (6.12.10a) is thereby proven.

Exercise 6.12.22. Show that

n∑

i=0

(1 + i)2(1 + n− i)2 =
(1 + n)(2 + n)(3 + n)

6
(1 +

4

5
n+

1

5
n2) : (6.12.23a)

(d2 ∗ d2)(N) =
∑

a|N
d(a)2d(N/a)2 =

=

(∑

a|N
d(a)d(N/a)

)(∑

b|N

(
3

5

)ω(b)

d(b2/3)

)
. (6.12.23b)

I know too much already. I would be
happier knowing less.

Raymond Chandler, in a letter to a friend (1950)

§§§ 6.13. Mixed Sums

Set

S(k, `, 2r;n) =
n∑

j=0

jk(n− j)`(n− 2j)2r. (6.13.1)

Neuman and Schonbloch [NSc 1977, p. 94] noticed that, for 1 ≤ k ≤ 5,

S(k, k, 2;n) = S(1, 1, 2;n)Ūk(n
2), (6.13.2)

where Ūk is a polynomial and

S(1, 1, 2;n) =
(n− 2)(n− 1)n(n+ 1)(n+ 2)

30
= (6.13.3a)

=
1

30
n(n2 − 12)(n2 − 22). (6.13.3b)

We are going to show, more generally, that S(k, `, 2r;n) is divisible by S(1, 1, 2;n)
and that the ratio

S(k, `, 2r;n)/S(1, 1, 2;n) = nεUk(n
2) (6.13.4)
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is either odd or even in n, with ε = ε(k, `) being given by formula (6.12.12).

As in the preceding Section, we will prove that

S(k, `, 2r;−n) = (−1)k+`+1S(k, `, 2r;n), k, `, r ∈ N, (6.13.5a)

S(k, `, 2r; n)

∣∣∣∣
n=0

= 0, (6.13.5b)

S(k, `, 2r; n)

∣∣∣∣
n=1

= 0, (6.13.5c)

S(k, `, 2r; n)

∣∣∣∣
n=2

= 0. (6.13.5d)

Since the properties (6.13.5b-d) follow directly from the definition (6.13.1), we need
only to attend to the formula (6.13.5a).

We have:

S(k, `, 2r;n) =
n∑

j−0

jk(n− j)`(n− 2j)2r =

=
n∑

j=0

jk
∑̀
α=0

(
`

α

)
(−j)αn`−α

2r∑

β=0

(
2r

β

)
(−2j)βn2r−β =

=
∑

α,β

(
`

α

)(
2r

β

)
(−1)α+β2βn`+2r−α−β

n∑

j=0

jk+α+β =

=
∑

a,β

(
`

α

)(
2r

β

)
(−1)α+β2βn`+2r−α−βBk+1+α+β(n+ 1)−Bk+1+α+β

k + 1 + α+ β
, (6.13.6a)

and also

S(k, `, 2r;n) =
n−1∑

j=0

jk(n− j)`(n− 2j)2r =

=
∑

α,β

(
`

α

)(
2r

β

)
(−1)α+β2βn`+2r−α−βBk+1+α+β(n)−Bk+1+α+β

k + 1 + α+ β
. (6.13.6b)

Therefore, formula (6.13.5a) will be proven if we verity that

(−n)`+2r−α−β(Bk+1+α+β(1− n)−Bk+1+α+β) =

= (−1)k+`+1n`+2r−α−β(Bk+1+α+β(n)−Bk+1+α+β), (6.13.7)

which is equivalent to

Bk+1+α+β(1− x)−Bk+1+α+β =
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= (−1)k+1+α+β(Bk+1+α+β(x)−Bk+1+α+β), (6.13.8)

and this is formula (6.12.16).

Exercise 6.13.9. Set

S(k, `, rrr, ccc;n) =
n∑

j=0

jk(n− j)`
m∏
s=1

(n− c(s)j)r(s), (6.13.10)

where

ccc = (c(1), ..., c(m)) ∈ Qm, rrr = (r(1), ..., r(m)) ∈ Zm
+ (6.13.11)

are arbitrary vectors and
k, ` ∈ N. (6.13.12)

(i) Show that
S(k, `, rrr, ccc;−n) = (−1)k+`+1+|rrr|S(k, `, rrr, ccc;n), (6.13.13)

where

|rrr| =
m∑
s=1

r(s); (6.13.14)

(ii) Show that

lim
n→0

1

nk+`+1+|rrr|S(k, `, rrr, ccc;n) =
∫ 1

0

xk(1− x)`
m∏
s=1

(1− c(s)x)r(s)dx. (6.13.15)
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PART B

GENERAL IDENTITIES

An identity is a proof that
each side can take a joke.

Gustav Noble, Sr.
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CHAPTER 7. QUANTUM VERSIONS

Space isn’t remote at all. It’s only an hour’s
drive away if your car could go straight upwards.

Sir Fred Hoyle, in the London Observer (1979)

We have had a brief glancing encounter with quantum numbers in Remark
1.1.37. In this Chapter we shall re-examine the contents of the Part A from Quan-
tum point of view.

§§§ 7.1. Quantum Numbers and Polynomials

Roses are red,
Violets are blue.
If you quantize me,
I’ll grant wisdom to you.

Gustav Noble, Sr.

Quantum numbers generalize the usual ones, by the rule (1.1.39):

[α] = [α]q =
1− qα

1− q
. (7.1.1)

Here q is a formal parameter thought to be either “small” or “close to 1,” depending
on circumstances.

We have:

[0] = 0, [1] = 1, [2] = 1 + q, [3] = 1 + q + q2, ...,

[n] = 1 + q + ...+ qn−1, n ∈ 1 +N. (7.1.2)

We recover the usual numbers when q = 1; if a formula, such as (7.1.1), does
not allow the substitution q = 1 directly, one has to use the operation

lim
q→1

(7.1.3)

in order to recover the classical value of a Quantum expression. Such expressions
are customarily called q-versions. A very handy convention is to omit the subscript
q from [·]q whenever there is no danger of confusion; otherwise, the base − q or
otherwise − is explicitly written down, as in the following easily verifiable identities:

[ab]q = [a]q[b]qa = [b]q[a]qb , (7.1.4)

[α]q−1 = q1−α[α]q, (7.1.5a)

[−α]q−1 = −q[α]q, (7.1.5b)
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[1/α]qα = 1/[α]q. (7.1.5c)

Below I list a few useful properties of q-numbers. All these formulae are simple
to prove and are left to the reader as an exercise. Everything else that we need
we shall prove later on in this Chapter; the curious reader thirsting for still more
excitement could consult the concise booklet [KCh 2002].

[α+ β] = [α] + qα[β] = qβ [α] + [β]. (7.1.6)

[−α] = −q−α[α]. (7.1.7)

Define the q-factorial [n]! by the rule:

[n]!q = [n]q! = [n]! = [1]...[n], n ∈ N, (7.1.8a)

[0]! = 1, (7.1.8b)

and the q-binomial coefficients

[
α

n

]
by the rule

[
α

n

]

q

=

[
α

n

]
=

[α]...[α− n+ 1]

[n]!
, n ∈ N, (7.1.9a)

[
α

0

]
= 1,

[
α

β

]
= 0, β ∈̄ Z+. (7.1.9b)

Then
[n!]q−1 = q−(n

2 )[n]!q. (7.1.10)
[
α

n

]

q−1

= qn(n−α)

[
α

n

]

q

. (7.1.11)

[
α+ 1

n

]
= qn

[
α

n

]
+

[
α

n− 1

]
=

[
α

n

]
+ qα+1−n

[
α

n− 1

]
: (7.1.12)

(this formula shows that

[
α

n

]

q

is a polynomial in q for α ∈ Z+.)

[−α− 1

n

]
= (−qα+1)nq−(n

2 )

[
α+ n

n

]
. (7.1.13)

[−1

n

]
= (−1)nq−(n+1

2 ). (7.1.14)

n−1∏

k=0

(1 + qkx) =
n∑

r=0

[
n

r

]
xrq(

r
2 ), n ∈ N. (7.1.15)

An attractive feature of Quantum number system is finitness of infinity:

[∞] = lim
n→∞

[n] = lim
n→∞

(1 + q + ...+ qn−1) =
∞∑

i=0

qi =
1

1− q
. (7.1.16)
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The expression 1/(1− q) is also the unique solution [x] = 1/(1− q) of the equation

([α+ x] =) [α] + qα[x] = [x], (7.1.17)

for any finite α. Similarly,

[∞
n

]
=

1

(1− q)n[n]!
, n ∈ Z+, (7.1.18)

lim
n→∞

(1− 1

[n]
) = q, (7.1.19)

lim
n→∞

(
1− 1

[n]

)[n]

= q1/(1−q) = (7.1.20a)

= e−β̂(h), (7.1.20b)

where
h = log(g) ⇔ q = eh, (7.1.21)

and

β̂(t) =
t

et − 1
=

∞∑
n=0

Bn

n!
tn (7.1.22)

is the generating function (5.1.9) of the Bernoulli numbers.

Having replaced classical numbers by their q-versions, we then naturally extend
the notion of a polynomial. If f(x) is a polynomial, its q-version is:

f([x]) = f([x]q) = (7.1.23a)

= f((qx − 1)/(q − 1)). (7.1.23b)

Evidently, polynomials in x are replaced by polynomials in qx.

Exercise 7.1.24. Suppose f(t) is a polynomial of degree ≤ n.

(i) Show that

f([x]) =
n∑

k=0

[
x

k

]( k∑
s=0

[
k

s

]
(−1)sq(

s
2 )f([k − s])

)
; (7.1.25)

(ii) Show that if

f(qx(i)) = fi, i = 0, ..., n (7.1.26)

for some mutually distinct numbers x(0), ..., x(n), then

f(qx) =
n∑

i=0

fi
∏

j 6=i

[x− x(j)]

[x(i)− x(j)]
= (7.1.27a)

=
n∑

i=0

fi
∏

j 6=i

[x]− [x(j)]

[x(i)]− [x(j)]
. (7.1.27b)
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§§§ 7.2. Quantum Power-Sums

Everybody talks about the weather, but
nobody does anything to quantize it.

Charles Dudley Warner (attrib.)

We know that

s1(n) = 1 + 2 + ...+ n =
n(n+ 1)

2
, (7.2.1)

s2(n) = 12 + 22 + ...+ n2 =
n(n+ 1)(2n+ 1)

6
, (7.2.2)

s3(n) = 13 + 23 + ...+ n3 =
n2(n+ 1)2

4
= (1 + 2 + ...+ n)2. (7.2.3)

What should be the proper q-version of these power-sums?

Let’s look at the simplest nontrivial power sum, s1(n) (7.2.1). It’s easy to see
that

[1] + [2] + ...+ [n] =
n∑

i=0

(n− i)qi, (7.2.4)

and the RHS of this equality is neither a product ot 2 1st-degree polynomials in [n]
nor a quadratic polynomial in [n]. The sums

n∑

i=1

[i]` (7.2.5)

seem to be not the right q-objects.

To get the proper perspective, we can argue as follows. Assume that the RHS
of our searched-for q-power-sum

∑n
i=1?i is a polynomial in [n+ 1], f([n+ 1)]) say.

Then the nth summand ?n is

f([n+ 1])− f([n]). (7.2.6)

Now,
[x+ 1]k − [x]k = ([x] + qx)k − [x]k = qxPk−1([x]), (7.2.7)

where Pk−1(t) is a polynomial in t is degree = k − 1; recall that

qx = [x+ 1]− [x] = 1 + (q − 1)[x]. (7.2.8)

Thus, the proper objects to consider are

sk(n|q) =
n∑

i=1

qi−1[i]k = (7.2.9a)

=
n−1∑

j=0

qj [1 + j]k. (7.2.9b)
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In the next Section we shall prove that sk(n|q) is a polynomial in [n + 1] of
degree = k + 1.

Exercise 7.2.10. Set
t = [n+ 1] (7.2.11)

and verify that

s0(n+ 1|q) =
n∑

j=0

qj = [n+ 1] = t, (7.2.12)

qs1(n|q) =
n∑

i=1

qi[i] =
t(t− 1)

[2]
, (7.2.13)

qs2(n|q) =
n∑

i=1

qi[i]2 =
t(t− 1)([2]t− q)

[2][3]
, (7.2.14)

qs3(n|q) =
n∑

i=1

qi[i]3 =
t(t− 1)

[3][4]

(
[3]t2 − q(1 + 2q)t+ (q2 − q)

)
. (7.2.15)

Exercise 7.2.16. Show that

n∑

i=1

[i]−
2n∑

j=n+1

[j] = −q[n]2 (7.2.17a)

and more generally,
k+n−1∑

i=k

[i]−
k+2n−1∑

j=k+n

[j] = −qk[n]2. (7.2.17b)

Exercise 7.2.18. Show that

n∑

i=1

[i] =
[n+ 1]− (n+ 1)

q − 1
=

q[n]− n

q − 1
= (7.2.19)

=
∑

j≥0

(1− q)j [j + 1]!

[
n+ 1

j + 2

]
. (7.2.20)

§§§ 7.3. qqq-Bernoulli Polynomials

We wish to express the sums (7.2.9)

qsk(n|q) =
n∑

i=1

qi[i]k (7.3.1)

as polynomials in [n] or, what is the same, in [n + 1]. This problem is equivalent
to finding polynomials fk(t) such that

fk([x+ 1])− fk([x]) = qx[x]k, k ∈ Z+. (7.3.2)
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Since

[x] =
1

q − 1
(qx − 1), (7.3.3a)

qx = 1 + (q − 1)[x], (7.3.3b)

it’s enough to solve a system of simpler problems:

f̄k(q
x+1)− f̄k(q

x) = q(k+1)x, k ∈ Z+. (7.3.4)

Indeed,

qx[x]k = qx(q − 1)−k(qx − 1)k = (q − 1)−kqx
n∑

i=0

(
k

i

)
qix(−1)k−i =

= (q−1)−k
k∑

i=0

(
k

i

)
(−1)k−iq(i+1)x = (q−1)−k

k∑

i=0

(
k

i

)
(−1)k−i(f̄i(q

x+1)−f̄i(q
x)),

(7.3.5)
so that

fk([x]) = (q − 1)−k
k∑

i=0

(
k

i

)
(−1)k−if̄i(q

x) = (7.3.6a)

= (q − 1)−k
k∑

i=0

(
k

i

)
(−1)k−if̄i(1 + (q − 1)[x]). (7.3.6b)

Remark 7.3.7. Solutions of difference equations (7.3.2) and (7.3.4) are defined up
to arbitrary additive constants − constants in x that is, but arbitrary functions
of q.

Let us now solve the equations (7.3.4). Denoting temporarily

qx = τ, (7.3.7)

we rewrite equation (7.3.4) as

f̄k(qτ)− f̄k(τ) = τk+1. (7.3.8)

This is easily solved:

f̄k(τ) =
τk+1 − 1

qk+1 − 1
+ c̄k, (7.3.9)

where
c̄k = c̄k(q) (7.3.10)

is arbitrary. Thus,

f̄k(q
x) =

q(k+1)x − 1

qk+1 − 1
+ c̄k = (7.3.11a)

=
[(k + 1)x]

[k + 1]
+ c̄k. (7.3.11b)
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Substituting formula (7.3.11a) into formula (7.3.6a), we find:

fk([x]) = ck + (q − 1)−k
k∑

i=0

(
k

i

)
(−1)k−i 1

qi+1 − 1

{
(1 + (q − 1)[x])i+1 − 1

}
=

(7.3.12a)

= ck + (q − 1)−k
k∑

i=0

(
k

i

)
(−1)k−i

qi+1 − 1

i∑
r=0

(
i+ 1

r + 1

)
(q − 1)r+1[x]r+1, (7.3.12b)

where
ck = fk(0). (7.3.13)

Formula (7.3.12b) furnishes us with a polynomial in [x], of degree = k + 1,
which solves equation (7.3.2). Summing that equation on x, for x = 1, ..., n, we get:

qsk(n|q) =
n∑

i=1

qi[i]k =
n∑

i=1

(fk([i+ 1])− fk([i]) =

= fk([n+ 1])− fk(1). (7.3.14)

We see that sk(n|q) is a polynomial in [n+ 1] of degree = k + 1. In addition,
since [n+ 1]r − 1 is divisible by

[n+ 1]− 1 = q[n], (7.3.15)

we see that sk(n|q) is divisible by [n]. Moreover, sk(n|q) is also divisible by [n+ 1]
when k > 0. Indeed, by formula (7.3.12a),

fk(1)− fk(0) = (q − 1)−k
k∑

i=0

(
k

i

)
(−1)k−i 1

qi+1 − 1
{(1 + (q − 1))i+1 − 1} =

= (q − 1)−k
k∑

i=0

(
k

i

)
(−1)k−i = (q − 1)−k(1− 1)k = δ0k. (7.3.16)

Therefore, by formula (7.3.14),

qsk(n|q) = fk([n+ 1])− fk(0)− δ0k = (7.3.17a)

= fk([n+ 1])− fk(0), k > 0, (7.3.17b)

and f(t)− f(0) is divisible by t for any polynomial f(t).

So far, no mention has been made of the name Bernoulli. Recall that for
q = 1, the ordinary Bernoulli polynomials Bk(x), defined by the generating function
(5.1.10)

∞∑

k=0

Bk(x)
tk

k!
=

text

et − 1
, (7.3.18)
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satisfy the difference equation (5.1.1)

Bk(x+ 1)−Bk(x) = kxk−1. (7.3.19)

Therefore, it is natural to define the kth q-Bernoulli polynomial, up to an additive
constant, by the difference equation

Bk(x+ 1|q)−Bk(x|q) = kqx[x]k−1. (7.3.20)

Comparing this to the equation (7.3.2), we see that

B0(x|q) = B0(0|q), (7.3.21a)

Bk+1(x|q) = (k + 1)fk([x]). (7.3.21b)

Formula (7.3.12b) then yields:

Bk+1(x|q)−Bk+1(0|q) = (k+ 1)
k∑

i=0

(
k

i

)
(−1)k−i

qi+1 − 1

i∑
r=0

(
i+ 1

r + 1

)
(q− 1)r+1−k[x]r+1.

(7.3.22)
The constants Bk(0|q) remain undefined. They should be chosen according to
some principle that is unclear at the moment. The next 2 Sections will tackle this
problem.

Exercise 7.3.23. Verify that formula (7.3.12b) yields:

f0([x])− f0(0) = [x], (7.3.24)

f1([x])− f1(0) =
[x]2

[2]
− [x]

[2]
, (7.3.25)

f2([x])− f2(0) =
[x]3

[3]
− [x]2(1 + 2q)

[2][3]
+

[x]q

[2][3]
. (7.3.26)

Exercise 7.3.27. Set

g1(x) =
[x]− x

q − 1
, (7.3.28a)

g2(x) =
(q − 1)[x]2 − 2q[x] + [2]x

(q − 1)(q2 − 1)
, (7.3.28b)

g3(x) =
[x]3

q3 − 1
− 3q2[x]2

(q2 − 1)(q3 − 1)
+

3q(1 + q2)[x]− [3]!x

(q − 1)(q2 − 1)(q3 − 1)
. (7.3.28c)

Show that
[x]` = g`(x+ 1)− g`(x), ` = 1, 2, 3. (7.3.39)

Exercise 7.3.40. Show that

n∑

i=1

qi−1[i]k =
Bk+1(n+ 1|q)−Bk+1(1|q)

q(k + 1)
, k ∈ Z+. (7.3.41)

§§§ 7.4. Remembrance Of Formulae Past
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In §5.1, we saw that the ordinary Bernoulli polynomials Bk(x)’s satisfy the
differential relations (5.1.16):

dBk(x)

dx
= kBk−1(x), k ∈ N. (7.4.1)

What is the q-version of these relations?

The method of §5.1, of differentiating with respect to x the generating function
of the Bernoulli polynomials, text/(et − 1), is of no use to us now since we don’t
know yet the generating function of q-Bernoulli polynomials. But there exists an
alternative derivation of formula (7.4.1), not relying on the generating function.

Let’s take the difference equation (5.11),

Bk(x+ 1)−Bk(x) = kxk−1, (7.4.2)

and differentiate it with respect to x. Denoting temporarily

B′
k(x) =

dBk(x)

dx
, (7.4.3)

we find:
B′

k(x+ 1)−B′
k(x) = k(k − 1)xk−2. (7.4.2)

Thus, the polynomials
B′

k(x)/k and Bk−1(x) (7.4.3)

satisfy the same difference equation

f(x+ 1)− f(x) = (k − 1)xk−2. (7.4.4)

Therefore, the polynomials B′
k(x)/k and Bk−1(x) differ at most by an additive

constant:
dBk(x)

dx
= kBk−1(x) + δk, δk ∈ Q. (7.4.5)

The constants δk’s are at our disposal, since the difference equation (7.4.2) defines
the polynomial Bk(x) only up to an arbitrary constant Bk(0); we can specify this
constant by demanding that δk = 0 for all k:

Bk−1(0) =
1

k

dBk(x)

dx

∣∣∣∣
x=0

, k ∈ N, (7.4.6)

and the RHS of the equation (7.4.6) is independent of the arbitrary part Bk(0) of
the polynomial Bk(x).

We shall adopt the above method to our general q-situation. We start with
the difference equation (7.3.20),

Bk(x+ 1|q)−Bk(x|q) = kqx[x]k−1. (7.4.7)

Since
qx = 1 + (q − 1)[x], (7.4.8)

171



we can rewrite equation (7.4.7) as

Bk(x+ 1|q)−Bk(x|q) = k[x]k−1 + (q − 1)k[x]k. (7.4.9)

Now differentiate equation (7.4.9) with respect to [x]. Denoting temporarily

B′
k =

∂Bk(x|q)
∂[x]

, (7.4.10)

and remembering that
[x+ 1] = 1 + q[x], (7.4.11)

we get:

qB′
k(x+ 1|q)−B′

k(x|q) = k(k − 1)[x]k−2 + (q − 1)k2[x]k−1. (7.4.12)

Multiplying this equality by qx, we find:

qx+1B′
k(x+ 1|q)− qxB′

k(x|q) =

= kqx(k − 1)[x]k−2 + k(q − 1)qxk[x]k−1 [ by (7.4.7) ] =

= k{Bk−1(x+ 1|q)−Bk−1(x|q)}+ k(q − 1){Bk(x+ 1|q)−Bk(x|q)}. (7.4.13)

Therefore,

qxB′
k(x|q) = k{Bk−1(x|q) + (q − 1)Bk(x|q)}+ δk(q), (7.4.14)

where δk(q) is an arbitrary x-independent function of q.

In the notation
z = [x], (7.4.15)

the differential relation (7.4.14) becomes:

(1 + (q − 1)z)
∂Bk(z|q)

∂z
= k{Bk−1(z|q) + (q − 1)Bk(z|q)}+ δk(q). (7.4.16)

For q = 1, we recover the original bland equation (7.4.5).

Notice that, in contrast to the {q = 1}-case (7.4.5), letting all the δk(q)’s
vanish in the equations (7.4.14) will not uniquely determine the so-far arbitrary
values {Bk(0|q) |k ∈ Z+}: if δk(q) = 0 then equation (7.4.16) yields not Bk−1(0|q)
itself but a relation between Bk−1(0|q) and (q − 1)Bk(0|q); at the end of the day,
B0(0|q) will still remain free and undetermined, and all the other polynomials
Bk(x|q) will depend upon B0(0|q) as a parameter entering Bk(0|q).

In the next Section we shall work out another method to deal with q-Bernoulli
polynomials, in a way that bypasses the arbitrary constants Bk(0|q)’s altogether.
Exercise 7.4.17. Show that for k = 1, 2, formula (7.4.16) produces, respectively:

1 = B0(0|q) + (q − 1)B1(0|q) + δ1(q), (7.4.18a)

− 1

[2]
= B1(0|q) + 2(q − 1)

[2]
B2(0|δ) + 1

2
δ2(q). (7.4.18b)
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Sometimes I wish life were as
simple as Differential Equations.

An unknown mathematician

§§§7.5. Generating Function For qqq-Bernoulli Polynomials

In §5.1, the question of indeterminacy up-to-constants in the defining equations
of the ordinary Bernoulli polynomials,

Bk(x+ 1)−Bk(x) = kxk−1, k ∈ N, (7.5.1)

didn’t appear as a serious issue. We converted there the infinite system (7.5.1) into
one equation for the generating function

B(x, t) =
∞∑

k=0

Bk(x)
tk

k!
, (7.5.2)

namely equation (5.1.6):

B(x+ 1, t)−B(x, t) = text, (7.5.3)

and then noticed that

B(x, t) =
t

et − 1
ext (7.5.4)

is a solution of the equation (7.5.3). The constants Bk(0)’s then tumbled out from
formula (7.5.4) when it was evaluated at x = 0:

B(0, t) =
∞∑

k=0

Bk(0)
tk

k!
=

t

et − 1
. (7.5.5)

Denoting
Bk = Bk(0),

the Bernoulli numbers, we find from formulae (7.5.2,4) that

∞∑

k=0

Bk(x)
tk

k!
=

t

et − 1
ext =

∞∑

i=0

Bi
ti

i!

∞∑

j=0

xj t
i

j!
⇒ (7.5.6)

Bk(x) =
k∑

i=0

(
k

i

)
Bk−ix

i. (7.5.7)

This exceedingly simple and casual way in which the problem of defining the
constants Bk(0)’s had been taken care of, has come now to extract its revenge on
us, for in the q-case the generating function for the q-Bernoulli polynomials is a
rather complicated object which we don’t know yet in any case.

We need then to find another way of deriving formula (7.5.5) and/or formula
(7.5.7). We can argue as follows.
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Let f(x) be a polynomial. Newton’s binomial formulae

(x+ c)n =
n∑

k=0

(
n

k

)
ckxn−k, n ∈ Z+, c = const, (7.5.8)

can be rewritten as

(x+ c)n =

( ∞∑

k=0

1

k!

(
c
d

dx

)k)
(xn), (7.5.9)

because
1

k!

dk

dxk
(xn) =

(
n

k

)
xn−k. (7.5.10)

Thus,

(x+ c)n = (ecd/dx)(xn), n ∈ Z+, (7.5.11)

and therefore
f(x+ c) = ecd/dx(f(x)) (7.5.12)

for any polynomial f(x). Formula (7.5.12) is similarly true when: (i) the constant
c is replaced by a function c(τ) − or a formal power series

∑∞
i=0 ciτ

i, and (ii)
f(x) is replaced by a function f(x, τ), polynomial in x − or a formal power series∑∞

j=0 fj(x)τ
j , where fj(x)’s are polynomial in x.

With these remarks out of the way, we now rewrite the difference equation
(7.5.1) first, as

(ed/dx − 1)(Bk(x)) =
d

dx
(xk), (7.5.13)

and then as

Bk(x) =
d/dx

ed/dx − 1
(xk) = β̂

(
d

dx

)
(xk), (7.5.14)

where

β̂(τ) =
τ

eτ − 1
=

∞∑
n=0

Bn
τn

n!
(7.5.15)

is the generating function (7.5.4) of the Bernoulli numbers. By formula (7.5.10),
formula (7.5.14) can be converted into

Bk(x) =
∞∑

n=0

Bn
1

n!

(
d

dx

)n

(xk) =
k∑

n=0

Bn

(
k

n

)
xk−n, (7.5.16)

and this is the classical formula (7.5.7). Notice how we had disposed off of the ar-
bitrary additive constants in the polynomial Bk(x)’s: by passing from the equation
(7.5.13) to the equation (7.5.14) − a slightly illegitimate but natural passage.

We now are in a position to tackle the more general q-problem. We start with
the difference equation (7.3.20):

Bk(x+ 1|q)−Bk(x|q) = kqx[x]k−1, k ∈ Z+. (7.5.17)
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Now,
d

dx
([x]k) = β̂(h)kqx[x]k−1, (7.5.18)

because
d[x]

dx
= β̂(h)qx = (7.5.19a)

= β̂(h)(1 + (q − 1)[x]), (7.5.19b)

where, by formula (7.1.21),
h = log(q). (7.5.20)

Indeed:

d[x]

dx
=

d

dx

(
qx − 1

q − 1

)
=

1

q − 1
log(q) · qx =

log(g)

q − 1
qx = (7.5.21a)

=
h

eh − 1
qx. (7.5.21b)

Therefore, we can rewrite the equation (7.5.17) first, as

(ed/dx − 1)(Bk(x|q)) = 1

β̂(h)

d

dx
([x]k), (7.5.22)

and then as

Bk(x|q) = 1

β̂(h)
β̂

(
d

dx

)
([x]k), k ∈ Z+. (7.5.23)

The passage from the equation (7.5.22) to its particular solution (7.5.23) is entirely
natural, like in the classical {q = 1}-case (7.5.13,14), and like in that case, we
have arrived at the polynomials Bk([x]|q)’s with their values Bk(0|q)’s no longer
arbitrary.

Formula (7.5.23) is not very explicit. To make it more transparent, we replace
in it [x]k by (

qx − 1

q − 1

)k

= (q − 1)−k
k∑

i=0

(
k

i

)
(−1)k−iqix = (7.5.24a)

= (q − 1)−k
k∑

i=0

(
k

i

)
(−1)k−ieihx. (7.5.24b)

Then,

Bk(x|q) = 1

β̂(h)
(q − 1)−k

k∑

i=0

(
k

i

)
(−1)k−iβ̂

(
d

dx

)
(eihx) =

= (q − 1)−k
k∑

i=0

(
k

i

)
(−1)k−i β̂(ih)

β̂(h)
eihx, (7.5.25)

because

f

(
d

dx

)
(eλx) = f(λ)eλx. (7.5.26)
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Now,

β̂(ih)

β̂(h)
=

ih

eih − 1

eh − 1

h
=

i

[i]
, i 6= 0, (7.5.27)

β̂(0)

β̂(h)
=

1

β̂(h)
=

eh − 1

h
=

q − 1

log(q)
. (7.5.28)

Hence, if we agree that
i

[i]

∣∣∣∣
i=0

=
q − 1

log(q)
, (7.5.29)

formula (7.5.25) can be transformed into

Bk(x|q) = (q − 1)−k
k∑

i=0

(
k

i

)
(−1)k−i i

[i]
qix = (7.5.30a)

= (q − 1)−k
k∑

i=0

(
k

i

)
(−1)k−i i

[i]
(1 + (q − 1)[x])i. (7.5.30b)

Setting in this formula x = 0, we find:

Bk(0|q) = (q − 1)−k
n∑

i=0

(
k

i

)
(−1)k−i i

[i]
. (7.5.31)

These are our q-analogs of the classical Bernoulli numbers. In particular,

B0(0|q) = q − 1

log(q)
, (7.5.32)

B1(0|q) = 1

q − 1

(
− q − 1

log(q)
+ 1

)
=

1

q − 1
− 1

log(q)
, (7.5.33a)

B2(0|q) = 2q

(q − 1)(1− q2)
− 1

(1− q)log(q)
. (7.5.33b)

Subtracting the expression (7.5.31) from the expressions (7.5.30), we find:

Bk(x|q)−Bk(0|q) = (q − 1)−k
k∑

i=1

(
k

i

)
(−1)k−i i

[i]
(qix − 1) = (7.5.34a)

= (q − 1)−k
k∑

i=1

(
k

i

)
(−1)k−i i

[i]

i∑
r=1

(
i

r

)
(q − 1)r[x]r. (7.5.34b)

The latter formula is the same as formula (7.3.22), as should have been expected.

Now it is clear how to find a useful expression for the generating function

B(x, t|q) =
∞∑

k=0

Bk(x|q) t
k

k!
(7.5.35)
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of the q-Bernoulli polynomials: just sum on k formula (7.5.23) multiplied by tk/k!,
resulting in

B(x, t|q) = 1

β̂(h)
β̂(

d

dx
)(et[x]). (7.5.36)

Since
β̂(0) = 1, (7.5.37a)

[x]q = (qx − 1)/(q − 1) = (ehx − 1)/(eh − 1) = β̂(h)
ehx − 1

h
, (7.5.37b)

all entities in the RHS’s of formulae (7.5.23) and (7.5.36) are regular in h, that is,
they have well-defined limits as h → 0 (or as q → 1, which is the same.) Therefore,
even though formulae (7.5.30-34) appear to be singular in q − 1, these singularities
are only apparent, not real. For example, the limit q → 1 of formula (7.5.36) yields:

B(x, t|1) = β̂(
d

dx
)(etx) = β̂(t)etx =

t

et − 1
etx, (7.5.38)

and this is the generating function (7.5.4) of the regular Bernoulli polynomials.
Therefore,

lim
q→1

Bk(x|q) = Bk(x), k ∈ Z+, (7.5.39a)

lim
q→1

Bk(0|q) = Bk, k ∈ Z+. (7.5.39b)

We now proceed to extract various corollaries from the formula (7.5.36).

Let y be a separate variable, independent upon x. Setting

x′ = x+ y (7.5.40a)

and observing that
d

dx′ =
d

dx
, (7.5.40b)

we get:

B(x+ y, t|q) = 1

β̂(h)
β̂(

d

dx
)(et[x+y]). (7.5.41)

Now,
[x+ y] = [y] + qy[x],

so that
et[x+y] = et[y]eq

yt[x],

and formula (7.5.41) becomes:

B(x+ y, t|q) = et[y]
1

β̂(h)
β̂(

d

dx
)(eq

yt[x]) =

= et[y]B(x, qyt|q). (7.5.42)

Setting x = 0 and renaming y by x, we obtain:

B(x, t|q) = et[x]B(0, qxt|q). (7.5.43)
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In components (7.5.35), we find:

∞∑

k=0

Bk(x|q) t
k

k!
=

∞∑

j=0

[x]j
tj

j!

∞∑

i=0

Bi(0|q)qix t
i

i!
, (7.5.44a)

which is equivalent to

Bk(x|q) =
k∑

i=0

(
k

i

)
Bi(0|q)qix[x]k−i, i ∈ Z+. (7.5.44b)

This is a q-analog of the classical formula (7.5.7). Similarly, the component form
of formula (7.5.42) is:

Bk(x+ y|q) =
k∑

i=0

(
k

i

)
Bi(x|q)qiy[y]k−i, k ∈ Z+. (7.5.45)

We next derive a q-analog of the reflection formula (6.12.18):

Bk(1− x) = (−1)kBk(x), k ∈ Z+. (7.5.46)

Notice that
β̂(−y) = eyβ̂(y), (7.5.47)

because

β̂(−y) =
−y

e−y − 1
=

1

e−y

−y

1− ey
= ey

y

ey − 1
= eyβ̂(y). (7.5.48)

Therefore,

B(−x,−tq−1|q−1) =
1

β̂(−h)
β̂(− d

dx
)(e−tq−1[−x]q−1 ) [ by (7.5.47), (7.1.56)] =

=
1

qβ̂(h)
β̂(

d

dx
)ed/dx(et[x]) [ by (7.5.12)] =

q−1

β̂(h)
β̂(

d

dx
)(et[x+1]) =

= q−1B(x+ 1, t|q). (7.5.49)

In components, this is:

Bk(−x|q−1)(−q−1)k = q−1Bk(x+ 1|q). (7.5.50)

Changing x into −x, we finally get:

Bk(1− x|q) = (−1)kq1−kBk(x|q−1). (7.5.51)

In particular, for x = 0 we find:

Bk(1|q) = (−1)kq1−kBk(0|q−1). (7.5.52a)
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Of course, from the defining property (7.5.17) we also have:

Bk(1|q) = Bk(0|q) + δ1k, k ∈ Z+. (7.5.52b)

Remark 7.5.53. q-Bernoulli numbers and polynomials were introduced in 1948 by
Carlitz in [Car 1948]. They are different from the ones we’ve been dealing with, in
the choice of the additive constants Bk(0|q)’s: Carlitz had chosen Bk(0|q)’s to be
rational functions in q, with B0(0|q) = 1 instead of our B0(0|q) = (q − 1)/log(q)
(7.5.32). Many other formulae of this Section can likewise be found in Carlitz’s
paper, with the same variations in the meaning of the Bk(0|q)’s. Also, the {q = 1}-
formula (7.5.14) is known; e.g., it can be found on p. 285 in [Mil 1983]. In general,
the amount of results on classical Bernoulli numbers and polynomials is enormous,
and that enormity had lead to papers and books being written consisting entirely
of bibliographies on the subject. One such, a rather modest paper of 8 pages, is [Ely
1882]. The book [DSS 1991], at 175 pages, cites 1956 publications by 839 authors,
while its updated electronic version lists, on February 2003, 2805 entries by 1399
authors. The book [Nie 1923] by Nielsen summaries the state of knowledge up to
1923.

Exercise 7.5.54. Show directly that

lim
x→0

x

[x]q
=

q − 1

log(q)
, (7.5.55)

lim
q→1

B0(0|q) = lim
q→1

q − 1

log(q)
= 1, (7.5.56a)

lim
q→1

B1(0|q) = lim
q→1

(
1

q − 1
− 1

log(q)

)
= −1

2
, (7.5.56b)

lim
q→1

B2(0|q) = lim
q→1

(
2q

(q − 1)(1− q2)
− 1

(1− q)log(q)

)
=

1

6
. (7.5.56c)

Exercise 7.5.57. (i) Show that the root of the equation

B1(x|q) = 0 (7.5.58a)

is given by the formula

x =
log((eh − 1)/h)

h
; (7.5.58b)

(ii) Show that ∫ 1

0

B1(x+ y|q)dy =
1

β̂(h)
[x], (7.5.59)

∫ 1

0

[x]qdx = −B1(0|q), (7.5.60)

∫ 1

0

B1(x|q)2dx =
eh + 1

2(eh − 1)h
− 1

h2
, (7.5.61a)

lim
h→0

(
eh + 1

2(eh − 1)h
− 1

h2

)
=

1

12
. (7.5.61b)
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Exercise 7.5.62. Show that

B0(0| − 1) = 2
√−1, (7.5.63)

B1(0| − 1) =
√−1− 1

2
= B1(

√−1|1). (7.5.64)

Exercise 7.5.65. Show that

B0(0|q) + (q − 1)B1(0|q) = 1. (7.5.66)

Exercise 7.5.67. (i) Convert formula (7.5.17) into

B(x+ 1, t|q)−B(x, t|q) = qxtet[x] (7.5.68)

and then use formula (7.5.42) to derive the relation

etB(x, qt|q)−B(x, t|q) = qxtet[x]; (7.5.69)

(ii) Show that
k∑

i=0

(
k

i

)
Bi(x|q)qi −Bk(x|q) = qxk[x]k−1; (7.5.70)

(iii) Set x = 0 in formula (7.5.70) and get

k∑

i=0

(
k

i

)
Bi(0|q)qi −Bk(0|q) = δ1k. (7.5.71)

§§§ 7.6. qqq-Bernoulli Numbers

In the preceding Section, we have defined q-Bernoulli numbers by formula
(7.5.31):

Bk(0|q) = (q − 1)−k
k∑

i=0

(
k

i

)
(−1)k−i i

[i]
. (7.6.1)

In the classical case, when q = 1, the generating function of the Bernoulli
numbers,

β̂(t) =
t

et − 1
=

∞∑

k=0

Bk
tk

k!
, (7.6.2)

satisfies the obvious relation

β̂(−t)− β̂(t) = t, (7.6.3)

guaranteeing that the function β̂(t) is almost even, so that

B2n+1 = 0, n ∈ N. (7.6.4)

We now prove the following q-analog of formula (7.6.3):

qB(0,−q−1t|q−1)−B(0, t|q) = t. (7.6.5)
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First, multiply the relation (7.5.17),

Bk(x+ 1|q)−Bk(x|q) = qxk[x]k−1, (7.6.6)

by tk/k! and sum on k ≥ 0. We get:

B(x+ 1, t|q)−B(x, t|q) = qxtet[x]. (7.6.7)

For x = 0, this yields:
B(1, t|q)−B(0, t|q) = t. (7.6.8)

Next, formula (7.5.49) for x = 0 provides:

B(1, t|q) = qB(0,−q−1t|q−1). (7.6.9)

Substituting formula (7.6.9) into the equation (7.6.8), we obtain the claimed
formula (7.6.5). In components, the latter formula becomes:

(−1)kq1−kBk(0|q−1) = Bk(0|q) + δ1k. (7.6.10)

Also, formula (7.5.43) for x = 1 yields:

B(1, t|q) = etB(0, qt|q). (7.6.11)

Substituting this formula into the equation (7.6.8), we find:

etB(0, qt|q)−B(0, t|q) = t. (7.6.12)

This is an equation for the generating function of our q-Bernoulli numbers. In
components, this equation becomes:

k∑

i=0

(
k

i

)
Bi(0|q)qi −Bk(0|q) = δ1k. (7.6.13)

The last 2 equations, with the initial condition B0(0|q) = 1, were postulated by
Carlitz [Car 1948]; and with the initial condition B0(0|q) = (q − 1)/log(q), by
Tsumura [Tsu 1991].

As so often happens in Quantum Mathematics, there sometimes appear non-
trivial relations which in the classical limit q = 1 turn into banalities such as 1 = 1
and the like.

We consider one such example now.

Let us extract the highest [x]k-term from the q-Bernoulli polynomial Bk(x|q),
in 2 different ways. From formula (7.5.44b), we find:

Bk(x|q) = [x]k
k∑

i=0

(
k

i

)
Bi(0|q)(q − 1)i + ..., (7.6.14)
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where ... stands for terms in [x] of degree < k. On the other hand, formula (7.5.30a)
yields:

Bk(x|q) = [x]k
k

[k]
+ ... (7.6.15)

Equating formulae (7.6.14 and (7.6.15), we find:

k∑

i=0

(
k

i

)
Bi(0|q)(q − 1)i =

k

[k]
, k ∈ Z+. (7.6.16)

For q = 1, this relation becomes:
B0 = 1, (7.6.16′)

which is true but not too informative.

§§§ 7.7. Distribution Relations For qqq-Bernoulli Polynomials

The classical Bernoulli polynomials satisfy the relation (5.1.21):

`−1∑

i=0

Bk(x+
i

`
) = `1−kBk(`x), k ∈ Z+, ` ∈ N. (7.7.1)

This is of course easy to prove: multiply each side by tk/k! and sum on k ≥ 0.

For the LHS, we find:

∞∑

k=0

tk

k!

`−1∑

i=0

Bk(x+
i

`
) =

`−1∑

i=0

∞∑

k=0

Bk(x+
i

`
)
tk

k!
=

`−1∑

i=0

t

et − 1
e(x+

i
` )t =

=
text

et − 1

`−1∑

i=0

(
et/`

)i

=
text

et − 1

(et/`)` − 1

et/` − 1
=

text

et/` − 1
, (7.7.2a)

while for the RHS we obtain:

∞∑

k=0

tk

k!
`1−kBk(`x) = `

∞∑

k=0

Bk(`x)
(t/`)k

k!
= `

t/`

et/` − 1
e(`x)(t/`) =

=
text

et/` − 1
, (7.7.2b)

and this is the same as (7.7.2a).

Formula (7.7.1) was found in 1851 by Raabe [Raa 1851]. Nowadays this for-
mula, and similar ones for a handful of elite functions, are called distribution rela-
tions.

We aim to find a q-analog of the distribution formula (7.7.1). A little experi-
mentation with the values k = 0, 1 leads to the following relation:

`−1∑

i=0

Bk(x+
i

`
|q`) = ([`]q)

1−kBk(`x|q), k ∈ Z+, ` ∈ N. (7.7.3)
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Before proving it, let’s consider the case k = 0. In this case,

B0(x|q) = B0(0|q) = q − 1

log(q)
, (7.7.4)

and the LHS of formula (7.7.3) returns:

`B0(0|q`) = `
q` − 1

log(q`)
=

q` − 1

log(q)
=

q` − 1

q − 1

q − 1

log(q)
= [`]qB0(0|q), (7.7.5)

in agreement with the RHS of formula (7.7.3).

Let’s now prove formula (7.7.3). We shall use formula (7.5.30a):

Bk(x|q) = (q − 1)−k
k∑

j=0

(
k

j

)
(−1)k−j j

[j]
qjx, (7.7.6)

where, by formulae (7.5.27-29),

j

[j]q
=

β̂(jh)

β̂(h)
, h = log(q). (7.7.7)

For the LHS of formula (7.7.3) we find:

`−1∑

i=0

Bk(x+
i

`
|q`) =

`−1∑

i=0

(q` − 1)−k
k∑

j=0

(
k

j

)
(−1)k−j j

[j]q`
q`j(x+

i
` ) =

=
k∑

j=0

(
k

j

)
(−1)k−jq`jx(q` − 1)−k

{
j

[j]q`

`−1∑

i=0

qji
}
, (7.7.8a)

while for the RHS of formula (7.7.3) we obtain:

([`]q)
1−kBk(`x|q) =

(
q` − 1

q − 1

)1−k

(q − 1)−k
k∑

j=0

(
k

j

)
(−1)k−j j

[j]
qj`x =

=
k∑

j=0

(
k

j

)
(−1)k−jq`jx(q` − 1)−k

{
(q` − 1)(q − 1)−1 j

[j]

}
. (7.7.8b)

Comparing formula (7.7.8a) and (7.7.8b), we see that we need to check that

j

[j]q`

`−1∑

i=0

qji =
j

[j]q
[`]q. (7.7.9)

First, let j = 0. By formula (7.7.7), the identity (7.7.9) becomes:

β̂(0)

β̂(`h)
` =

β̂(0)

β̂(h)
[`], (7.7.10)
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or
`

[`]
=

β̂(`h)

β̂(h)
,

which is true by formula (7.7.7).

Now let j 6= 0. After dividing by j, formula (7.7.9) becomes:

1

[j]q`

qj` − 1

qj − 1
=

1

[j]
[`],

or
q` − 1

q`j−1

qj` − 1

qj − 1
=

q − 1

qj − 1

q` − 1

q − 1
,

which is true. Formula (7.7.9) is thereby proven, and with it the distribution
property (7.7.3). (Carlitz in [Car 1948] derived a different distribution property for
his version of q-Bernoulli polynomials; he also mentioned a formula superficially
identical to formula (7.7.3).)

As in the classical case q = 1, the distribution property (7.7.3) for q-Bernoulli
polynomials implies a relation between q-Bernoulli numbers.

Recall how this implication comes about in the classical case q = 1. Set x = 0
in formula (7.7.1). We get:

`1−kBk =
`−1∑

i=0

Bk

(
i

`

)
=

`−1∑

i=0

k∑
r=0

(
k

r

)
Bk−r

(
i

`

)r

=

=
k∑

r=0

(
k

r

)
Bk−r`

−r
`−1∑

i=0

ir, (7.7.11)

or

Bk =
k∑

r=0

(
k

r

)
Bk−r`

k−r

{
1

`

`−1∑

i=0

ir
}
. (7.7.12)

Similarly, set x = 0 in formula (7.7.3). We obtain:

([`]q)
1−kBk(0|q) =

`−1∑

i=0

Bk([
i

`
]|q`) [by (7.5.44b) ] =

=
`−1∑

i=0

k∑
r=0

(
k

r

)
Bk−r(0|q`)q`(k−r)(i/`)([i/`]q`)

r =

=
k∑

r=0

(
k

r

)
Bk−r(0|q`)

`−1∑

i=0

q(k−r)i

(
[i]

[`])

)r

, (7.7.13a)

or

Bk(0|q) =
k∑

r=0

(
k

r

)
Bk−r(0|q`)([`]q)k−r

{
1

[`]q

`−1∑

i=0

q(k−r)i([i]q)
r

}
. (7.7.13b)
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This is the desired q-analog of formula (7.7.12). For k = 0, formula (7.7.13b)
returns:

B0(0|q) = B0(0|q`) `

[`]q
, (7.7.14)

which is formula (7.7.5).

Our story doesn’t end here. It turns out that not only do the classical Bernoulli
polynomials Bk(x)’s satisfy the distribution property (7.7.1), but they are uniquely
(up to a constant multiple) defined by this property. This was proved by Lehmer
(see [Leh 1988], [Cal 1989].) The q-situation is more interesting.

Let f(x|q) be a polynomial in [x], of degree = k, satisfying the distribution
property (7.7.3):

`−1∑

i=0

f(x+
i

`
|q`) = (`q)

1−kf(`x|q), ` ∈ N. (7.7.15)

We want to determine all such possible f ’s.

Let first k = 0, so that
f(x|q) = G0(q). (7.7.16)

The relation (7.7.15) turns into

`G0(q
`) = [`]qG0(q). (7.7.17)

Rewriting it as

`
G0(q

`)

q` − 1
=

G0(q)

q − 1
(7.7.18a)

and setting

G0(q) =
q − 1

log(q)
G̃0(q), (7.7.18b)

we get:
G̃0(q

`) = G̃0(q), ` ∈ N. (7.7.19)

Therefore,
G̃0(q) = const. (7.7.20)

This is “obvious,” and can be argued as follows. Denote

g(h) = G̃0(e
h). (7.7.21)

Equation (7.7.19) then becomes:

g(`h) = g(h), ` ∈ N. (7.7.22)

Now, h is arbitrary. Replace it by h/`:

g(h) = g(h/`), ` ∈ N. (7.7.23)

Now let ` → ∞. We get:
g(h) = lim

h→0
g(h), (7.7.24)
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if the limit exists. If it doesn’t (due to g(0) = ∞, say), the same argument can be
used for 1/g(h). If neither of these alternatives apply, g(h) is not continuous at 0
and ∞, is thus too bizarre to deserve our polite company, and is thereby banned.
From now on, every function of q which remains unchanged when q is replaced by
q`, ` = 1, 2, ..., is taken to be a constant.

With this matter out of the way, we see that every solution of the equation
(7.7.15) for k = 0 is:

f(x|q) = const
q − 1

log(q)
= constB0(x|q). (7.7.25)

Now let k > 0. Let
f(x) = Gk(q)[x]

k + ... (7.7.26)

where ... stands for terms of degree < k in [x]. Since

[x+
i

`
]q` =

[
i

q

]

q`
+ q`(i/`)[x]q` = qi[x]q` +

[i]

[`]
, (7.7.27)

extracting terms of degree = k in [x]q` from each side of the identity (7.7.15), we
find:

Gk(q
`)([x]q`)

k
`−1∑

i=0

(qi)k = ([`]q)
1−kGk(q)([`x]q)

k. (7.7.28)

Since
[`x]q = [`]q[x]q` , (7.7.29)

equation (7.7.28) reduces to

Gk(q
`)
qk` − 1

qk − 1
= ([`]q)

1−kGk(q)([`]q)
k, (7.7.30a)

or

Gk(q
`)
qk` − 1

qk − 1
=

q` − 1

q − 1
Gk(q), (7.7.30b)

which is, finally:

Gk(q
`)
qk` − 1

q` − 1
= Gk(q)

qk − 1

q − 1
. (7.7.30c)

Denoting

G̃k(q) = Gk(q)
qk − 1

q − 1
,

we see that
G̃k(q

`) = G̃k(q), ` ∈ N,

so that G̃k(q) = constk, and thus

Gk(q) = constk
q − 1

qk − 1
= constk

1

[k]
. (7.7.31)

Thus,

f(x|q) = constk
k

[k]
[x]k + ... (7.7.32)
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However, by formula (7.6.15),

Bk(x|q) = k

[k]
[x]k + ... (7.7.33)

Therefore,
f1(x|q) = f(x|q)− constkBk(x|q) (7.7.34)

is a polynomial of degree < k that also satisfies the distribution property (7.7.15).
In contrast to the classical case q = 1, f1(x|q) need not vanish.

To get a handle on what is at work here, let’s consider the case when the degree
of f1(x)|q) is 0:

f1(x|q) = g0(q). (7.7.35)

Equation (7.7.15) then returns:

`g0(q
`) = ([`]q)

1−kg0(q), (7.7.36a)

or
`g0(q

`)(q` − 1)k−1 = g0(q)(q − 1)k−1. (7.7.36b)

Setting

g0(q) =
1

log(q)

1

(q − 1)k−1
g̃0(q), (7.7.37)

we can rewrite equation (7.7.36b) as

g̃0(q
`) = g̃0(q), ` ∈ N. (7.7.38)

Thus, g̃0(q) = const, so that

g0(q) = f1([x]|q) = const
q − 1

log(q)

1

(q − 1)k
. (7.7.39)

We see that for k > 0, the expression (7.7.39) is singular in q − 1 (or h), that
is, it doesn’t have a finite limit when q 7→ 1 − unless g0(q) = 0.

And this effect is typical. Let f1(x|q) (7.7.34) be a polynomial in [x] of degree
= r, 0 < r < k:

f1(x|q) = Gr(q)[x]
r + ... (7.7.40)

Extracting the highest order terms from the equality (7.7.15) applied to f1([x]|q),
we find:

Gr(q
`)([x]q`)

r
`−1∑

i=0

(qi)r = ([`])q)
1−kGr(q)([lx]q)

r. (7.7.41a)

which is equivalent to

Gr(q
`)
qr` − 1

qr − 1
= ([`]q)

1−kGr(q)([`]q)
r, (7.7.41b)

which is equivalent to

Gr(q
`)

qr` − 1

(q` − 1)r+1−k
= Gr(q)

qr − 1

(q − 1)r+1−k
, (7.7.41c)
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which implies that

Gr(q) = constr
(q − 1)r+1−k

qr − 1
= constr

q − 1

qr − 1

1

(q − 1)k−r
= (7.7.42a)

= constr
1

[r]q

1

(q − 1)k−r
. (7.7.42b)

Since r < k, Gr(q) becomes infinite as q 7→ 1.

Thus, every polynomial in [x]q of degree = k that satisfies the distribution
property (7.7.15) and remains finite when q 7→ 1 is a constant multiple of the kth

q-Bernoulli polynomial Bk([x]|q).
Exercise 7.7.43. (i) Let r 6= 0 be arbitrary and

f(x|q) = gr(q)q
rx. (7.7.44)

Show that f(x|q) satisfies the distribution property (7.7.15) provided

gr(q) = constr
r

[r]

1

(q − 1)k
; (7.7.45)

(ii) Show that if we take the limit r 7→ 0 in formula (7.7.45), we recover formula
(7.7.39).

Exercise 7.7.46. Show that

Bk(1/2|q) = (1 + q1/2)1−kBk(0|q1/2)−Bk(0|q). (7.7.47)

Exercise 7.7.48. Show that

B(0, t|q) = 1

[`]q

`−1∑

i=0

et[i]B(0, qi[`]qt|q`), ` ∈ N. (7.7.49)

Exercise 7.7.50. Set

ζ(x; s(1), s(2);α|q) =
∞∑

n=0

qα(x+n)

(x+ n)s(1)([x+ n]q)s(2)
. (7.7.51)

Show that

`−1∑

i=0

ζ(x+
i

`
; s(1), s(2);α|q`) = `s(1)([`])q)

s(2)ζ(`x; s(1), s(2);α|q), ` ∈ N. (7.7.52)

(Ignore the question of convergence: treat these series formally.)

Exercise 7.7.53. (i) Show that

`−1∑

i=0

εi([i]q)
r = (1− q)−r

r∑
s=0

(
r

s

)
(−1)s[`]εqs , (7.7.54)
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`−1∑

i=0

εi[i] =
[`]ε − ε`−1[`]q

ε−1 − q
=

[`]ε − [`]qε
1− q

; (7.7.55)

(ii) Denote

Sr(`; ε|q) =
`−1∑

i=0

εi([i]q)
r. (7.7.56)

Show that

Sr+1(`; ε|q) = Sr(`; ε|q)− Sr(`; qε|q)
1− q

. (7.7.57)

§§§ 7.8. A Formula Of Lehmer

Let Bk(x) be the classical Bernoulli polynomial. Rewriting Raabe’s formula
(7.7.1) as

1

`

`−1∑

i=0

Bk(x+
i

`
) =

Bk(`x)

`k
(7.8.1)

and noticing that the LHS of this formula is a Riemann’s sum for
∫ 1

0
Bk(x+ y)dy,

we can pass to the limit ` → ∞ and obtain, as Lehmer did in [Leh 1988]:

∫ 1

0

Bk(x+ y)dy = xk. (7.8.2)

The RHS, xk, comes out of the following observation: if

f(x) =
k∑

j=0

ajx
j , ak 6= 0, (7.8.3)

is a polynomial of degree = k then

lim
`→∞

f(`x)

`k
= akx

k, (7.8.4)

because

f(`x)

`k
=

k∑

j=0

aj(`x)
j/`k =

k∑

j=0

aj(x
j/`k−j). (7.8.5)

We are now going to prove the following q-analog of formula (7.8.2):

∫ 1

0

Bk(x+ y|q)dy =
1

β̂(h)
([x]q)

k. (7.8.6)

We start off formula (7.7.3), replace in it q by q1/`, and then divide each side
of it by `:

1

`

`−1∑

i=0

Bk(x+
i

`
|q) = 1

`
([`]q1/`)

1−kBk(`x|q1/`). (7.8.7)
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When ` → ∞, the LHS becomes

∫ 1

0

Bk(x+ y|q)dy, (7.8.8)

which is the LHS of formula (7.8.6). Let us, then, turn to the RHS of formula
(7.8.7).

By formula (7.5.30a),

Bk(`x|q1/`) = (q1/` − 1)−k
k∑

j=0

(
k

j

)
(−1)k−j β̂(jh/`)

β̂(h/`)
q`xj/`. (7.8.9)

Therefore, the RHS of formula (7.8.7) is:

k∑

j=0

(
k

j

)
(−1)k−jqjx

{
(q1/` − 1)−k 1

`

(
q − 1

q1/` − 1

)1−k
β̂(jh/`)

β̂(h/`)

}
= (7.8.10a)

= (q − 1)−k
k∑

j=0

(
k

j

)
(−1)k−jqjx

{
1/`

q1/` − 1
(q − 1)

β̂(jh/`)

β̂(h/`)

}
. (7.8.10b)

Now,

lim
`→∞

1/`

q1/` − 1
= lim

ε→0

ε

ehε − 1
=

1

h
=

1

log(q)
, (7.8.11a)

lim
`→∞

β̂(h/`) = lim
ε→0

β̂(ε) = 1. (7.8.11b)

Hence, the limit ` → ∞ of the expression (7.8.10b) is:

(q − 1)−k
k∑

j=0

(
k

j

)
(−1)k−jqjx

q − 1

log(q)
=

q − 1

log(q)

1

(q − 1)k
(qx − 1)k =

=
1

β̂(h)

(
qx − 1

q − 1

)k

=
1

β̂(h)
([x]q)

k, (7.8.12)

and this is the RHS of formula (7.8.6).

§§§ 7.9. Remembrance Of Formulae Past Imperfect

In §7.4, we derived the relation (7.4.14):

qx
∂Bk(x|q)

∂x
= k{Bk−1(x|q) + (q − 1)Bk(x|q)}+ δk(q). (7.9.1)

The constants δk(q)’s were left undetermined, since the values Bk(0|q)’s were at the
time also undetermined. Now that we have fixed the values Bk(0|q)’s by formula
(7.5.23):

Bk(x|q) = 1

β̂(h)
β̂(

d

dx
)([x]k), (7.9.2)
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we can find the δk(q)’s: they are all zeroes:

(
qx

d

d[x]
− (q − 1)k

)
(Bk(x|q)) = kBk−1(x|q). (7.9.3)

Indeed,

d[x]

dx
=

d

dx

(
qx − 1

q − 1

)
=

1

q − 1
log(q) · qx = β̂(h)qx ⇒ (7.9.4)

d

dx
=

d[x]

dx

d

d[x]
= β̂(h)qx

d

d[x]
⇒ (7.9.5)

qx
d

d[x]
=

1

β̂(h)

d

dx
, (7.9.6)

so that formula (7.9.3) can be rewritten as:

(
1

β̂(h)

d

dx
− (q − 1)k

)
(Bk(x|q)) = kBk−1(x|q). (7.9.7)

Now, denote by Oq the operator entering the RHS of formula (7.9.2):

Oq =
1

β̂(h)
β̂(

d

dx
). (7.9.8)

Since this operator commutes with the operator
1

β̂(h)

d

dx
− (q − 1)k, the LHS of

formula (7.9.7) becomes:

(
1

β̂(h)

d

dx
− (q − 1)k

)
(Bk(x|q)) =

(
1

β̂(h)

d

dx
− (q − 1)k

)
Oq([x]

k) =

= Oq

(
1

β̂(h)

d

dx
− (q − 1)k

)
([x]k) [by (7.9.4) ] =

= Oq

(
1

β̂(h)
k[x]k−1β̂(h)qx − (q − 1)k[x]k

)
= kOq([x]

k−1(qx − (q − 1)[x]))

[ because qx = 1 + (q − 1)[x] ] = kOq([x]
k−1) = kBk−1(x|q), (7.9.9)

and this is the RHS of formula (7.9.7). Formulae (7.9.3) and (7.9.7) and thereby
proven.

Multiplying formula (7.9.7) by tk/k! and summing on k ≥ 0, we obtain:

1

β̂(h)

∂

∂x
(B(x, t|q))− (q − 1)t

∂

∂t
(B(x, t|q)) = tB(x, t|q), (7.9.10)

or
1

β̂(h)

∂

∂x
(B(x, t|q)) = t(1 + (q − 1)

∂

∂t
)(B(x, t|q)). (7.9.11)
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For q = 1, the latter equation degenerates into the classical formula

∂B(x, t)

∂x
= tB(x, t). (7.9.12)

Formula (7.9.7) has a number of interesting corollaries, one such being the
identity ∫ 1

0

Bk(x|q)dx =
1

β̂(h)
δ0k. (7.9.13)

To prove it, we first set x = 0 in the relation (7.3.20):

Bk(x+ 1|q)−Bk(x|q) = kqx[x]k−1, (7.9.14)

resulting in
Bk(1|q)−Bk(0|q) = δ1k. (7.9.15)

Next, we rewrite formula (7.9.15) as

∫ 1

0

dx
dBk(x|q)

dx
= δ1k. (7.9.16)

Substituting formula (7.9.7) into the equality (7.9.16), we find:

1

β̂(h)
δ1k =

∫ 1

0

dx
1

β̂(h)

dBk(x|q)
dx

=

= k

∫ 1

0

dxBk−1(x|q) + k(q − 1)

∫ 1

0

dxBk(x|q). (7.9.17)

For k = 1, formula (7.9.17) returns:

1

β̂(h)
= B0(0|q) + (q − 1)

∫ 1

0

B1(x|q)dx (7.9.18)

But since, by formula (7.5.32),

B0(0|q) = 1

β̂(h)
, (7.9.19)

formula (7.9.18) yields: ∫ 1

0

B1(x|q)dx = 0. (7.9.20)

Induction on k in formula (7.9.17) then proves the claim (7.9.13).

Now let f(x) be a polynomial in [x] of degree = R, say. Since Bk(x|q) is
a polynomial in x of degree = k, we can decompose f(x), uniquely, as a linear
combination of the Bk(x|q)’s:

f(x) =
R∑

k=0

fk
Bk(x|q)

k!
, (7.9.21)
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where the coefficients fk’s are functions of q. To determine the fk’s, we follow the
method of Nielsen [Nie 1923] as augmented by Mordell [Mor 1966, p. 134].

From formulae (7.9.21) and (7.9.14) we get:

f(x+ 1)− f(x) =
R∑

k=1

fkq
x [x]k−1

(k − 1)!
. (7.9.22)

Therefore,

fk =

(
d

d[x]

)k−1{
q−x(f(x+ 1)− f(x))

}∣∣∣∣
x=0

, k ≥ 1. (7.9.23)

This leaves the coefficient f0 undetermined. We find f0 by integrating the equality
(7.9.21) with respect to x and using formula (7.9.13):

∫ 1

0

f(x)dx = f0B0(0|q). (7.9.24)

Therefore, formula (7.9.29) becomes:

f(x) =

∫ 1

0

f(x)dx+

+
∑

k≥1

{
q(q−xf(x))<k−1>

∣∣∣∣
x=1

− (q−xf(x))<k−1>

∣∣∣∣
x=0

}
Bk(x|q)

k!
, (7.9.25)

where

g(x)<`> =

(
d

d[x]

)`

(g(x)). (7.9.26)

For q = 1, formula (7.9.25) takes the classical form

f(x) =

∫ 1

0

f(x)dx+
∑

k≥1

{f (k−1)(1)− f (k−1)(0)}Bk(x)

k!
. (7.9.27)

Exercise 7.9.28. Show that

q−x([x+1]m − [x]m) =
m−1∑
s=0

[x]m−1−s
m−1−s∑

i=0

(
m

i+ s+ 1

)(
i+ s

s

)
(q− 1)i. (7.9.30)

§§§ 7.10. Peace Through Strength, Singularity Through Regularity

The defining relations for the q-Bernoulli polynomials, the difference equations
(7.3.20):

Bk(x+ 1|q)−Bk(x|q) = kqx[x]k−1, k ∈ Z+, (7.10.1)
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leave the values Bk(0|q)’s undetermined. In §7.5 we fixed these values by setting

Bk(x|q) = 1

β̂(h)
β̂(

d

dx
)([x]k), k ∈ Z+. (7.10.2)

By formula (7.5.39), the resulting polynomials Bk(x|q)’s and the numbers Bk(0|q)’s
are regular in (q − 1) (or log(q).)

However, it is not clear if there exists some other meaningful choice for the
constants Bk(0|q)’s. In this Section we shall reformulate this vague doubt into a
precisely-stated problem and then answer it in the negative.

A clue can be extracted from §7.7, where it was proven that the Bernoulli
polynomialBk(x|q) is defined uniquely − up to a constant (q-independent) multiple
− by the distribution property (7.7.3) and by being regular in (q − 1).

Let
{a} = (a0, a1, ...) (7.10.3)

be an arbitrary sequence, possibly q-dependent. The Carlitz polynomials

Cm(x) = Cm(x|q) = Cm(x; {a}|q), m ∈ Z+, (7.10.4)

associated to the sequence {a} (7.10.3) are defined as

Cm(x) =
m∑

i=0

(
m

i

)
aiq

ix[x]m−i, m ∈ Z+. (7.10.5)

Lemma 7.10.6. (Carlitz’s Lemma, see [Car 1948, p. 989].)

Cm(x+ y) =
m∑

i=0

(
m

i

)
Ci(y)q

ix[x]m−i. (7.10.6)

Proof. Set

C(x, t) =
∞∑

m=0

Cm(x)tm/m!, (7.10.7a)

A(t) =
∞∑

i=0

ait
i/i!. (7.10.7b)

The relations (7.10.5) can be rewritten as

C(x, t) = et[x]A(qxt). (7.10.8)

Therefore,

C(x+ y, t) = et[x+y]A(qx+yt) = et([x]+qx[y])A(qxqyt) =

= et[x]etq
x[y]A(qytqx) [by (7.10.8)] = et[x]C(y, tqx). (7.10.9)
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In components, the latter formula yields:

∞∑
m=0

Cm(x+ y)tm/m! =
∞∑
r=0

[x]r
tr

r!

∞∑

i=0

Ci(y)
(tqx)i

i!
, (7.10.10)

which is equivalent to formula (7.10.6)

Now, suppose the sequence {a} satisfies the relations

k∑

i=0

(
k

i

)
aiq

i − ak = δ1k, k ∈ Z+. (7.10.11)

(For example, the q-Bernoulli numbers satisfy these relations, thanks to formula
(7.6.13).) For k = 0, formula (7.10.11) returns

a0 − a0 = 0, (7.10.12a)

for k = 1 we get
a0 + (q − 1)q1 = 1, (7.10.12b)

and for k > 1 we end up with

(qk − 1)ak = {a linear combination of a0, ..., ak−1}. (7.10.12c)

Thus, a0 is a free parameter, and

ak = αk + βka0, k ∈ N, (7.10.13)

where αk = αk(q) and βk = βk(q) are certain rational functions of q.

With the relations (7.10.11) in force, we have:

Cm(x+ 1)− Cm(x) = mqx[x]m−1, m ∈ Z+. (7.10.14)

Indeed, by formula (7.10.6) with y = 1,

Cm(x+ 1)− Cm(x) =
m∑

i=0

(
m

i

)
(Ci(1)− ai)q

ix[x]m−i, (7.10.15)

and formula (7.10.14) results from the identity

Ci(1)− ai = δ1i , i ∈ Z+. (7.10.16)

To prove formula (7.10.16), we substitute x = 1 into formula (7.10.5) and find:

Cm(1)− am =
m∑

i=0

(
m

i

)
aiq

i − am = (7.10.17a)

[ by (7.10.11) ] = δ1m. (7.10.17b)
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Not only do the relations (7.10.11) imply the relations (7.10.14), but these
relations are in fact, equivalent. Indeed, with the relations (7.10.14) given, we
substitute x = 0 into (7.10.14) and find:

δ1m = Cm(1)− Cm(0) [ by (7.10.17a) ] =
m∑

i=0

(
m

i

)
aiq

i − am,

which is formula (7.10.11).

Thus, with the relations (7.10.11) now assumed, the Carlitz polynomials (7.10.5)
satisfy the same relations (7.10.14) as the q-Bernoulli polynomials, (7.10.2). The
values

ai = Ci(0) (7.10.18)

satisfy the same relations (7.10.11) as the q-Bernoulli numbers, (7.6.13). I claim
that if a0 is such that all the ai’s are regular in (q − 1) then ai = Bi(0|q) for all
i ∈ Z+. In other words, the q-Bernoulli numbers can be defined as the unique
regular in (q − 1) solution of the system (7.10.11).

A proof is rather obvious. Suppose ai(q)’s satisfy the relations (7.10.11) and
are regular in (q − 1). Then the differences

bi = ai −Bi(0|q), i ∈ Z+, (7.10.19)

are also regular in
ε = q − 1 (7.10.20)

and satisfy the homogeneous system

k∑

i=0

(
k

i

)
biq

i − bk = 0, k ∈ Z+. (7.10.21)

Let’s show that all the bi’s vanish. Suppose for a moment that it is not so. We
are going to arrive at a contradiction, as follows. If b0 = 0 then bi = 0 for all i.
Suppose b0 6= 0:

b0 = εr b̄0(ε), r ∈ Z+, b̄0(0) 6= 0, (7.10.22)

where b̄0(ε) is some regular in ε series. Since the system (7.10.21) is homogeneous,
we can divide each bi by the same regular in ε function (or series) b̄0(ε).

So, now
b0 = εr, r ∈ Z+. (7.10.23)

For k = 1, the relation (7.10.21) returns

(q − 1)b1 + b0 = 0, (7.10.24)

so that
b1 = −εr−1. (7.10.25)

For k > 1, the relation (7.10.21) yields:

(qk − 1)bk + kbk−1q
k−1 + ...+ b0 = 0. (7.10.26)
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But
qk − 1 = (q − 1)[k] = ε(k +O(ε)) = εk(1 +O(ε)), (7.10.27)

where O(ε) stands for terms of order > 0 in ε. Also,

qi = 1 +O(ε), i ∈ Z+. (7.10.28)

Therefore, induction on k in formula (7.10.26) yields:

bk = (−1)kεr−k(1 +O(ε)), k ∈ Z+. (7.10.29)

Thus, for k > r, bk is no longer regular in ε. A contradiction.
Exercise 7.10.30. (i) Show that

Cm(x) = cm[x]m + ..., (7.10.31a)

where ... stands for terms in [x] of degree < m and

cm =
m∑

i=0

(
m

i

)
ai(q − 1)i; (7.10.31b)

(ii) Show that
m∑

i=0

(
m

i

)
(q − 1)iCi(x) = cmqmx; (7.10.32)

(iii) Show that the sequence {a} = (a0, a1, ...) (7.10.3) is uniquely defined by the
sequence

I = (I0, I1, ...) : (7.10.33)

Ik =

∫ 1

0

Ck(x|q)dx, k ∈ Z+; (7.10.34)

(i4) Deduce that the q-Bernoulli polynomials Bk(x|q)’s are uniquely defined by the
relations ∫ 1

0

Ck(x|q)dx =
q − 1

log(q)
δ0k, k ∈ Z+. (7.10.35)

The longest word you can
type with just your left
hand is stewardesses.

Paul Harvey (attrib.)

§§§ 7.11. The Mother Of All Exponents

In §7.5, we have defined q-Bernoulli polynomials by formula (7.5.23):

Bk(x|q) = 1

β̂(h)
β̂

(
d

dx

)
([x]k), k ∈ Z+. (7.11.1)
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The generating function of these polynomials,

B(x, t|q) =
∞∑

k=0

Bk(x|q) t
k

k!
(7.11.2)

is then

B(x, t|q) = 1

β̂(h)
β̂(

d

dx
)(et[x]). (7.11.3)

For q = 1, the latter formula becomes:

B(x, t) = B(x, t|1) = β̂

(
d

dx

)
(etx), (7.11.4)

which is
B(x, t) = β̂(t)etx, (7.11.5)

because (
d

dx

)n

(etx) = tnetx. (7.11.6)

When q 6= 1, (
d

dx

)n

(et[x]) (7.11.7)

is a holy mess, and one shouldn’t expect any simplification in the formula (7.11.3).

Nevertheless, by formula (7.5.43),

1

β̂(h)
β̂(

d

dx
)(et[x]) = B(0, qxt|q)et[x]. (7.11.8)

The question is then if formula (7.11.8) is just a fluke, an accident due to the

peculiarities of the function β̂(t), or if there exists a genuine q-analog of the classical
formula

U( d

dx
)(etx) = U(t)etx, (7.11.9)

where

U(t) =
∞∑

i=0

ui
ti

i!
(7.11.10)

is an arbitrary formal power series associated to an arbitrary t-independent se-
quence {u} = (u0, u1, ...).

With the sequence {u} given, define a new sequence {v} = (v0, v1, ...) by the
rule:

vn =

(
U( d

dx
)([x]n)

)∣∣∣∣
x=0

= (q − 1)−n
n∑

i=0

(
n

i

)
(−1)iU(h(n− i)) = (7.11.11a)

= ∆̃nU(0), n ∈ Z+, (7.11.11b)
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where, for any sequence {w} = (w0, w1, ...),

∆̃W(I) =
W(I + h)−W(I)

q − 1
, (7.11.11c)

W(t) =
∞∑

k=0

wk
tk

k!
. (7.11.11d)

Let

V(t) =
∞∑

i=0

vi
ti

i!
, (7.11.12)

with the vn’s constructed from the un’s by formula (7.11.11a).
Proposition 7.11.13.

U( d

dx
)(et[x]) = V(qxt)et[x]. (7.11.14)

Proof. In the long-hand, formula (7.11.14) is:

∞∑
n=0

U( d

dx
)([x]n

tn

n!
) =

∞∑

i=0

viq
ix t

i

i!

∞∑

j=0

[x]j
tj

j!
, (7.11.15)

which is equivalent to the infinite system

U( d

dx
)([x]n) =

n∑

i=0

(
n

i

)
viq

ix[x]n−i, n ∈ Z+. (7.11.16)

We next transform each side of the system (7.11.16), as follows:

U( d

dx
)([x]n) = U( d

dx
)((

qx − 1

q − 1
)n) =

= U( d

dx
)(

n∑

j=0

(
n

j

)
(−1)n−jqjx(q − 1)−n) =

= (q − 1)−n
n∑

j=0

(
n

j

)
(−1)n−jU(hj)qjx, (7.11.17L)

n∑

i=0

(
n

i

)
viq

ix[x]n−i =
n∑

i=0

(
n

i

)
viq

ix
n−i∑

k=0

(q − 1)−n+i

(
n− i

k

)
(−1)n−i−kqkx =

=
∑

i,k

(
n

i

)(
n− i

k

)
(−1)n−i−k(q − 1)−n+iviq

(i+k)x. (7.11.17R)

Equating the qjx-terms in formulae (7.11.17), we arrive at the equality

(
n

j

)
U(hj) =

∑

i+k=j

(
n

i

)(
n− i

k

)
vi(q − 1)i, 0 ≤ j ≤ n. (7.11.18)
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Since (
n

i

)(
n− i

k

)
=

(
n

j

)(
j

i

)
, j = i+ k, (7.11.19)

formula (7.11.18) becomes:

U(hj) =
j∑

i=0

(
j

i

)
vi(q − 1)i. (7.11.20)

This relation is true, because it is just the inverse of the defining relations (7.11.11a).
Indeed, denote temporarily

xn = U(hn), yn = vn(q − 1)n. (7.11.21)

Then the relations (7.11.11a) and (7.11.20) become

yn =
n∑

i=0

(
n

j

)
(−1)ixn−i, (7.11.22a)

xj =

j∑

i=0

(
n

j

)
yi. (7.11.22b)

These are linear relations. Therefore, we can replace in them xi byXi, say. Formula
(7.11.22a) becomes:

yn = (−1 +X)n, (7.11.23a)

and formula (7.11.22b) then turns into

Xj =

j∑

i=0

(
j

i

)
(−1 +X)i = (1 + (−1 +X))j , (7.11.23b)

which is true
Remark 7.11.24. Either from formula (7.11.14) or from formulae (7.11.11b, c), we
see that the vi’s are regular in h:

vi(h) = ui +O(h), i ∈ Z+. (7.11.25)

Collecting formulae (7.11.12) and (7.11.11a) together, we get:

V(t) =
∞∑

n=0

vn
tn

n!
=

∞∑
n=0

tn

n!

1

(q − 1)n

n∑

i=0

(
n

i

)
(−1)n−iU(hi) =

=
∑

n,i

(
t

q − 1

)n
(−1)n−i

i!(n− i)!
U(hi) =

∑

j,i

( −t

q − 1

)j

U(hi) 1
i!

(
t

q − 1

)i

=

= e−t/(q−1)
∞∑

i=0

U
(
hτ

d

dτ

)(
τ i

i!

)
[ where, temporarily,

τ = t/(q − 1)] (7.11.26)
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= e−τU(hτ d

dτ
)(eτ ) = (e−τU(hτ d

dτ
)eτ )(1) = U(e−τhτ

d

dτ
eτ )(1) =

= U(hτ(1 + d

dτ
))(1) : (7.11.27)

V((q − 1)τ) = U(hτ(1 + d

dτ
))(1), (7.11.28)

or

V(τ) = U( h

q − 1
τ + hτ

d

dτ
)(1). (7.11.29)

Thus, formula (7.11.14) can be rewritten as

U( d

dx
)(et[x]) = et[x]U( h

q − 1
τ + hτ

d

dτ
)(1)

∣∣∣∣
τ=qxt

. (7.11.30)

Setting x = 0 in formulae (7.11.14) and (7.11.30), we find:

V(t) = U( d

dx
)(et[x])

∣∣∣∣
x=0

, (7.11.31)

U( d

dx
)(et[x])

∣∣∣∣
x=0

= U( h

q − 1
t+ ht

d

dt
)(1). (7.11.32)

Formulae (7.11.14) and (7.11.31) explain formula (7.11.8).

Formula (7.11.30) looks somewhat mysterious, but it can be banalized if one
observes that the linear space of expressions

f(qxt)et[x] (7.11.33)

is invariant under differentiation with respect to x:

d

dx
(f(qxt)et[x]) = f ′(qxt)qxthet[x] + f(qxt)et[x]t

qxh

q − 1
=

= et[x]{ h

q − 1
qxtf(qxt) + hqxtf ′(qxt)}. (7.11.34)

Thus, the cumulative action of the operator d/dx on the pre-exponent f(τ), where
now

τ = qxt, (7.11.35)

is:
d

dx
: f 7→ (

h

q − 1
τ + hτ

d

dτ
)(f). (7.11.36)

Therefore,

U( d

dx
) : f 7→ U( h

q − 1
τ + hτ

d

dτ
)(f), (7.11.37)

so that, finally,

U( d

dx
)(f(qxt)et[x]) = et[x]{U( h

q − 1
τ + hτ

d

dτ
)(f(τ))}

∣∣∣∣
τ=qxt

. (7.11.38)
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Formula (7.11.30) is a particular case of formula (7.11.38) for f(τ) = 1.

Another, even shorter derivation of formula (7.11.30) proceeds as follows:

e−t[x]U( d

dx
)(et[x]) = (e−t[x]U( d

dx
)et[x])(1) =

= U(e−t[x] d

dx
et[x])(1) = U( d

dx
+

h

q − 1
tqx)(1). (7.11.39)

But, with tqx denoted by τ ,

d

dx
=

dτ

dx

d

dτ
= hτ

d

dτ
, (7.11.40)

so that

e−t[x]U( d

dx
)(et[x]) = U( h

q − 1
τ + hτ

d

dτ
)(1)

∣∣∣∣
τ=tqx

, (7.11.41)

which is equivalent to formula (7.11.30).

For q = 1, formula (7.11.38) becomes:

U( d

dx
)(f(t)etx) = etxU(t)f(t). (7.11.42)

Exercise 7.11.43. Show that if the sequence {u} is given as

ui = λi, i ∈ Z+, (7.11.44a)

then the corresponding sequences {v} (7.11.11) is given as

vi = ([λ]q)
i, i ∈ Z+. (7.11.44b)

This is equivalent to the classical formula (7.11.9), which now can be viewed as a
deceptive banality.

For beautiful equalities
We have this news:
Inequalities is why
God made B-52s.

Gustav Noble, Sr.

§§§ 7.12. Sequences Quantized While U Wait

The emphasis in the preceding Section was on the action of operators of the
form U( d

dx ) on the exponent et[x]. The resulting formulae can be viewed from a
different, but related, perspective.

The expressions of the form
U(t)ext, (7.12.1)
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considered as generating functions:

∞∑
n=0

Un(x)
tn

n!
= U(t)ext =

∞∑

i=0

ui
ti

i!

∞∑

j=0

xj t
j

j!
, (7.12.2)

produce the following sequences of polynomials:

Un(x) =
n∑

i=0

(
n

i

)
uix

n−i, n ∈ Z+. (7.12.3)

These polynomials sequences are called binomial sequences, or Appell sequences.
These sequences of polynomials can be defined by various equivalent properties,
such as:

Un(x) =
n∑

i=0

(
n

i

)
Ui(0)x

n−i, n ∈ Z+, (7.12.4)

Un(x+ y) =
n∑

i=0

(
n

i

)
Ui(y)x

n−i, n ∈ Z+, (7.12.5)

d

dx
(Un(x)) = nUn−1(x), n ∈ Z+. (7.12.6)

With the exception of the last formula, (7.12.6), we have seen q-analogs of each
of the above relations in §7.10: generating functions (7.10.8)

A(qxt)et[x], (7.12.7)

the corresponding sequence of Carlitz polynomials (7.10.5)

Cn(x) =
n∑

i=0

(
n

i

)
aiq

ix[x]n−i, n ∈ Z+. (7.12.8)

the addition formula (7.10.6)

Cn(x+ y) =
n∑

i=0

(
n

i

)
Ci(y)q

ix[x]n−i (7.12.9)

and its {y = 0}-version

Cn(x) =
n∑

i=0

(
n

i

)
Ci(0)q

ix[x]n−i. (7.12.10)

Recall that {a} = (a0, a1, ...) is an arbitrary x-independent sequence and

A(t) =
∞∑

i=0

ai
ti

i!
. (7.12.11)
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Let us now complete this table by proving the following q-analog of formula
(7.12.6):

dCn(x)

dx
=

h

q − 1
nCn−1(x) + hnCn(x), n ∈ Z+. (7.12.12)

By formula (7.11.34),

d

dx
(A(qxt)et[x]) =

h

q − 1
qxtA(qxt)et[x] + hqxtA′(qxt)et[x]. (7.12.13)

Now, if the sequence {a} = (a0, a1, ...) generates the function A(t) by formula
(7.12.11), the sequence {iai−1} generates the function tA(t), because

∞∑

i=0

iai−1
ti

i!
=

∞∑

i=0

(i+ 1)ai
ti+1

(i+ 1)!
= t

∑
ai
ti

i!
= tA(t); (7.12.14)

similarly, the sequence {iai} generates the function tA′(t), because

∞∑

i=0

iai
ti

i!
= t

d

dt
(

∞∑

i=0

ai
ti

i!
) = tA′(t). (7.12.15)

Therefore, extracting the {tn/n!}-terms from formula (7.12.13), we find:

dCn(x)

dx
=

h

q − 1

n∑

i=0

(
n

i

)
iai−1q

ix[x]n−i + h
n∑

i=0

(
n

i

)
iaiq

ix[x]n−i. (7.12.16)

Next,

h

q − 1

n∑

i=0

(
n

i

)
iai−1q

ix[x]n−i =
h

q − 1

n−1∑

i=0

(
n

i+ 1

)
(i+ 1)aiq

ixqx[x]n−1−i =

=
h

q − 1

n−1∑

i=0

(
n

i+ 1

)
(i+ 1)aiq

ix[x]n−1−i(1 + (q − 1)[x]) =

=
h

q − 1
n

n−1∑

i=0

(
n− 1

i

)
aiq

ix[x]n−1−i + h
n∑

i=0

(
n

i

)
(n− i)aiq

ix[x]n−i =

=
h

q − 1
nCn−1(x) + h

n∑

i=0

(
n

i

)
(n− i)aiq

ix[x]n−i, (7.12.17)

because (
n

i+ 1

)
(i+ 1) = n

(
n− 1

i

)
=

(
n

i

)
(n− i). (7.12.18)

Therefore, formula (7.12.16) can be rewritten as

dCn(x)

dx
− h

n− 1
nCn−1(x) =
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= h
n∑

i=0

(
n

i

)
(n− i)aiq

ix[x]n−i + h
n∑

i=0

(
n

i

)
iaiq

ix[x]n−i =

= h
n∑

i=0

(
n

i

)
(n− i+ i)aiq

ix[x]n−i = hnCn(x), (7.12.19)

and this is equivalent to formula (7.12.12).

Formula (7.12.12) can also be rewritten as

q − 1

h

dCn(x)

dx
= n(Cn−1(x) + (q − 1)Cn(x)), (7.12.20)

showing that the differential relation (7.9.7) for the q-Bernoulli polynomials is gen-
eral and not related to anything Bernoullian.

We can now re-interpret formula (7.11.11a), providing the rule of constructing
a new sequence {v} = (v0, v1, ...) out of old one {u} = (u0, u1, ...), as a recipe for
quantization of arbitrary sequences; equivalently, as a recipe for quantization of
arbitrary Appell polynomial sequences:

{Un(x) =
n∑

i=0

(
n

i

)
uix

n−i} q̂7→ {Vn(x) =
n∑

i=0

(
n

i

)
viq

ix[x]n−i}, n ∈ Z+.

(7.12.21)
This rule can be succinctly expressed in the language of generating functions as

U
(

d

dx

)
(etx)

q̂7→ U( d

dx
)(et[x]). (7.12.22)

(In this form it suggests natural variations that are left to the interested reader.)

Notice that the sequences {v} we end up with under this quantization rule are
very far from being arbitrary. In fact, every such sequence {v} is determined solely
by its first two terms, v0 and v1.

Indeed, formula (7.11.11a) says that

v0 = U(0), (7.12.23a)

v1 =
U(h)− U(0)

q − 1
, (7.12.23b)

so that
U(h) = v0 + (q − 1)v1(q). (7.12.24)

Therefore,

vn(q) = (q − 1)−n
n∑

i=0

(
n

i

)
(−1)n−i(v0 + (qi − 1)v1(q

i)) = (7.12.25a)

= v0δ
0
n + (q − 1)−n

n∑

i=0

(
n

i

)
(−1)n−i(qi − 1)v1(q

i). (7.12.25b)
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In particular, for the Bernoulli case {un = Bn}, U(t) = β̂(t), we find:

B̄0(0|q) = δ0n + (q − 1)−n
n∑

i=0

(
n

i

)
(−1)n−i(qi − 1)B̄1(0|qi), (7.12.26)

where the bar over B̄n(0|q)’s signifies that the q-Bernoulli numbers are re-normalized
in such a way that B̄0(0|q) = 1. Formulae (7.12.23) yield:

B̄0(0|q) = 1 =
h

q − 1
B0(0|q), (7.12.27)

B̄0(0|q) = 1

q − 1
(U(h)− U(0)) = 1

q − 1
(

h

eh − 1
− 1) =

1

q − 1
(

h

q − 1
− 1) =

(7.12.28a)

=
h

q − 1
(

1

q − 1
− 1

h
) =

h

q − 1
B1(0|q) = (7.12.28b)

=
h

q − 1

U(h)− U(0)
h

=
h

q − 1

∞∑

i=0

Bi+1
hi

(i+ 1)!
, (7.12.28c)

see formulae (7.5.32) and (7.5.33a). Next,

v0 + (qi − 1)v1(q
i) = 1 + (qi − 1)

1

qi − 1

(
ih

qi − 1
− 1

)
=

ih

qi − 1
=

=
h

q − 1

i

[i]
, (7.12.29)

and formula (7.12.25) yields:

B̄n(0|q) = (q − 1)−n
n∑

i=0

(
n

i

)
(−1)n−i h

q − 1

i

[i]
=

h

q − 1
Bn(0|q) (7.12.30a)

= Bn(0|q)/B0(0|q), (7.12.30b)

according to formulae (7.5.31) and (7.5.32).

Thus, we have recovered our q-Bernoulli formulae from the general construction
(7.12.21,22).

Interestingly enough, our story doesn’t end here.

Set
C̃n(x) = Cn(x)q

−nx = (7.12.31a)

=
n∑

i=0

(
n

i

)
ai([x]/q

x)n−i, (7.12.31b)

so that
Cn(x) = qnxC̃n(x). (7.12.32)
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Since formula (7.12.31b) is of Appell type (7.12.3), we immediately find, by formula
(7.12.6), that

dC̃n(x)

d([x]q−x)
= nC̃n−1(x). (7.12.33)

Now,

[x]q−x =
qx − 1

q − 1
q−x =

1− q−x

q(1− q−1)
= q−1[x]q−1 , (7.12.34)

and formula (7.12.33) becomes:

q
dC̃n(x)

d[x]q−1

= nC̃n−1(x). (7.12.35)

Multiplying both parts of this equality by qn−1, we find:

d(qnC̃n(x))

d[x]q−1

= nqn−1C̃n−1(x). (7.12.36)

Thus, the polynomials

qnC̃n(x) = qn(1−x)Cn(x) = qn
n∑

i=0

(
n

i

)
ai([x]/q

x)n−i =

= qn
n∑

i=0

(
n

i

)
ai(q

−1[x]q−1)n−i =
n∑

i=0

(
n

i

)
aiq

i([x]q−1)n−i (7.12.37)

form an Appell sequence of polynomials in the variable X = [x]q−1 , attached to the

coefficient sequence {qiai}. Since
∞∑

i=0

qiai
ti

i!
= A(qt), (7.12.38)

we have:

A(qt)etX = A(q
d

dX
)(etX) =

∞∑
n=0

qnC̃n(x)
tn

n!
, X = [x]q−1 . (7.12.39)

Therefore, we can once again quantize the sequence {qiai}, or the Appell sequence

{qnC̃n(x)}, with a new quantization parameter Q, say. This process can be contin-
ued indefinitely.
Exercise 7.12.40. Suppose

U(t) = e−t2/2, (7.12.41a)

U(t)ext = e−t2/2ext = exp(−1

2

d2

dx2
)(ext) = (7.12.41b)

=
∞∑

n=0

Hn(x)
tn

n!
. (7.12.41c)

The polynomials Hn(x) are called Hermite polynomials.
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(i) Show that

Hn(x|q) = exp(−1

2

d2

dx2
)([x]n) = (q − 1)−n

n∑

i=0

(
n

i

)
(−1)n−ie−i2h2/2qix; (7.12.42)

(ii) Show that

H1(x|q) = e−h2/2[x] +
e−h2/2 − 1

eh − 1
; (7.12.43)

(iii) Show that ∫ ∞

−∞
e−x2/2Hn(x|q)dx = δ0n

√
2π; (7.12.44)

(i4) Show that
Hn(−x|q−1) = (−q)nHn(x|q). (7.12.45)

Exercise 7.12.46. (i). Show that

lim
x→∞

U( d

dx
)(et[x]) = U(0)et/(1−q); (7.12.47)

(ii) Deduce that

Bk(∞|q) = lim
x→∞

Bk(x|q) = 1

β̂(h)

1

(1− q)k
= − (1− q)1−k

h
; (7.12.48)

(iii) Deduce that

lim
n→∞

n∑

i=1

qi−1[i]k =
q−1

k + 1

(
(1− q)−k

β̂(h)
−Bk+1(1|q)

)
; (7.12.49a)

(i4) Show that
∞∑

i=1

qi−1 =
1

1− q
, (7.12.49b)

∞∑

i=1

qi−1[i] =
1

(1− q)(1− q2)
, (7.12.49c)

∞∑

i−1

qi−1[i]2 =
1 + q2

(1− q)(1− q2)(1− q3)
. (7.12.49d)

Exercise 7.12.50. Set

B̄k(x|q) = Bk(x|q)/B0(0|q) = h

q − 1
Bk(x|q), k ∈ Z+. (7.12.51)

Show that
`−1∑

i=0

B̄k(x+
i

`
|q`) = `([`]q)

−kB̄k(`x|q), ` ∈ N. (7.12.52)
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Exercise 7.12.53. (i) Show that

[n]` =
n−1∑

j=0

(
j − 1 + `

j

)
qj +O(qn), (7.12.54a)

n∑

i=0

qn−i[i]` =
n−1∑

j=0

(
j + `

j

)
qj +O(qn+1); (7.12.54b)

(ii) Deduce that

lim
n→∞

n∑

i=0

qn−i[i]` = (1− q)−`−1. (7.12.55)

§§§ 7.13. Alternating Sums And qqq-Euler Polynomials

Here in Australia, where everything is up-
side down and back to front, we mark Easter
by forcing rabbits to eat chocolate.

Tim Blair

We have seen in §7.2 that natural q-versions of the classical power-sums

sk(n) =
n∑

i=1

ik (7.13.1)

are the expressions

sk(n|q) =
n∑

i=1

qi−1[i]k. (7.13.2)

In this same spirit, the alternating sums of §6.4,

sk||−1(n) =
n∑

i=1

(−1)i−1ik, (7.13.3)

have, as their natural q-versions,

sk||−1(n|q) =
n∑

i=1

(−q)i−1[i]k. (7.13.4)

Recall that in §6.4 we have handled the classical case (7.13.3) by introducing
the Euler polynomials Ek(x) as the unique solutions of the equalities

Ek(x) + Ek(x+ 1) = 2xk, k ∈ Z+, (7.13.5)
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so that

sk||−1(n) =
n∑

i=1

(−1)i−1ik = (−1)n−1Ek(n+ 1)

2
+

1

2
Ek(1), n ∈ N. (7.13.6)

Similarly, let us define q-Euler polynomials Ek(x|q)’s by the relations

Ek(x|q) + Ek(x+ 1|q) = cqx[x]k, k ∈ Z+. (7.13.7)

where, for convenience, c is left to be an unspecified constant, such as c = 2 or
c = [2]. The same arguments as in §6.4 show that if a polynomial solution of the
equation (7.13.7) exists, for a given k, then it is unique. Granted such existence,
we have:

sk||−1(n|q) =
n∑

i=1

(−q)i−1[i]k = q−1
n∑

i=1

(−1)i−1qi[i]k =

=
q−1

c

n∑

i=1

(−1)i−1(Ek(i|q) + Ek(i+ 1|q)) =

=
q−1

c

( n∑

i=1

(−1)i−1Ek(i|q)−
n+1∑

i=2

(−1)i−1Ek(i|q)
)

=

=
q−1

c

(
Ek(1|q) + (−1)n−1Ek(n+ 1|q)

)
, (7.13.8)

a q-analog of formula (7.13.6).

Thus, we need to determine the polynomials Ek(x|q)’s. Introducing the gen-
erating function

E(x, t|q) =
∞∑

k=0

Ek(x|q) t
k

k!
, (7.13.9)

we can convert the system (7.13.7) into a single relation

E(x, t|q) + E(x+ 1), t|q) = cqxet[x]. (7.13.10)

This can be rewritten as

(ed/dx + 1)(E(x, t|q)) = cqxet[x], (7.13.11)

so that, finally,

E(x, t|q) = c

ed/dx + 1
(qxet[x]). (7.13.12)

At q = 1, we obtain:

E(x, t|1) = c

ed/dx + 1
(etx) =

c

et + 1
etx, (7.13.13)

which is formula (6.4.8) for c = 2. We see that formula (7.13.12) is different from
what the quantization recipe (7.12.22) provides, which is:

E(x, t) = c

et + 1
etx 7→ c

ed/dx + 1
(et[x]) = E(x, t|q). (7.13.14)
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The difference, however, is not profound, because formula (7.13.12) can be
rewritten as

tE(x, t|q) = c

ed/dx + 1
(tqxet[x]) =

c

β̂(h)

d/dx

ed/dx + 1
(et[x]), (7.13.15)

so that our quantization recipe (7.12.22) applies properly not to the sequence of Eu-
ler polynomials {E0(x), E1(x), ...} but to the shifted sequence {0, E0(x), 2E1(x), ...} :

tE(x, t) = t
∞∑

k=0

Ek(x)
tk

k!
=

∞∑

k=0

(k + 1)Ek(x)
tk+1

(k + 1)!
= (7.13.16a)

=
∞∑

k=0

kEk−1(x)
tk

k!
. (7.13.16b)

Thus,

kEk−1(x|q) = c

β̂(h)

d/dx

ed/dx + 1
([x]k), k ∈ N. (7.13.17)

We now appeal to Euler’s observation (see [Nie 1923, p. 557]) that

τ

eτ + 1
= β̂(τ)− β̂(2τ) =

τ

eτ − 1
− 2τ

e2τ − 1
. (7.13.18)

Formula (7.13.15) can be, therefore, recast as

t

c
E(x, t|q) = 1

β̂(h)

(
β̂(

d

dx
)− β̂(2

d

dx
)

)
(et[x]). (7.13.19)

Now,
1

β̂(h)
=

2

[2]

1

β̂(2h)
, (7.13.20a)

2
d

dx
=

d

d(x/2)
, (7.13.20b)

t[x]q = [2]t[x/2]q2 . (7.13.20c)

Therefore, formula (7.13.19) can be rewritten as

t

c
E(x, t|q) = 1

β̂(h)
β̂(

d

dx
)(et[x])− 2

[2]

1

β̂(2h)
β̂(

d

d(x/2)
)(e[2]t[x/2]q2 ) =

= B(x, t|q)− 2

[2]
B(x/2, [2]t|q2). (7.13.21)

In components, this is:

kEk−1(x|q) = c(Bk(x|q)− 2[2]k−1Bk(x/2|q2)), k ∈ N, (7.13.22)

or
Ek(x|q) = c

k + 1
(Bk+1(x|q)− 2[2]kBk+1(x/2|q2)), k ∈ Z+. (7.13.23)
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This formula, and more, can be found in [Car 1948], where they are derived differ-
ently.
Exercise 7.13.24. Show that

q − 1

h

dEn(x|q)
dx

= nEn−1(x|q) + (q − 1)(n+ 1)En(x|q), n ∈ Z+. (7.13.25)

Exercise 7.13.26. (i) Show that

Ek(∞|q) = lim
x→∞

Ek(x|q) = 0; (7.13.27)

(ii) Deduce that

∞∑

i=1

(−q)i−1[i]k = lim
n→∞

n∑

i=1

(−q)i−1[i]k =
q−1

c
Ek(1|q). (7.13.28)

Exercise 7.13.29. (i) Show that

n∑

i=0

(−q)n−i[i] =

[
bn+ 1

2
c
]

q2
; (7.13.30)

(ii) Deduce that

lim
n→∞

n∑

i=0

(−q)n−i[i] =
1

1− q2
; (7.13.31)

(iii) Show that
n∑

i=0

(−q)n−i[i]2 =
n∑

j=0

qj−1[j]. (7.13.32)
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To himself everyone is immortal;
he may know that he is going to die,
but he can never know that he is dead.

Samuel Butler



Glossary Of Theorems

There is something wrong about a theory
where the worst Lemmas and Propositions
look better groomed and have higher class-
numbers‡ than the best Theorems.

Gustav Noble, Sr.

Theorem. This is the only Theorem in this book.

Proof is rather obvious and is left to the reader as an Exercise.

‡ A beautiful formula for calculating aristocratic numbers was conjectured by
Jacobi in 1832 and proved by Dirichlet in 1839; see Ch. 5 in [Dir 1999].
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